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ABSTRACT Electrostatic/magnetostatic problems involving complex heterogeneity are 

nontrivial for modeling and simulation. Most existing numerical methods focus on sharp 

interface models and the computational cost increases with increasing complexity of the 

geometry. Here we develop an iterative spectral method, so-called bound charge successive 

approximation algorithm, to solve electrostatic/magnetostatic heterogeneity problems in the 

context of diffuse-interface modeling. As tests and verifications, this algorithm is applied to 

calculation of the depolarization factor of an ellipsoid, and simulation of random dielectric 

mixtures and the dielectophoretic motion of multiple particles. The algorithm shows excellent 

efficiency and the computational cost mainly depends on the permittivity/permeability contrast 

in the whole system, regardless of the complexity of the geometry. In particular, for evolving 

heterostructures the solution of bound charge in one time step can be used as input for the next, 

which could further significantly shorten the iteration (approximation) process, making it 

practical to simulate the long range electrostatic/magnetostatic interaction in complex and 

evolving heterostructures.  

 

PACS numbers:  02.60.-x 41.20.Cv 73.40.-c 75.70.Cn 

 

I. Introduction 

Calculation of the long range electrostatic interaction in a materials system can be 

computationally very expensive. For dielectric materials, continuum or coarse-grained numerical 

models often use the dielectric constant to characterize the medium, which avoids direct 

calculation of the all-atom charge interactions, as the macroscopic dielectric constant is linked to 

the atomic polarizability, e.g., through the Clausius-Mossotti relation [1]. However, dielectric 

heterostructure is yet ubiquitous in ceramics due to imperfections such as micropores/cracks, in 

composites due to the presence of inclusions/fillers, and in soft matter such as colloid systems [2-
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5] and biological materials [6-11]. Much effort has been devoted to evaluate the effective 

dielectric constant (EDC) of a dielectric mixture [12-14]. Despite the extensive studies on the 

effective medium theory, for a random complex dielectric heterostructure its EDC cannot be 

predicted by a general theory with satisfactory accuracy [15]. In addition, if the microstructural 

evolution is affected by the electric field then the inhomogeneous dielectric constant needs to be 

explicitly modeled to account for the local electric field effect, for a typical example, during 

dielectrophoresis (DEP) of multiple particles [4].  There has also been much effort for numerical 

solutions of the heterogeneity problems, such as finite element method [16-19], boundary 

element method [12, 20-22], immersed interface method [23], and variational approaches [24-29]. 

Existing numerical methods, however, mostly focus on the sharp-interface models in which the 

computational cost strongly relies on the complexity of geometry/microstructure. Efficiently 

modeling complex and especially evolving dielectric heterostructures is yet very challenging. 

Similar problems also exist for magnetic heterostructures, such as in a random magnetic 

composite [30], and in magnetophoresis [31]. In this paper we develop a novel bound charge 

successive approximation (BCSA) algorithm to solve the heterogeneity problems in the context 

of diffuse-interface/phase-field modeling [32, 33]. By taking the advantage of diffuse-interface 

models in capturing microstructural evolution in materials, and with application of the Fast 

Fourier Transform technique (FFT), the BCSA algorithm shows excellent performance in 

simulating the complex and/or evolving heterostructures.   

 

II. Formulation 

For electrostatic problems involving heterogeneous media, the governing equation is the Gauss’s 

law for dielectrics, 

 0[ ( ) ( )] ( )r fε ε ρ∇⋅ =r E r r ,  (0) 

where 0ε  is the free space permittivity, ( )rε r  the local relative permittivity, ( )E r  electric field, 

and ( )fρ r  the free charge density. Note that for electrostatics ( )E r  can be expressed as 

( ) ( )ϕ= −∇E r r  where ϕ  is the electrostatic potential, thus Eq. (1) is equivalent to the general 

form of Poisson’s equation, i.e., 0[ ( ) ( )] ( ) 0r fε ε φ ρ∇ ⋅ ∇ + =r r r . Alternatively, Eq. (1) can be 

rewritten as  

 0[ ( )] ( )ε ρ∇ ⋅ =E r r   (0) 
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where the total charge density ( ) ( ) ( )f bρ ρ ρ= +r r r , and the bound charge density 

 ( ) ( )bρ = −∇ ⋅r P r ,  (0) 

also called polarization charge density or induced charge density in the literature, is coupled with 

the electric field. Commonly one considers linear dielectric materials so that  

 0( ) ( ) ( )ε χ=P r r E r   (0) 

where ( ) ( ) 1rχ ε= −r r  is the local dielectric susceptibility. Equation (4) is the constitutive 

equation of the dielectric material. When the total charge density is given, the electric field can 

be directly solved by the spectral method which is frequently used in diffuse-interface/phase-

field models  [34-36], 
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where exE  can be any divergence-free external field known in advance (i.e., independent of the 

object charge system), i  the imaginary unit, k  the length of  reciprocal space vector k , / k=n k , 

and the tilde ‘~’ of ( )ρ k%  indicates the Fourier Transform (FT) of total charge density ( )ρ r  

(same for the following symbols). Equation (5), conforming to Eq. (2), is equivalent to 
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 that is a result of the free space Coulomb’s law (in this case, 

the effect of dielectric heterostructure is reflected by the bound charge). Therefore, given the 

charge distribution, the electric field can be solved efficiently just by invoking twice the FFT 

operations (forward and backward) [34, 36]. Note that for applying FFT, periodic boundary 

condition has to be enforced. However, the problem is that the bound charge density itself is yet 

part of solution.  

 

Here we discuss in the context of diffuse-interface models in which all field variables are 

typically defined on regular grid points, and the field variables (including the so-called order 

parameters) transit smoothly across interfaces [32, 33]. In contrast to sharp-interface models, 

there is no abrupt change of field variables across a diffuse interface. In the classical Cahn-

Hilliard model that is based on the theory of gradient thermodynamics, the equilibrium profile of 

an order parameter across an interface is typically a hyperbolic tangent function [37]. In this 
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work, the dielectric susceptibility is also assumed to smoothly transit from 0 to 0 1rε −  across a 

few grid points (the diffuse interface). See Fig. 1 for a schematic of a circular particle. The 

profile of χ  across an interface is numerically treated to be approximately a smooth hyperbolic 

tangent function (other function could be used) so that the gradient of χ  is not singular at the 

interfaces.  

 

 
 

FIG. 1. (Color online) (a) schematic of a circular particle in vacuum modeled by diffuse-interface 

approach (the color denotes relative permittivity); (b) distribution of ( )χ r  along the path A-B in 

(a); (c) 3D visualization of the permittivity (set as height) and mesh in (a).  

 

Combination of Eqs. (2-4) yields 

 0 ( )( ) ( ) ( ) ( )
1 ( ) 1 ( )b f

ε χρ χ ρ
χ χ

−= ∇ ⋅ −
+ +

rr r E r r
r r

.  (0) 

It is clear that the uncertain part of the bound charge is just the first term of the right hand side of 

Eq. (6), since the last term consists of only predefined terms. We propose a straightforward 

method that we call a bound charge successive approximation algorithm (BCSA), to approach 

the bound charge solution step by step. The idea is to calculate the electric field by Eq. (5) first 

where the total charge density is set as the free charge density plus a tentatively evaluated bound 

charge density. Subsequently, the bound charge density is corrected according to the difference 

between the tentatively bound charge density and the value calculated from Eqs. (3-4). The 

corrected value is used as input for the next iteration step. This procedure is repeated until a 

convergence criterion is satisfied. At the nth iteration step (n starts from zero), the numerical 

operations are listed in Algorithm 1. 
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Algorithm 1: Bound Charge Successive Approximation (BCSA) algorithm for electrostatics 

(a) ( ) ( )n n
b fρ ρ ρ= + ; ( ) ( )[ ]n nFTρ ρ=% ; 

(b) 
( )

( ) 1

0

[ ]
n

n ex i FT
k

ρ
ε

−= −E E n
%

; 

(c) ( ) ( )
0[ ]n n

tb i FTρ ε χ= − ⋅k E% , ( ) 1 ( )[ ]n n
tb tbFTρ ρ−= % ; 

(d) Update bρ  by ( 1) ( ) ( )n n n
b b bρ ρ ρ+ = + Δ  with ( ) ( ) ( )[ ]n n n

b tb bρ λ ρ ρΔ = − , and repeat 

Operations (a-d) unless when ( ) ( )max( )n n
tb b ρρ ρ δ− <  is achieved (convergence 

criterion). 

 

In the above formula ρδ  is a predefined small number for controlling the target precision, and λ  

is a coefficient, generally chosen to be ~ 1 / rε , where rε  is the maximum permittivity in the 

model or permittivity contrast if the minimum rε  in the system is 1 (The determination of λ  

will be discussed later). Operation (b) is to calculate the electric field by the assumed charge 

density at the nth step according to Eq. (5). If completely unknown, the initial value of bound 

charge density can be set as  

 (0) ( ) ( ) ( ) / [1 ( )]b fρ ρ χ χ= − +r r r r  . (0) 

In Operation (b) the electric field satisfies Gauss’s law of 

 ( ) ( )
0( ) [ ( ) ( )] /n n

b fρ ρ ε∇⋅ = +E r r r .  (0) 

Operation (c) is to tentatively evaluate the bound charge according to the constitutive equation, 
( ) ( )

0[ ]n n
tbρ ε χ= −∇ ⋅ E , by the spectral method.  Operation (d) means to minimize the difference 

between ( )n
tbρ  and the assumed bound charge, ( )n

bρ , because if ( ) ( )n n
tb bρ ρ=  is achieved, by Eq. 

(8) one obtains ( ) ( )
0 0[ ]n n

fε χ ε ρ−∇⋅ = ∇⋅ −E E  which leads to  

 ( )
0[ ( ) ( )] ( )n

r fε ε ρ∇⋅ =r E r r .  (0) 

In other words, given any initial input of (0)
bρ , as long as the bound charge density calculated 

from the constitutive law agrees with its assumed value, the solved electric field satisfies the 

general form of Gauss’s law within a given accuracy.  
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Now we need to determine the coefficient λ . Combination of the constitutive equation in 

Operation (c) and Eq. (8) yields  

 ( ) ( ) ( ) ( )
0( ) ( ) ( ) ( ) ( ) ( ) [1 ( )] ( )n n n n

tb b f bρ ρ ε χ χ ρ χ ρ− = − ∇ ⋅ − − +r r r E r r r r r   (0) 

From Eq. (6), the difference between the true solution bρ  and ( )n
bρ  is 

 ( ) ( )0 ( )( ) ( ) ( ) ( ) ( ) ( )
1 ( ) 1 ( )

n n
b b f b

ε χρ ρ χ ρ ρ
χ χ

−− = ∇ ⋅ − −
+ +

rr r r E r r r
r r

  (0) 

Comparing Eqs. (10) and (11), and by assuming ( )nχ∇ ⋅E  is on the same order of χ∇ ⋅E ,† one 

finds that ( ) ( ) ( )~ ( ) / (1 )n n n
b b tb bρ ρ ρ ρ χ− − + . For this sake, we choose ~ 1/ rλ ε . As the value of 

1 χ+  may be spatially varying from 1 to rε , choosing 1/ rλ ε=  would allow the bound charge 

to be retrieved by a fraction of ~ 1/ rε  or above at any position. Subsequently, the maximum 

error of bound charge density at the nth step  

 ( ) ( )max( ( ) ( ) )n n
b bρ ρΔ = −r r , (0) 

is expected to be roughly a geometric series with a common ratio of 1 1/ rε− . From this inference 

the number of iterations required (I) to reach a target precision *
ρδ  (normalized by the maximum 

bound charge density in the model) is expected to be on the order of 

 
*ln

ln(1 1/ )r

I ρδ
ε

=
−

. (0) 

This estimation is based on the assumption that the initial error of bound charge is ~100%, and 

the iteration number could be even less if the initial input (0)
bρ  is already close to the final 

solution bρ  (instead of simply using Eq. (7)). It appears unlikely to have such input of (0)
bρ  but 

later we will show how it is feasible in diffuse-interface models.  

 

Rigorously proving the convergence of BCSA in a general situation is probably difficult (see the 

Appendix for more discussions). Whereas, our extensive numerical tests show that this algorithm 

                                                 
† Close to convergence this assumption must be true. At the beginning steps, if the input of bound charge density is 
far from the solution, in principle ( )nχ∇ ⋅E   may not necessarily be on the same order of χ∇ ⋅E . However, all our 
numerical tests show that as long as λ  is small enough ( ~ 1/ rλ ε ), convergence can always be reached in limited 
steps estimated by Eq. (13), even with a poor initial guess, such as by using Eq. (7). 
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is very robust and that Eq. (13) does provide a good estimate for the number of steps required for 

simple as well as very complex systems.   

 

III. Simulation results: verifications and applications of the BCSA algorithm 

A. Verification on the validity/accuracy 

To check the validity of the BCSA algorithm, calculating the depolarization factor (DF) of an 

ellipsoid is first considered. Assume the ellipsoid is placed in vacuum and it has homogeneous 

dielectric susceptibility χ  subject to a uniform external electric field exE  along one of its 

principal axes. The actual macroscopic electric field inside the ellipsoid is also uniform 

according to the strict analytical solution (based on the sharp interface model) [1], given by  

 
1

ex

Nχ
=

+
EE  , (0) 

where N  is the DF for the principal axis. For an arbitrary ellipsoid N  is positive and generally 

less than 1 with the sum of N ’s for all three principal axes equal to 1 [38].  To compare the 

calculated DFs with the analytical solution, we need the diffuse interface model to approach the 

sharp interface limit, i.e., t << Δ , where t  is the characteristic interface thickness and Δ  the 

characteristic size of the material structure. In addition, in this case the effect of periodic 

boundary condition must be minimized, which requires LΔ <<  where L  the computational 

domain size. ε r  is set as 10 inside the inclusion and it smoothly transits across the surface to 1 

outside. A two-dimensional mesh of 1024 1024×  is used and the major axis of the ellipse is 

discretized into 60~100 grid points (depending on the aspect ratio of ellipses). This simulation 

corresponds to an infinitely long cylinder with an elliptical cross-section thus N  in the length 

direction is zero. *
ρδ  is set to 0.001. Figure 2 shows the numerical solution of electric field and 

bound charge distribution of a special case, a circular particle, where positive and negative bound 

charge is developed at the upper and lower parts of the surface, respectively.  
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FIG. 2. (Color online) Calculated bound charge density distribution as a circular dielectric 

inclusion is placed in a uniform external electric field ( 0| | 0.1ex E=E  ), the length and direction of 

the arrows represent the magnitude and direction of the local electric field. 

 

It is noted that the coefficient 1/ rλ ε=  works for all tested cases but other value could be used 

too. For all tested configurations (all the simulation cases in this paper) the algorithm fails to 

converge with 2 / rλ ε≥  and the optimal value λ  ( Oλ ) is found to fall between 1 / rε  and 2 / rε  

for different systems. The value of 2 / rε  appears to be a threshold value beyond which strong 

oscillation and divergence occur. For the simulation in Fig. 2, when 1/ rλ ε=  BCSA requires 48 

iterations to converge, while the least iteration number is 26 by using 1.7 /O rλ ε= . This suggests 

that in the future λ  could be further optimized dynamically to achieve the best efficiency.  

 

Mejdoubi and Brosseau (MB) solved the same DF problem for ellipses of different aspect ratios 

by combining a series expansion of Maxwell-Garnett and Bruggeman models and finite element 

analysis (FEA) [16]. On the other hand, an analytical solution exists for the infinite elliptical 

cylinder situation that is simply / ( )N a a b= +  where a and b denote the semi-major and semi-

minor axes of the ellipse, respectively [38]. The results of MB with second order approximation 

and the exact solution together with our simulation results are shown for comparison (Fig. 3 and 

Table 1). It is shown that the simulation results, based on the diffuse-interface approach, have 

surprisingly good accuracy for the calculation of DFs as the simulation model is approaching the 
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sharp interface limit. The accuracy is even better than the FEA based results of MB for some 

large aspect ratio cases.  

 

 
FIG. 3. (Color online) Calculated depolarization factors for ellipses of different aspect ratios as 

compared with the results by Mejdoubi and Brosseau [16], and the analytical solution of Osborn 

[38]. 

 

Table 1. Depolarization factors calculated in this work as compared with analytical solution and 

the simulation results of Mejdoubi and Brosseau (MB) [16].  

 a/b=7 a/b=5 a/b=3 a/b= 

3/2 

a/b=1 

(disk) 

b/a= 

3/2 

b/a=3 b/a=5 b/a=7 

This work 0.872 0.831 0.750 0.597 0.496 0.396 0.245 0.163 0.122 

MB results 0.901 0.864 0.772 0.607 0.497 0.389 0.221 0.152 0.120 

Analytical 

solution 

0.875 0.833 0.750 0.600 0.500 0.400 0.250 0.167 0.125 

 

 

B. Simulation of complex dielectric heterostructure and performance study of the BCSA 

algorithm 

For a given numerical grid, the computational cost of the BCSA algorithm only depends on the 

permittivity contrast of the model as estimated by Eq. (13), almost independent of the geometry 

or topology of the structure. This feature is manifested by a demonstrative simulation where the 

system consists of various arbitrarily selected inclusions in a medium, including polygons, 
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concave/convex profiles, hollow, nested and core-shell structures with local relative permittivity 

distribution shown in Fig. 4a (readers are referred to Refs. [16, 39] for related studies on the 

electrostatics regarding some of these geometries). This case probably represents an extreme 

case of random composite materials. Before running the simulation the created geometries are 

numerically ‘polished’ so that the susceptibility smoothly transits across all the interfaces. Figure 

4b shows part of the simulation result where the color denotes the vertical component of electric 

field and the direction and length of arrows represent the direction and magnitude of local 

electric field (yet macroscopic), with a uniform external field exE  applied in the vertical direction 

(y-axis). The spots of electric field concentration imply possible locations of dielectric 

breakdown. The polarization density field can be obtained via Eq. (4) as the electric field is 

solved. Similarly, one may apply the external field in the x direction and calculate the 

polarization density again. The effective permittivity tensor of this ‘composite’ can then be 

evaluated following the strategy outlined in Ref. [29]. More detailed analysis on this structure is 

beyond the scope of this paper, as the purpose here is to demonstrate the capability and 

efficiency of the numerical algorithm. 

 
FIG. 4. (Color online) Solution of electrostatics in a random dielectric heterostructure subject to 

a uniform external electric field. (a) distribution of local relative permittivity; (b) distribution of 

the y-component of electric field, normalized by the magnitude of external electric field. The 

direction and length of arrows indicate the direction and magnitude of local electric field. 
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FIG. 5. (Color online) Study on the performance of the BCSA algorithm. (a) simulations with 

different permittivity contrast; (b) simulation with different target precision. 

 

To quantitatively check the performance of the BCSA algorithm and its adaptability to structures 

with different degree of complexity, we perform two parametric studies. In the first one, the 

permittivity contrast ( rε ) of the models is rescaled from 2 to 128. In the second one, the target 

bound charge precision ( *
ρδ ) varies from 10-2 down to 10-5. For comparison, we use two 

different structures for the two parametric studies, respectively. One is the simple sphere as 

shown in Fig.2, and the other is the complex structure as shown in Fig. 4 (the numerical grids 

used are both 1024 1024× ). The results are shown in Fig. 5. Surprisingly and interestingly, the 
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iteration number required in BCSA for the complex structure is only a little more than that for 

the simple structure for all the tested *
ρδ  and rε  combinations, and for all the cases the iterations 

required are well estimated by Eq. (13). Actually, Eq. (13) apparently represents an upper limit 

for the required iterations (steps) in BCSA. These results demonstrate that the maximum error of 

bound charge density indeed decreases approximately following a geometric series, thus the 

algorithm is programmed to converge in limited steps, which is a unique feature of this algorithm. 

The above results also indicate that with the same numerical grids and same permittivity contrast, 

the computational cost of BCSA for solving electrostatics in a complex structure like in Fig. 4 is 

virtually the same as a simple structure as in Fig. 2. The computational cost of sharp interface 

based numerical methods usually relies on the complexity of structure (cf. e.g., [18, 20, 26, 28]). 

Therefore, the diffuse-interface based BCSA algorithm may have increased advantage in 

numerical efficiency as compared to the sharp interface based approaches with increasing 

complexity of the heterostructure. Of particular note, a time-dependent Ginzburg-Landau (TDGL) 

type equation has been employed to minimize the free energy functional so as to equivalently 

solve the general Gauss’s law (Eq. (1)) in Wang’s algorithm [29]. This algorithm is also based on 

the diffuse-interface approach. Nevertheless, the BCSA algorithm apparently has advantage in 

terms of computational efficiency as compared to the TDGL-based algorithm. We also find it 

possible to optimize the kinetic coefficients in the TDGL equation to reduce the difference 

between the two algorithms in efficiency (see the Appendix for more detailed discussion). 

 

C.  Simulation of an evolving heterostructure: the RLTI scheme 

In time-dependent problems the electrostatics needs to be reevaluated in each time step as long 

as either the permittivity field ( )ε r  or the free charge density ( )fρ r  is changed, even slightly. If 

one directly solves Poisson’s equation (e.g., modeling of the electrodeposition process [40]), 

each time step would be equally expensive in computational cost. However, when there are only 

slight changes in ( )ε r  and/or ( )fρ r   in a time step, the bound charge distribution is expected to 

change also slightly. Provided this is true, in the BCSA algorithm the bound charge solution in 

one time step could be used as an input for the next, which we call a RLTI scheme (Result of 

Last Time step as Input). We show that such a scheme could significantly shorten the 

approximation (iteration) process.  
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In the following example, the RLTI scheme is applied to simulation of an evolving 

heterostructure caused by motion of a group of colloidal particles, a typical process in 

dielectrophoresis or magnetophoresis. The electrostatic interaction is fully accounted, instead of 

using the simplified DEP force formula that is based on the assumption of an isolated small 

spherical particle [4]. The initial set-up is shown in the first panel of Fig. 6 where twenty one 

particles are placed in a random fashion. A nonuniform external field is generated by two 

oppositely charged poles (fixed in this work) next to these particles. The particles are thus 

expected to undergo DEP forces. However, for the multiple-particle problem there is also 

complex electrostatic interaction among the particles. In our simulation each particle is modeled 

by a template field variable subject to rigid body translation and rotation (by interpolation to the 

fixed background grid) under external force/torque, the so-called diffuse-interface field approach 

(DIFA), first proposed by Wang [41].  

 

Each particle α  is described by a template field variable ( )αη r  whose value is 1 inside the 

particle and 0 outside. The particle interfaces possess approximately 3 0l  thickness between 10% 

and 90% of η  values (in the surface normal direction the profile of ( )αη r  is similar to the 

susceptibility profile shown in Fig. 1b). The particle radius is approximately 10 0l , where 0l  is 

the unit grid size. Each particle is attached with a ‘halo’ field ( )αη r%  [42] which has a similar 

profile of ( )αη r  except that the radius of particle halo is set to be slightly larger than the particle 

core, approximately 14 0l  in this work. This ‘halo’ field is introduced for convenience of defining 

more detailed particle structure and for better numerical accuracy in resolving interparticle forces 

between close particles [42]. Here the short range interparticle repulsions are defined based on 

the halo fields to avoid particle overlapping by sr 3
' '

'

( ) ( ) ( )[ ( ) ( )]d rα α α α
α α

α κ η η η η
≠

= ∇ − ∇∑∫F r r r r% % % % , 

where κ  is a penalty coefficient [41]. The two poles are just modeled by two bigger particles 

carrying free charge density defined as 0

1,2
( ) ( )[1 ( )]f β β β

β
ρ ρ η η

=

= −∑r r r  [35] with 

0 0 0
1 2ρ ρ ρ= − = . The dielectric constant is defined as 0 0

1,21
( ) 7 ( )α

α
ε ε η ε

=

= +∑r r , which means ε  
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in the bulk particle is eight times of that in the carrier liquid. The ( )ε r  profile changes with the 

movement of particles. Assume there is only bound charge on the particles, each particle α  

undergoes total electrostatic force of el 3
b( ) ( ) ( ) ( )d rαα ρ η= ∫F r r E r% .  

 

The carrier liquid is assumed to be viscous so the Reynolds number is low and the particles move 

only in the presence of external force/torque. The relationship between particle motions and 

external forces is linked by mobility matrix, derived by isolated particle in unbounded fluid [41, 

43], and hydrodynamic interaction between particles is not considered. For the sake of simplicity, 

gravity, Brownian forces, van der Waals forces, and particle rotations are all neglected in this 

work. The external forces each particle α  undergoes include electrostatic force ( )el αF  and 

short-range repulsion ( )sr αF   when the particle is in contact with another one (or the poles). The 

external force, ( ) ( ) ( )ex sr elα α α= +F F F , is balanced by the Stokes drag force and the particle 

velocity is linked to external force by ( ) ( ) ( )exα α α=U M F . The mobility coefficient is set as 

0( )ij ijM Mα δ= , where ijδ  is Kronecker delta (for a sphere 0 1/ 6M aπμ= , where a  the particle 

radius and μ  the dynamic viscosity of the carrier liquid). The simulation time step is set as 
2 3

0 0 0 0 0/ ( )t M lε ρ= .    

 

As shown in Fig. 6, the nearest particles are attracted to move toward the positively charged pole 

due to the electric field gradient. Fig. 7a shows the real-time local electric field in the dashed box 

of Fig. 6 (at time step of 6,000), compared with Fig. 7b that is the distribution of external electric 

field generated by the poles in the same zone. The local electric field is seriously altered due to 

the presence of particles thus the isolated-particle assumption (in the simplified DEP force 

formula) is invalid. In this simulation, *
ρδ  is set to 0.005 and 1.7 / 0.17rλ ε= =  is used. In the 

first time step, the input of bound charge is set by Eq. (7), which leads to (0) ( ) 0bρ =r , and in that 

time step the BCSA algorithm requires 16 iterations . However, with the RLTI scheme being 

applied to all subsequent time steps, the average iteration number per time step in the entire 

simulation is reduced to only about 3.2 (Fig. 8).  
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Figure 8 further shows the relationship between the iterations required in BCSA algorithm and 

maximum particle displacement with time during the simulation. When particle displacement is 

small, the bound charge distribution has limited change within one time step, and as a result, the 

BCSA algorithm requires only a few iterations. This situation is maintained until one particle is 

attracted to be very close to one of the poles when the strong electrostatic force causes quick 

particle movement (Time Step=9000 in Fig. 6). Subsequently, the solution of bound charge 

density in the previous time step becomes a poor initial input due to the large particle 

displacement (per time step). When the particle is finally attached to the pole (the last panel in 

Fig. 6) the strong electrostatic force is balanced by the short-range repulsion between the particle 

and the pole, leading to smaller maximum particle displacement. Thus, except for the short 

period when the particle is approaching the pole, the maximum particle displacement is small 

and the RLTI scheme is very effective.  As is shown in Fig. 8, as long as the maximum particle 

movement (or say, maximum shift of the interface) is less than ~0.1 grid size in a time step, the 

iterations required can be significantly reduced by using the RLTI scheme. For the sake of 

numerical reliability and stability, during time discretization of the governing differential 

equations the time step is usually small in diffuse-interface models especially when an explicit 

scheme is employed [32], and as a result, the maximum shift of interface in a time step is 

commonly small. The RLTI scheme is expected to be applicable to many diffuse-interface 

(phase-field) models for microstructural evolution modeling also in considerations that: (a) most 

diffuse-interface models are coarsen-grained or continuum models, and in bulk regions (away 

from the interfaces) the spatially distributed field variables usually change mildly within a time 

step; (b) at the interfaces the field variables transit continuously and smoothly therefore even 

when an interface is moving the values of field variables usually do not jump at the interfaces, in 

contrast to sharp interface models.  

 

 Note that the main purpose here is to demonstrate the performance of the BCSA algorithm in 

calculating the electrostatic interactions in an evolving structure. For realistic simulation of 

dielectrophoresis processes, even in small Reynolds number regime the long range 

hydrodynamic interaction between particles needs to be incorporated [43, 44]. We have 

performed some preliminary study to introduce the long range hydrodynamic interaction through 

the Green’s function (Stokeslet) [45], following the method proposed by Kirkwood and Riseman 
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[46]. Our preliminary results show that the Stokeslet interaction does affect particle motion 

appreciably, while the RLTI scheme and BCSA algorithm still work efficiently (with the same 

time step the average iteration numbers in BCSA is slightly larger since the maximum particle 

displacement is generally increased with the Stokeslet interaction included). This is expected as 

the effectiveness of the RLTI scheme only depends on the particle (interfacial) displacement in 

each time step, irrespective of the forces that govern particle motion. Further development of the 

model is ongoing and the results would be published elsewhere. It is also possible to introduce 

other numerical methods to directly solve hydrodynamics in our future work, and the Lattice 

Boltzmann method is possibly a good candidate [47] .  

 

Modeling electrophoresis or dielectrophoresis of multiple particles is a typical case of evolving 

dielectric heterostructure that requires real-time solution of the electrostatics. The related 

material process could be used as an effective approach to fabrication of functional composites 

with engineered microstructure under external field control (the colloidal assembly would be 

used as a precursor to fabrication of composites). Another example of evolving heterostructure is, 

the growth of oxide film on metal surface during high temperature metal oxidation, which has 

been explored in our previous modeling work [48, 49] where the BCSA algorithm and the RLTI 

scheme have already been used. In that oxidation model the gas-oxide-metal phases are treated 

as a dielectric heterostructure. Both the dielectric structure and the free charge distribution 

(caused by charged point defects) evolve during the growth of oxide film. However, the growth 

of the oxide film is a sluggish process, and as a result with the RLTI scheme the average iteration 

number needed per time step in the BCSA algorithm is only slightly more than 1. Thus, the 

BCSA algorithm allows the real-time calculation of electrostatic interaction to be very efficient 

in the model.  
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FIG. 6. (Color online) Simulation of colloidal particles movement under electrostatic forces by 

using diffuse-interface field approach (DIFA) and the BCSA algorithm. Randomly distributed 

circular particles are attracted by two fixed oppositely charged poles. The dashed line around 

each particle indicates the ‘halo’ of that particle. The signs of charge on the poles are manually 

added for visual aid. 

 

 
 

FIG. 7. (Color online) (a) Electric field distribution inside the dash-dot box in Fig. 6. The color 

represents the local magnitude of electric field (normalized by 0 0 0/lρ ε ) and the arrows indicate 
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the local direction. (b) External electric field in the same zone as (a), calculated by removing the 

particles.  

 

 
FIG. 8. (Color online) The real-time iterations needed (averaged per 10 time steps) in the BCSA 

algorithm corresponding to Fig. 6 (solid blue line), with the red dot line denotes the maximum 

particle displacement in a time step during evolution. By applying the RLTI scheme the overall 

mean required iterations in BCSA is only 3.2 (dashed green line). 

 

IV. Magnetostatics involving a heterostructure 

 

The proposed BCSA algorithm has shown to be very efficient to solve complex and evolving 

electrostatic heterogeneity problems. Magnetostatic problems involving spatially varying 

magnetic susceptibility can be solved following the same methodology by virtue of the 

mathematical analogy (cf. [29]). The governing equation for magnetostatic problems is (Gauss’s 

law for magnetism) 

 0( ) [ (1 ( )) ( )] 0μ χ∇ ⋅ = ∇ ⋅ + =B r r H r ,  (0) 

where ( )H r  is the magnetic field strength, ( )B r  the magnetic induction, 0μ  free space 

permeability, and ( )χ r  the (magnetic) susceptibility (linear susceptibility is also assumed). 

Equation (15) is parallel to Eq. (1) except that free magnetic charge (magnetic monopole) has 

never been found in nature. The magnetic charge analogous to the bound charge in dielectrics is 

 0( ) [ ( ) ( )]mρ μ χ= −∇ ⋅ = −∇ ⋅J r r H r , (0) 
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where ( )J r  is the magnetic polarization density. The mathematical analogy is apparent and a 

version of BCSA algorithm for magnetostatics is given in Algorithm 2 for convenience. The 

initial input (0)
mρ  can be set as zero or by using the RLTI scheme for an evolving structure. The 

coefficient λ  needs to be set to ~ 1/ rμ , where rμ  is the permeability contrast in the system (the 

optimal λ  is typically between 1/ rμ  and 2 / rμ ). Actually, the concept of magnetic charge has 

been frequently used in the literature to help analyze magnetostatic interactions (e.g., [50-52]). 

However, it appears an efficient numerical algorithm that directly solves the magnetic charge 

density as the primary field variable has not been reported so far.  

 

Algorithm 2:  BCSA algorithm for magnetostatics 

(a) ( ) ( )[ ]n n
m mFTρ ρ=% ; 

(b) 
( )

( ) 1

0

[ ]
n

n ex mi FT
k

ρ
μ

−= −H H n
%

 

(c) ( ) ( )
0[ ]n n

tm i FTρ μ χ= − ⋅k H% , ( ) 1 ( )[ ]n n
tm tmFTρ ρ−= % ; 

(d) Update mρ  by ( 1) ( ) ( )n n n
m m mρ ρ ρ+ = + Δ  with ( ) ( ) ( )[ ]n n n

m tm mρ λ ρ ρΔ = − , and repeat 

Operations (a-d) unless when ( ) ( )max( )n n
tm m ρρ ρ δ− <  is achieved (convergence 

criterion). 

 

Comparing Algorithms 2 and 1, one finds that with appropriate normalization the previous 

results regarding dielectric heterogeneity can be immediately translated into solutions for the 

corresponding magnetic heterogeneity problems (cf. [16]). For example, one may normalize the 

charge density by 0 0 0/E lε  ( 0E  and 0l  are the units for electric field and length), and then Eq. (1) 

after nondimensionalization is * * *[(1 ) ] fχ ρ∇ ⋅ + =E . This equation is numerically equivalent to 

* * *[(1 ) ] mχ ρ∇ ⋅ + =H (the dimensionless dielectric susceptibility just corresponds to the magnetic 

susceptibility). As long as one replaces the unit electric field strength 0E  with the unit magnetic 

field strength 0H  (the magnetic bound charge density unit is accordingly 0 0 0/H lμ ), the 

previously calculated electric field and bound charge can be alternatively interpreted as magnetic 

field and magnetic bound charge. Subsequently, the simulation results in Fig. 3 and Fig. 4 can 
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also be interpreted as calculations for the demagnetization factors of ellipsoids [38], and 

magnetic mixtures (composites), respectively. For the dielectrophoresis problem in Fig. 6, one 

might need to additionally replace the two charged poles with a permanent magnetic dipole to 

induce correspondingly the magnetophoresis phenomenon, since free charge is meaningless in 

magnetics.  

 

V. Discussions 

 

In some variational approaches vector function variables (polarization and magnetic polarization) 

are frequently involved and subsequently Ginzburg-Landau type equations (e.g., [29]) or 

Landau-Lifshitz-Gilbert equations (e.g., [50]) are used to minimize the free energy functional. 

Such processes are often computationally costly, partly due to the small time step requirement 

(see the Appendix for more detailed discussions). The BCSA algorithm solves the scalar bound 

charge density thus the degree of freedom of the system is reduced, and by our verification the 

algorithm only requires limited iteration number estimated by Eq. (13). Note that if the minimum 

permittivity of the system, rmε , is larger than one then ( )rε r  can be normalized by rmε , which 

only requires to normalize ( )fρ r  simultaneously by a factor of rmε  in Algorithm 1. If the 

dielectric contrast is close to unity ( 1rε → , or 0χ → ) in the model, the iteration number ( I ) 

goes to nearly zero by Eq. (13), which is not surprising because in that case the electric field 

calculated from Eq. (5) is just the solution. The same situation is in Algorithm 2. Therefore, only 

the permittivity/permeability contrast matters. 

 

It is worth discussing the choice of parameter *
ρδ  (the target precision). Fig. 5 has demonstrated 

the convergence behavior of the BCSA algorithm. The error of bound charge density 

approximately diminishes following a geometric series, and by Eq. (13) if one decreases the 

target precision by one order of magnitude, the extra iterations required is just on the order of

ln 0.1 / ln(1 1 / )rI εΔ = − . However, the numerical precision just measures the difference between 

the result and the best achievable result (with sufficient iterations) by this algorithm, and 

depending on the specific problem this precision is not equivalent to the actual accuracy of the 

model. For example, in calculating the depolarization factors (see Fig. 3 & Table 1), the slight 



21 
 

mismatch between the simulation result and the analytical solution cannot be eliminated simply 

by reducing *
ρδ  to infinitesimal. This is due to that there could be systematic error caused by 

other factors, such as whether / Δt  is sufficiently small (requirement for approaching the sharp 

interface limit). On the other hand, while analytical solutions based on sharp-interface 

description are often used for verification purpose, for a real material problem a sharp-interface 

model itself is an approximation. Even with analytical solution available, it does not necessarily 

represent more accurate result, for the real material interface always has finite thickness and is 

diffuse in nature.   

 

In the BCSA algorithm, the iteration steps can be further reduced if the input of bound charge 

density is already close to the final solution. Subsequently, the simple RLTI scheme is found to 

be very effective in simulations of evolving structures via the diffuse-interface approach. In 

contrast, for sharp interface models due to the interfacial discontinuity it is difficult to apply the 

RLTI scheme to the moving interface regimes. Guyer et al developed an elegant diffuse-interface 

(phase-field) model for the electrodeposition/electrodissociation processes [40, 53]. In their 

kinetic model Poisson’s equation was solved in every time step, which was a bottleneck for 

applying the model to higher dimensional cases [40]. This issue could be resolved by using the 

BCSA algorithm together with the RLTI scheme. The governing kinetic equation only requires 

to solve φ∇  which is equal to −E , although with the electric field solved the electrostatic 

potential can be conveniently obtained by integration. The computational cost for each iteration 

in BCSA is mainly determined by the FFT operations, while it is well known that the time 

complexity of FFT is only ( ln )O M M , where M  is the total number of the discrete grid points 

in the model. When only several times of FFT operations are required in each time step (on 

average), directly solving electrostatics in a complex and evolving heterostructure becomes 

affordable for common computers nowadays.  

 

VI.  Conclusion 

 

The simple and easy-to-implement BCSA algorithm developed in this work shows to be very 

efficient in solving electrostatic/magnetostatic heterogeneity problems. Formulated in the context 

of diffuse-interface (phase-field) modeling, this algorithm is general to accommodate 
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heterogeneity of the permittivity/permeability and the free charge density. By our analysis and 

numerical tests, during the approximation process the error of bound charge density diminishes 

approximately following a geometric series with a common ratio of 1 1/ rε−  with rε  being the 

permittivity/permeability contrast in the whole system. The time complexity of this algorithm is 

thus nearly independent of the complexity of the geometry. In particular, for simulation of an 

evolving heterostructure the RLTI scheme could further significantly reduce the computational 

cost as the spatially varying field variables smoothly evolve from one time step to the next. We 

believe the proposed algorithm here combined with the diffuse-interface approach opens a 

promising route to simulate complex and/or evolving dielectric/magnetic heterostructures.  

 

 

Appendix: On the convergence of the BCSA algorithm 

 

The BCSA algorithm shows impressive convergence performance even without using the RLTI 

scheme. This algorithm, however, is not derived from the functional minimization method such 

as in Wang’s phase-field model for composites [29]. Both Wang’s method and our algorithm are 

based on the framework of diffuse-interface modeling, and both employ the spectral method. At 

convergence the two methods lead to the same results (Gauss’s law). It seems possible that there 

is some correspondence between the iteration process in BCSA and the functional minimization 

process, which is analyzed below. 

 

 In Wang’s model [29], the free energy functional of a heterogeneous system (without 

considering free charge) is formulated as  

 
2 3 23 3

3
0 0

( ) 1( ) ( )
2 ( ) 2 (2 )

exP d kF d r d r
ε χ ε π

= − ⋅ + ⋅∫ ∫ ∫
r E P r n P k
r

% .  (A0) 

This free energy functional is minimized through the time-dependent Ginzburg-Landau equation 

(TDGL), given by 

 ( , )
( , )

t FL
t t

δ
δ

∂ = −
∂

P r
P r

 , (A0) 

where L  is a positive kinetic coefficient. The /Fδ δ P  term can be explicitly written as  
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0

( , ) ( , )
( , ) ( )
F t t

t
δ

δ ε χ
= −P r E r

P r r
,  (A0) 

where  

 
3

3
0

1( , ) [ ( , )]
(2 )

ex id kt t e
ε π

⋅= − ⋅∫ k rE r E n P k n%   (A0) 

is the local electric field. Equation (A20) is consistent with Eq. (5) as fρ  is zero since

b iρ = − ⋅k P%% . Note that minimization of the functional ( / 0Fδ δ =P ) also leads to 0ε χ=P E  

which is Eq. (4). From Eq. (A18), with time increment tΔ  the variation of polarization density is 

 ( , ) ( )
( , )
Ft L t

t
δδ

δ
= − ⋅ΔP r

P r
 . (A0) 

By functional Taylor expansion, if δ P  is sufficiently small (as long as L t⋅Δ  is sufficient small) 

one may neglect higher order terms so that the variation of total free energy is correspondingly, 

 
2

3 3( , ) ( ) 0
( , ) ( , )
F FF t d r L t d r

t t
δ δδ δ

δ δ
⎛ ⎞

≈ ⋅ = − ⋅ Δ <⎜ ⎟
⎝ ⎠

∫ ∫P r
P r P r

.  (A0) 

Therefore, the total free energy is guaranteed to monotonically decrease, provided that L t⋅ Δ  is 

sufficiently small. This is the reason that in common phase-field models where TDGL (or the 

Allen-Cahn equation) is employed, the time increment usually needs to be sufficiently small (this 

is, however, not explicitly mentioned in [29]). Now if a gradient operator is applied to both sides 

of Eq. (A18) one obtains 

 
0

[ ( , )] 1 ( , ) ( , )
( )ε χ

⎡ ⎤⎛ ⎞∂ ∇ ⋅ = − ∇⋅ − ∇ ⋅⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦

P r P r E r
r

t tL t
t

. (A0) 

By using Eqs. (2-4)  and assuming 0fρ = , we reach 

 ( )0
0

( , ) ( , ) ( ) ( ) 1 ( , )
( )

b
b

t L t t
t

ρ ε χ χ ρ
ε χ

∂ −= ⋅∇ + +⎡ ⎤⎣ ⎦∂
r E r r r r

r
.  (A0) 

Comparing Eq. (A24) with Eq. (10) one finds that if the coefficient λ  in Step (d) of Algorithm 1 

is set as 0( ) / ( )L tλ ε χ= ⋅Δr r , then the iteration process in BCSA is equivalent to the time 



24 
 

discretization of Eq. (A24). In that situation the BCSA algorithm can be considered as an 

extension of Wang’s method. We verified that a position dependent 0( ) / ( )Lλ ε χ=r r  indeed 

works for the BCSA algorithm if L  is sufficiently small and ( )χ r  does not have zero value 

anywhere since ( )χ r  appears in the denominator position in Eqs. (A17) and (A19). However, in 

that situation the algorithm is much less efficient and the iteration number is not generally 

predictable. 

 

We have also directly applied Wang’s method (where the TDGL equation, Eq. (A18), is used) to 

the simulation of depolarization factor of a circular particle (cf. Fig. 2, the permittivity ratio is set 

to 20/2) with 0/L t ε⋅Δ  chosen to be 0.01 (The choices of L  and tΔ  are, however, not specified 

in [29]). For comparison we have applied the BCSA algorithm to solve the same problem. With 

the same target precision the two simulation results are virtually the same except that the number 

of time steps required in TDGL is about two orders of magnitude higher than the number of 

iterations required in BCSA (the computational cost of one time step in Wang’s method is 

comparable to that of one iteration in BCSA). When both the methods are applied to the complex 

case in Fig. 4, again, the simulation results are virtually the same but the efficiency of BCSA 

algorithm is about two orders of magnitude higher.  

 

Finally, we note that it is possible to optimize the efficiency of the TDGL-based algorithm in [29] 

in terms of the coefficients L  and tΔ . Since for solving electrostatic problems, the time in 

TDGL is not physical and in principle whether the system ‘free energy’ monotonically decreases 

is not a must for solving static problems, we have tried to discard the ‘rule of thumb’ that L t⋅ Δ  

needs to be sufficiently small and instead, used computer to test the optimal L t⋅ Δ  by 

exhaustively exploring the parameter space. For the particular case in Fig. 2, the optimal 

0/L t ε⋅ Δ  is found to be, surprisingly, as large as 0.95. By using this optimal value for this 

specific case the number of time steps required in TDGL approaches the iteration number in 

BCSA (In our preliminary tests, for several cases the computational efficiency of the BCSA 

algorithm appears to represent the upper limit for the TDGL-based algorithm with the optimal 

L t⋅ Δ ). It might be nontrivial to theoretically justify using such as a large value of L t⋅ Δ  in 

TDGL, and unfortunately, 0.95L t⋅ Δ =  is found to be not generally valid. Therefore, at this 
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point for general cases L t⋅ Δ  in the TDGL equation yet has to be set small, and in that situation 

the efficiency of the TDGL-based algorithm is much lower than BCSA in general for solving 

electrostatic problems and the time steps required in the TDGL-based algorithm is generally not 

predictable. It is possible to further explore the optimization method for the kinetic coefficients 

in the TDGL equation for solving static heterogeneity problems, which is however beyond the 

scope of this paper.  
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