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Abstract

We present a structural phase-field crystal (XPFC) model [Greenwood et al. PRL 105, 045702

(2010)] that yields a stable dc structure. The stabilization of a dc structure is accomplished by

constructing a two-body direct correlation function (DCF) approximated by a combination of two

Gaussian functions in Fourier space. A phase diagram containing a dc-liquid phase coexistence

region is calculated for this model. We examine the energies of solid-liquid interfaces with normals

along the [100], [110], and [111] directions. The dependence of interfacial energy on a temperature

parameter, which controls the heights of the peaks in the two-body DCF, is described by a Gaussian

function. Furthermore, the dependence of interfacial energy on peak widths of the two-body DCF,

which controls the excess energy associated with interfaces, defects, and strain, is described by

an inverse power law. These relationships can be used to parameterize the PFC model for the dc

structure to match solid-liquid interfacial energies to those measured experimentally or calculated

from atomistic simulations.
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I. INTRODUCTION

The phase-field crystal (PFC) model was developed to study atomististic-scale phenom-

ena that occur at experimentally observable time scales. Since its first demonstration in

2002, the model has been applied to study important materials phenomena such as disloca-

tion dynamics [1–3], nucleation [4, 5], and grain boundary energy anisotropy [6, 7], albeit on

a qualitative level. A step toward a more quantitative PFC model was undertaken by Elder

et al. in 2007 when they derived the free energy of the PFC model from that of the clas-

sical density functional theory (cDFT) of freezing via several approximations [8]. The link

between PFC and cDFT provided a microscopic interpretation of the PFC model param-

eters and established a connection between the PFC model and experimentally measured

structure factors through the two-body direct correlation function (DCF).

The two-body DCF dictates the spatial configuration of the order parameter in the PFC

model, which is important for describing elastic and plastic deformations, as well as anistropy

of solid-solid and solid-liquid interfaces. Therefore, much research in the PFC literature has

been focused on modifying the two-body DCF to improve the predictive capability of the

model. As a result, several new formulations for representing the two-body DCF have

been developed. For example, Jaatinen et al. fit the two-body DCF in Fourier space up

to the first peak using an eighth-order polynomial function to quantitatively study body-

centered-cubic (bcc) Fe [9]. Pisutha-Arnond et al. fit the two-body DCF beyond the first

peak with a rational function to examine the predictive capability of the cDFT of freezing

[10]. Furthermore, Greenwood et al. constructed two-body DCFs in Fourier space using

Gaussian peaks to systematically stabilize various crystal structures [11, 12].

In this work we focus on the structural PFC (XPFC) model developed by Greenwood

et al. [11, 12] because of the model’s capability to produce a range of crystal structures in

a systematic and straightforward manner. This model has been shown to stabilize crystal

structures such as bcc, face-centered cubic (fcc), simple cubic (sc), and hexagonal close-

packed (hcp) structures [12] and has been used to study many phenomena including solute

drag effects on grain boundary motion [13], clustering and precipitation in an Al-Cu alloy

[14, 15], and the stability of stacking faults and partial dislocations [16]. However, a diamond-

cubic (dc) structure, to the knowledge of the authors, had not been shown to be stable within

the PFC model. As a result, semiconductor materials, such as Si and Ge, have not been
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studied in three dimensions.

Therefore, we have developed a PFC model with a stable dc structure, which is based on

the XPFC approach. To this end, we approximate a two-body DCF with a combination of

two Gaussian functions in Fourier space, with the first and second peak positions centered

at k1 = 2π
√

3/a and k2 = 2π
√

8/a, respectively, where a is the lattice constant of a cubic

structure, and k1 and k2 are magnitudes of wave vectors. A temperature-density phase

diagram that contains a dc solid-liquid coexistence region is then calculated for this model.

It is worth noting that a recent model for self assembly [17], which resembles the PFC model,

was shown to also stabilize a dc structure with a long-range interaction term that enforces

the coordinates of a desired structure in Fourier space. Although, the ability to explicitly

enforce the coordinates of a structure provides the capability of stabilizing very complex

structures (e.g., a double-helix structure [17]), the orientation of the crystal is fixed by the

orientation of the coordinates. Therefore, rotational invariance, which is retained in the

PFC model and is important for studying polycrystalline systems, is lost.

For the model to be applied to a specific material, it is critical that it reproduces material

properties such as interfacial energies and elastic behavior, as well as the bulk energetics

reflected in the phase diagram. In the latter part of this paper, we focus on the interfacial

energies, including the interfacial anisotropy that arises naturally in the PFC model. We

examine how the solid-liquid interfacial energy of the dc structure depends on the shape

of the DCF within the dc-PFC model. A relationship for solid-liquid interfacial energy

as a function of temperature is developed for the dc structure by taking the peak heights

of the Gaussian functions in the two-body DCF to change with a temperature parameter

according to the functional form of the Debye-Waller Factor [11]. Additionally, since the

energy change due to interfaces, defects, and strain is controlled by the peak width of the

Gaussian functions [11], relationships for the dependence of interfacial energies on peak

widths are also determined. These relationships can be used to parameterize the dc-PFC

model to match interfacial energies to those measured experimentally or calculated from

atomistic simulations.

The paper is outlined as follows. We begin by providing background of the XPFC model

in section II, where the parameters of the DCF are discussed in detail. A procedure for

constructing phase diagrams in the PFC model is described in section III, and is used

to calculate a phase diagram for the dc structure. The phase diagram contains dc-liquid
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coexistence region, enabling us to numerically examine the solid-liquid interfacial properties

of the dc structure in section IV. Relationships between the interfacial energy and the peak

widths and heights of the Gaussian functions in the DCF are also developed in section IV.

Finally, we summarize the results of our work and present potential direction for future work

in section V.

II. THE STRUCTURAL PHASE-FIELD CRYSTAL (XPFC) MODEL

The PFC free energy is based on a free-energy difference with respect to a liquid reference

state and can be derived from the cDFT of freezing [8]. The free energy is written in terms

of an ideal-gas contribution, ∆Fid[n(r)], which is derived from a non-interacting system

of particles, and an excess contribution, ∆Fex[n(r)], which contains the description of the

interactions between particles

∆F [n(r)] = ∆Fid[n(r)] + ∆Fex[n(r)]. (1)

The ∆ symbol in Eq. (1) indicates a free-energy difference from a state that is at a reference

liquid density, ρ0. The variable n(r) is the scaled dimensionless number density and is related

to the atomic-probability density, ρ(r), by n(r) ≡ ρ(r)/ρ0 − 1.

The ideal-gas contribution,

∆Fid[n(r)] = ρ0kBT

∫ [
n(r)2

2
− n(r)3

6
+
n(r)4

12

]
dr, (2)

where kB and T are the Boltzmann constant and temperature, respectively, is minimized by

n(r) that is equal to a constant value. Regions where n(r) is constant are considered to be

in the liquid state. On the other hand, depending on the choice of a two-body DCF, C(2),

the excess contribution,

∆Fex[n(r)] = −ρ
2
0kBT

2

∫
n(r)

[∫
C(2)(| r− r′ |)n(r′)dr′

]
dr, (3)

is minimized by n(r) that contains peaks with the periodicity of a crystal lattice. Regions

where n(r) takes this form are considered to be a crystalline solid. In expressing the two-

body DCF as C(2)(| r − r′ |), an assumption has been made that the two-body DCF is

isotropic [8].

The two-body DCF, which is the key quantity that gives rise to stability of crystalline

phases in Eq. (3), is typically expressed in Fourier space [8–11]. As a result, the convolution
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theorem can be used to evaluate the inner integral (with respect to r′) of Eq. (3) in the form

of the inverse Fourier transform of the product of Fourier transforms,

∆Fex[n(r)] = −ρ
2
0kBT

2

∫
n(r)F−1

[
Ĉ(2) (k) n̂(k)

]
dr, (4)

where k = |k|, the notation F−1[ ] is the inverse Fourier-transform operation, and the hat

symbols denote Fourier transforms of the quantities.

In the XPFC model, the two-body DCF is approximated by a combination of modulated

Gaussian functions in Fourier space via [11, 12]

ĉ(2)(k) = ρ0Ĉ
(2)(k) = max

(
Gi(k), Gi+1(k), . . . , GN(k)

)
, (5)

where N is the total number of Gaussian functions used in the approximation of the DCF,

and

Gi(k) = exp

(
− σ

2k2
i

2λiβi

)
exp

(
−(k − ki)2

2α2
i

)
(6)

is the modulated Gaussian function (i.e., a Gaussian function with its height modified by an

exponential function). The subscripts and superscripts i denote the ith family of crystallo-

graphic planes that are being considered; the families of planes are typically enumerated in

order of decreasing interplanar spacings, where i = 1 corresponds to the family of crystallo-

graphic planes with the largest interplanar spacing. The parameter ki specifies the position

of the ith Gaussian peak and the value of k1 corresponds to the reciprocal lattice spacing

of a crystal structure; αi corresponds to the root-mean-square width of the ith Gaussian

peak and controls the excess energy associated with defects, interfaces, and strain [11]; σ

controls the heights of the Gaussian peaks and is related to temperature [11]; λi and βi are

the planar atomic density and the number of planar symmetries of the ith family of crystal-

lographic planes, respectively, and control how much the height of the Gaussian functions

change when σ is adjusted. Since the parameter ki also exists in the exponential term in

front of the Gaussian functions in Eq. (6), ki also affects the change in the height of the

Gaussian functions when σ is adjusted. Note that σ is a parameter related to temperature,

but should not be interpreted to be equal to temperature.

Each value of ki sets the interplanar spacing, Li, for a family of crystallographic planes

within a crystal structure; specifically, ki = 2π/Li. For example, the k1 and k2 values for a

bcc structure corresponds to the {110} and {200} families of planes, respectively, and have

values of k1 = 2π
√

2/abcc and k2 = 4π/abcc, where abcc is the lattice constant of the bcc
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structure. On the other hand, the k1 and k2 values for an fcc structure correspond to the

{111} and {200} families of planes, respectively, and have values of k1 = 2π
√

3/afcc and

k2 = 4π/afcc, where afcc is the lattice constant of the fcc structure.

As demonstrated by Greenwood et al. [12], the XPFC model for the bcc structure can

be constructed with a two-body DCF that is approximated with a single Gaussian function

centered at k1 = 2π
√

2/abcc in Fourier space. On the other hand, the fcc structure is

stabilized by two Gaussian functions centered at k1 = 2π
√

3/afcc and k2 = 4π/afcc at

sufficiently low temperatures. Note that the ratio of the peak positions of the fcc structure,

k2/k1 =
√

4/3, is independent of afcc.

III. PHASE STABILITY OF A DIAMOND-CUBIC STRUCTURE

In this section, we demonstrate that the XPFC model can be used to stabilize the dc crys-

tal structure. We also examine the phase stability between dc and other phases to construct

a temperature-density phase diagram. First, we describe the procedure for constructing a

phase diagram with the PFC model [11, 12, 18], which is used in this work. We then in-

troduce a two-body DCF that stabilizes a dc structure and construct a temperature-density

phase diagram that consists of the bcc, dc, and liquid phases based on the model.

A. Procedure for Constructing a Phase Diagram

A phase diagram for the PFC model is constructed by finding the average of the scaled

dimensionless number density, n̄, that corresponds to the phase boundaries as a function of σ

[11, 12, 18]. The procedure for identifying the phase boundaries for each value of σ is divided

into two steps. First, free-energy densities as a function of n̄ are calculated for each phase

by minimizing the free-energy density, ∆fα(n̄, a), with respect to a, where the superscript

α denotes the phase (e.g., α = bcc, fcc, dc). The quantity ∆fα(n̄, a) is calculated via,

∆fα(n̄, a) ≡ ∆Fα[na(r)]

Va
, (7)

where Va ≡ a3 is the unit-cell volume, a is the lattice parameter of a cubic unit cell, and

na(r) is the relaxed density profile. The relaxed density profile is obtained by evolving a

(non-relaxed) density profile that is approximated with the one-mode approximation with
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an average of n̄ using conserved dissipative dynamics [6, 8, 19],

∂n(r)

∂t
= ∇2 δ∆Fα[n(r)]

δn(r)
, (8)

until a steady state is reached. The quantity ∆fα(n̄, a) is a function of only n̄ and a because

∆fα(n̄, a) is the free-energy density of a system with na(r), which is periodic with a uniform

amplitude. For convenience, we denote the value of ∆fα(n̄, a) that is minimized with respect

to a as ∆fαa∗(n̄) and the corresponding lattice spacing as a∗. This process is schematically

illustrated in Fig. 1(a) where the point (a∗,∆fαa∗(n̄)) is marked with “×”.
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FIG. 1. (a) Schematic plot of free-energy density of a relaxed system as a function of the lattice

spacing for a given n̄. The point at which ∆fα(n̄, a) is minimized with respect to a is marked

with “×”. (b) Schematic of the free-energy densities that satisfy ∂∆fα(n̄, a)/∂a = 0 at each n̄

(as illustrated in (a)). The solid curve shows the free-energy density for the crystalline phase,

and the dashed curve shows the corresponding values for the liquid phase. The “×” denotes the

comment-tangent points of the free-energy density curves, which satisfy Eqs. (9) and (10).

Second, phase boundaries are determined with a common-tangent construction on the

convex hull [20] of ∆fαa∗(n̄) for all phases. The common-tangent construction is mathemat-

ically stated as a set of conditions:

∂∆fαa∗(n̄)

∂n̄

∣∣∣∣
n̄=n̄α

=
∂∆fβa∗(n̄)

∂n̄

∣∣∣∣
n̄=n̄β

(9)

and

∆fβa∗(n̄)−∆fαa∗(n̄) =
∂∆fαa∗(n̄)

∂n̄

∣∣∣∣
n̄=n̄α

(n̄β − n̄α). (10)
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The additional superscript, β, denotes a phase different from that indicated by α (e.g.,

α = bcc and β = fcc) and the partial derivatives are evaluated at the specified value

of n̄, as indicated by the subscripts on the vertical line. Equations (9) and (10) ensure

that the chemical potentials and pressures of the coexisting phases, respectively, are equal

[18]. The conditions of Eqs. (9) and (10) are illustrated in Fig. 1(b), where “×” marks the

common-tangent points. The procedure described above is repeated for different values of

σ to construct a phase diagram.

B. A Diamond-Cubic Structure

A dc structure is an fcc derivative structure that consists of the lattice-sites of two fcc

structures that are shifted from one another by afcc/4 in each direction [21]. The lattice-site

positions of the two fcc structures are specified by two basis vectors. The two fcc structures

within a single dc unit cell are illustrated in Fig. 2(a).

(a) (b) (c)

FIG. 2. (Color online) (a) Schematic of a unit cell of the dc structure where the shift of afcc/4

in each direction between the lattice-site positions of two fcc structures (one colored in solid blue

and the other colored in red overlaid with white stripes) is denoted by arrows. Schematics of the

(b) (111) and (c) (220) crystallographic planes, where the lattice points that are intersected by the

atomic planes are highlighted in red and overlaid with white stripes. Each plane of the {111} and

{220} families of planes intersect 2 atoms for the dc structure.

We find that a two-body DCF approximated with the combination of two Gaussian

functions centered at k1 = 2π
√

3/adc and k2 = 2π
√

8/adc will stabilize a dc structure.
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The values of k1 = 2π
√

3/adc and k2 = 2π
√

8/adc correspond to the {111} and {220}

families of crystallographic planes, which are associated with the first two peaks of the dc

structure factor [21]. As in the fcc structure, the ratio of peak positions of the dc structure,

k2/k1 =
√

8/3, is independent of adc. An fcc structure is not stable for this DCF because it

does not contain a peak corresponding to the {200} family of crystallographic planes, which

is required for the stabilization of an fcc structure [12].

To construct a phase diagram for the dc structure, we choose adc = 1Å and α1 = α2 = 1.0.

The {111} and {220} families of crystallographic planes of the dc structure contain 8 and 12

equivalent planes, respectively. Therefore, the parameters β1 and β2, which are the number

of planar symmetries of the {111} and {220} families of crystallographic planes, are 8 and

12, respectively. Each plane of the {111} and {220} families of planes have an area of
√

3/2 × a2
dc and

√
2/2 × a2

dc, respectively, and intersects 2 atoms in the dc structure, as

shown in Figs. 2(b) and (c). Therefore, the parameters λ1 and λ2 are 2/(
√

3/2) = 4/
√

3Å−2

and 2/(
√

2/2) = 2
√

2Å−2, respectively.

The dc DCF in Fourier space is plotted for σ = 0.0, 0.2, and 0.4 in Fig. 3(a) for the

values of ki, λi, βi, and αi mentioned above. The stability of the dc structure was verified

by comparing the unit-cell free-energy density of the dc structure to those of the bcc, fcc,

sc, hcp, rod, and stripe phases [18]. Additionally, the stability of the dc structure for

calculations beyond a unit cell was demonstrated by the growth of an 18 (2×3×3) unit-cell

dc seed into a 64 unit-cell system for σ = 0.01 and n̄ = 0.02 via Eq. (8); the initial seed was

generated by appending relaxed unit cells of the dc structure. The isosurface of the relaxed

64 unit cell system is shown in Fig. 3(b) and a small portion of the system is extracted

in Fig. 3(c) to illustrate two overlapping fcc lattices in the dc structure. It is important

to note that a metastable bcc structure forms when the initial seed size is smaller than 18

unit cells for the 64 unit-cell system considered in Fig. 3(b). This suggests that the density

profile can converge to a metastable structure (bcc) instead of the stable structure (dc) when

the dynamics described by Eq. (8) is used to evolve the density field. The formation of

a metastable bcc phase prior to forming a stable dc phase was also observed in a recently

proposed self-assembly model [17]. An investigation of different dynamics for the PFC model

is outside the scope of this paper. We refer the readers to Ref. [22] for an overview of various

PFC dynamics.

A density-temperature phase diagram, shown in Fig. 3(d), is constructed according to
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FIG. 3. (Color online) (a) The two-body DCF for a dc structure for σ = 0.0, 0.2, and 0.4.

The parameters used are α1 = α2 = 1.0, λ1 = 4/
√

3Å−2, λ2 = 4/
√

2Å−2, β1 = 8, β2 = 12,

k1 = 2π
√

3Å−1, and k2 = 2π
√

8Å−1. (b) The isosurface of a 64 unit-cell dc structure calculated for

n̄ = 0.02 and σ = 0.01. (c) Small portion of Fig. (b) showing two overlapping fcc lattices in a dc

structure. The black arrow denotes the shift of a lattice site from one fcc lattice to the other. (d)

Phase diagram containing body-centered-cubic (bcc), diamond-cubic (dc), and liquid (L) phases.

the procedure presented in section III A. The phase diagram shows a stable liquid phase

at low densities and solid phases at higher densities. The coexistence between liquid and

dc, liquid and bcc, and bcc and dc phases are also shown in Fig. 3(d). Since k1 corresponds

to the {111} family of planes in the dc structure and the {110} family of planes in the bcc

structure, the lattice constant of the dc and bcc structures are different and related to one
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another by abcc/adc =
√

2/3.

The small gap between the bcc and dc coexisting densities is due to the similarity between

the free-energy densities of the two solid phases. The similarity in the coexisting densities

is undesirable, for example, when studying solid defects in a two-phase system. To alter the

energy of each phase and thus potentially increase the gap of the solid-coexistence densities,

one can modify, in addition to the two-body DCF, the ideal-gas contribution to the free

energy in Eq. (2) [9]. This will be investigated in the future.

An important feature of the phase diagram in Fig. 3(d) is the dc-liquid coexistence at

lower temperatures and the bcc-liquid coexistence at higher temperatures. A bcc phase

becomes stable for a two-peak DCF when the the first peak is significantly taller than the

second peak, as described in Ref. [12]. When the parameters in Eq. (6) are chosen to be

λ1β1

λ2β2

>

(
k1

k2

)2

, (11)

the first peak of the DCF becomes taller than the second peak as σ increases (e.g., see Fig.

3(a)). The parameters used to construct the phase diagram of Fig. 3(d) has (λ1β1)/(λ2β2) =

1.45(k1/k2)2, and thus a transition from the dc phase at lower temperatures to the bcc phase

at higher temperatures is observed.

On the other hand, the bcc phase can be suppressed at all temperatures if the height of

the first and second peaks of a two-peak DCF are constrained to be equal for all values of

σ. This occurs when
λ1β1

λ2β2

=

(
k1

k2

)2

. (12)

A phase diagram where Eq. (12) is satisfied is plotted in Fig. 4; as expected, the bcc phase

has been suppressed.

IV. SOLID-LIQUID INTERFACIAL ENERGY

We examine the solid-liquid interfacial energies of the dc structure described in the pre-

vious section. First, we describe a numerical procedure for calculating interfacial energy

between two phases. Second, we determine a relationship for interfacial energy as a function

of Gaussian peak width because the peak widths of the Gaussian functions in the DCF were

shown to account for excess energy due to interfaces [11]. Third, we develop a relationship

for interfacial energy as a function of temperature by adjusting peak height. Finally, we
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FIG. 4. Phase diagram containing diamond-cubic (dc) and liquid (L) phases. The parameters

of the two-body DCF used to construct this phase diagram are α1 = α2 = 1.0, λ1 = 4/
√

3Å−2,

β1 = 8, k1 = 2π
√

3Å−1, k2 = 2π
√

8Å−1, and λ2β2 = 8/3λ1β1.

consider a more general case of two-body DCFs where the first and second peaks of the

Gaussian functions have different widths. This analysis provides an approximate relation-

ship between interfacial energy and peak width of the Gaussian functions when the peak

widths are not equal. For the analysis below, ki, λi, and βi are set to the values that were

used to construct the phase diagram in Fig. 3(d).

A. Procedure for Numerical Calculation of Solid-Liquid Interfacial Energy

The interfacial energy of a system that is in solid-liquid coexistence state can be calculated

from the energy of the two-phase system minus the bulk energy of each phase [9]. In this

section, the solid-liquid interfacial energy of an interface having a normal pointing in the

direction p, γp, is evaluated by constructing a long slab of one unit-cell in the plane of the

interface and 128 unit-cells in the direction of the interface normal. The slab is initialized

with 64 unit cells of solid and 64 unit cells of liquid, with the interface at the midpoint of the

computational domain. Periodic boundary conditions are applied to all boundaries, which

places another interface at the ends of the length of the computational domain. The slab is
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then numerically relaxed via Eq. (8). The value of γp is determined from the numerically

relaxed slab by subtracting the free energy of the bulk phases from the total free energy of

the slab and dividing by the cross-sectional area of the solid-liquid interface.

The bulk free energy, ∆F bulk, is calculated from the free energies of solid with the same

volume as the computational domain, ∆Fs, and liquid with the same volume as the compu-

tational domain, ∆Fl. These free energies are weighted by the volume fraction before they

are summed. Therefore, with the average of the scaled number densities of the solid and

liquid at the coexistence density, n̄s and n̄l, respectively, ∆F bulk is given by

∆F bulk =
∆Fs(n̄− n̄l) + ∆Fl(n̄s − n̄)

n̄s − n̄l
, (13)

where the weighing of ∆Fs and ∆Fl is determined according to volume fractions of solid and

liquid in the system in terms of the respective densities. The value of γp is then calculated

by subtracting ∆F bulk from the total free energy of the slab containing the solid-liquid

interfaces, ∆F slabp , and dividing by the cross-sectional area, Ap,

γp =
1

ρ0kBT

(
∆F slabp −∆F bulk

2Ap

)
, (14)

where the factor, 1/(ρ0kBT ), nondimensionalizes the value of γp and the factor of 2 accounts

for the additional interface at the edge of the computational domain due to the periodic

boundary conditions. The length of the slab in the direction of the interface normal is

chosen such that the two solid-liquid interfaces that form as a result of periodic boundary

conditions do not interact. In this work, we examine the γp of interfaces with normals

pointing in the [100], [110], and [111] directions, where p = 100, 110, and 111, respectively.

This analysis is performed on an XSEDE computing cluster [23].

B. Solid-Liquid Interfacial Energy Dependence on the Peak-Width

We use the procedure described in section IV A to compare the solid-liquid interfacial

energies, γp(σ, α1, α2), for different peak widths, αi, of the Gaussian functions in the two-

body DCF. The calculations presented here are for the dc DCF used to construct Fig. 3(d)

with σ = 0, which leads to both peak heights to be 1, and α1 = α2 ≡ α0, which sets the

peak widths equal. The value of γp(0, α0, α0) for the (100), (110), and (111) interfaces for

values of α0 ranging from 0.25 to 1.0 are plotted in Fig. 5. These interfacial energies decrease
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with increasing values of α0. For the range of α0, the (111) interface has the lowest energy,

while the (100) interface has the highest energy. This is in qualitative agreement with the

solid-liquid interfacial energies calculated for dc Si using atomistic simulations [24].
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FIG. 5. (Color online) Plots of the natural logarithms of γ100(0, α0, α0) (blue “×”), γ110(0, α0, α0)

(green circle), and γ111(0, α0, α0) (red square) for the dc free energy used to construct the phase

diagram of Fig. 3(d) as a function of the natural logarithms of α0. Here, α1 = α2 = α0 and σ = 0.

The dashed lines are the best fits to the data in the form of Eq. (15).
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The dashed lines in Fig. 5 are plots of an inverse power law given by

γp(0, α0, α0) =
Dp

α0

, (15)

where D100 = 4.62×10−2, D110 = 4.17×10−2, and D111 = 3.90×10−2. Figure 5 demonstrates

that the simulation results fit well to Eq. (15) with R2 values of 1.00, 0.999, and 0.999 for

D100, D110, and D111, respectively.

C. Solid-Liquid Interfacial Energy Dependence on the Temperature Parameter

In this section, we investigate the dependence of γp(σ, α0, α0) on the peak height of the

Gaussian functions in the two-body DCF by adjusting σ. Again, we consider the (100),

(110), and (111) interfaces. First, we examine the effect of changing σ, while keeping α0

fixed to 1. The results for these simulations are plotted in Fig. 6. The results show that

γp(σ, 1.0, 1.0), decreases with increasing σ.
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FIG. 6. (Color online) (a) γp(σ, 1.0, 1.0) and (b) γp(σ, 1.0, 1.0)/γp(0, 1.0, 1.0) as a function of σ for

the (100) (blue “×”), (110) (green circle), and (111) (red square) interfaces. The calculations are

for α0 = 1.0 and dashed curves show best fits to the data in the form of Eq. (16).

The dashed curves in Fig. 6 are the best fit curves to the data with a Gaussian function

given by

γp(σ, α0, α0) = γp(0, α0, α0) exp
(
−bp(α0)σ2

)
, (16)
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where γp(0, α0, α0) can be determined from Eq. (15) and bp(α0) is a fitting parameter, which

depends on the peak width of the Gaussian function, α0. Note that since the magnitudes

of the σ values considered in this analysis are small, a quadratic equation will provide

an equally good fit to the data. The plot in Fig. 6(a) shows that the simulation results

fit well to Eq. (16), where the fitting constants are determined to be b100(1.0) = 25.06,

b110(1.0) = 26.66, and b111(1.0) = 24.62 with R2 values of 1.00. These values of bp(1.0) show

that the dependence of γp(σ, 1.0, 1.0) on σ is weakest for the (111) interface and strongest

for the (110) interface.

In Fig. 6(b), we also plot the scaled values of the interfacial energy, γp(σ, 1.0, 1.0)/γp(0, 1.0, 1.0),

for the same set of data. When scaled in this manner, all interfacial energies have a similar

dependence on σ, which is expected from the similar values of bp(1.0). While the decrease in

γp(σ, 1.0, 1.0)/γp(0, 1.0, 1.0) with respect to σ is greatest for the (110) interface and least for

the (111) interface, the differences are very small. This demonstrates that the orientation

of the interface normal alters primarily the magnitude of the interfacial energies, but not its

dependence on σ.

Next, we examine the dependence of γ100(σ, α0, α0) on σ and α0. The results for these

simulations are plotted in Fig. 7(a). It is evident that the interfacial energies decrease with

increasing α0, which is consistent with our previous results in section IV B. The energies for

the (100) interface for α0 = 0.25, 0.5, and 1.0 all decrease with increasing σ, although the

changes with respect to σ over the range examined are much smaller than the change due

to the different values of α0.
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FIG. 7. (Color online) (a) γ100(σ, α0, α0) and (b) γ100(σ, α0, α0)/γ100(0, α0, α0) as a function of σ

for α0 = 0.25 (blue “×”), α0 = 0.5 (green circle), and α0 = 1.0 (red square). The dashed curves

show best fits to the data in the form of Eq. (16).
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The dashed curves in Fig. 7 are the best fits to the data with the Gaussian function, Eq.

(16). As seen in Fig. 7(a), the simulation results fit well to Eq. (16), with b100(α0) being

approximately 25.13 (specifically 25.13, 25.24, and 25.11 with R2 values of 1.00 for α0 = 0.25,

0.5, and 1.0, respectively). The decrease in the values of b100(α0) with increasing α0 indicates

that the dependence of γ100(σ, α0, α0) on σ becomes weaker as α0 increases.

In Fig. 7(b) we also plot the scaled values of the interfacial energy, γ100(σ, α0, α0)/γ100(0, α0, α0),

for the same set of data. As expected, the values of γ100(σ, α0, α0)/γ100(0, α0, α0) are es-

sentially identical for all values of α0; the largest difference between the values of b100(α0)

for α0 = 0.25, 0.5, and 1.0 is less than 1%. Although the analysis in Fig. 7 is for the (100)

interface, the negligible dependence of γ100(σ, α0, α0)/γ100(0, α0, α0) on α0 is expected to

hold for other interface orientations (other values of p) because γp(0, α0, α0) depends on α0

by the same relationship (Eq. (15)) for all orientations of the interface normal considered.

The negligible dependence of γ100(σ, α0, α0)/γ100(0, α0, α0) on α0 suggests that the ex-

pression in Eq. (16) can be simplified to

γp(σ, α0, α0) = γp(0, α0, α0) exp
(
−Rpσ

2
)
, (17)

where Rp is independent of α0 for each value of p. For the dc DCF used in this analysis,

R100 = 25.06, R110 = 26.66, and R111 = 24.62. Note that the heights of the Gaussian

peaks in the two-body DCF also depend on σ by a Gaussian function, as seen in Eq. (6).

The fact that the dependence of γp(σ, α0, α0) on σ is also descibed by a Gaussian function

suggests that the value of γp(σ, α0, α0) is strongly influenced by the height of the peaks in

the two-body DCF.

In the analysis of Figs. 6 and 7, the values of γp(σ, α0, α0) are calculated within the

solid-liquid coexistence region, where n̄s increases with σ, as seen in Fig. 3. An increase

in n̄s can only arise by adding atoms into the system (by filling vacant sites) because the

position of the primary peak of the two-body DCF, k1, is assumed to be constant, resulting

in a fixed lattice spacing for all values of n̄ and σ. As a result, γp(σ, α0, α0) calculated for

each value of σ in Figs. 6 and 7 is for a system containing a different number of atoms.

Therefore, the dependence of γp(σ, α0, α0) on σ obtained above can be interpreted as that

of an open system. We believe the addition of atoms into the system as σ increases is

the cause for a decreasing solid-liquid interfacial energy, which is in disagreement with the

trend measured experimentally [25, 26] and calculated using atomistic simulations [27–29]
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for closed systems. In order to directly compare the dependence of γp(σ, α0, α0) on σ from

the PFC model to the dependence of γp(σ, α0, α0) on melting temperature from experiments

and atomistic simulations, it is required to keep the number of particles constant as σ is

varied, which is similar to what has been implemented for calculating elastic constants [30].

Therefore, a quantitative comparison between our results and experimental values or those

from atomistic calculations cannot be made currently due to the lack of framework for

calculations of interfacial energies that are equivalent.

D. Solid-Liquid Interfacial Energy for Unequal Peak Widths

In this section, we investigate how the solid-liquid interfacial energy changes with respect

to α2, when α1 6= α2. For our calculations, we set α1 = 0.625 and σ = 0, while adjusting the

values of α2. These results are plotted in Fig. 8, which shows that γp(0, α1, α2) decreases as

the ratio of α2/α1 increases for all directions. The dashed lines in Fig. 8 are the best fits for
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FIG. 8. (Color online) The natural logarithms of γ100(0, α1, α2) (blue “×”), γ110(0, α1, α2) (green

circle), and γ111(0, α1, α2) (red square) plotted as a function of the natural logarithms of the ratio

α2/α1. In these calculations α1 = 0.625 and σ = 0. The dashed lines show fits to Eq. (18) and the

solid vertical line marks the position where α2/α1 = 1.
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the interfacial energies in the form of an inverse power law given by

γp(0, α1, α2) = γp(0, α0, α0)

(
α2

α1

)−Cp
, (18)

where Cp has values of 0.583, 0.611, and 0.463 with R2 values of 0.982, 0.986, and 0.985

for p = 100, 110, and 111, respectively, and γp(0, α0, α0) can be calculated with Eq. (15).

Figure 8 demonstrates that Eq. (18) captures the trend of the simulation results; however,

the simulation data deviates significantly from the best fit line when α2/α1 is far from unity.

These results suggest that Eq. (18) is too simple to fully describe the relationship for the

solid-liquid interfacial energy when α1 6= α2. Nonetheless, Eq. (18) provides an approxima-

tion for γp(0, α1, α2) when α1 6= α2 and reduces to Eq. (15) when α1 = α2. As seen in Fig.

8, γp(0, α1, α2) < γp(0, α0, α0) when α2 > α1, and γp(0, α1, α2) > γp(0, α0, α0) when α2 < α1,

for all orientations. However, the degree by which γp(0, α1, α2) changes with α2/α1 depends

on the interfacial orientation. As a result, the relative energies of interfaces will change when

the value of α2/α1 is far from unity.

V. SUMMARY AND DISCUSSION

We have developed a PFC model with a stable dc structure, which is based on the XPFC

approach. In this model, we approximate a two-body DCF with a combination of two

Gaussian functions in Fourier space, where the first and second peak positions are centered

at k1 = 2π
√

8/a and k2 = 2π
√

3/a, respectively, and a is the lattice constant of a cubic

structure. A temperature-density phase diagram, which contains dc-liquid, bcc-liquid, and

dc-bcc phase coexistence regions, was calculated for the model.

We found that the interfacial energies, γp(σ, α1, α2), for the (100), (110), and (111) inter-

faces depend on α0 according to an inverse power law when the temperature parameter, σ,

is set to zero and the first and second peaks of the DCF are equal, α1 = α2 = α0. In the

case where α1 6= α2, we found that the trend of γp(σ, α1, α2) as a function of α2/α1 is ap-

proximated by an inverse power law. The dependence of γp(σ, α1, α2) on σ is well described

by a Gaussian function when α1 = α2 = α0, via Eq. (17). For all peak widths and interface

orientations, the fitting parameter for the Gaussian function, Rp, was found to be within

8% of one another. Therefore, it would be worthwhile to examine whether the dependence

of γp(σ, α1, α2) on σ for other structures will also exhibit a similar value of Rp.
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The relationships developed in our analysis can be used to parameterize the dc-PFC model

to match interfacial energies to those measured experimentally or calculated with atomistic

simulations. However, in order to directly compare the dependence of γp(σ, α0, α0) on σ from

the PFC model to the dependence of γp(σ, α0, α0) on melting temperature from experiments

and atomistic simulations, the calculations must be performed for closed systems as σ is

varied (i.e., by keeping the number of atoms constant). Such direct comparisons will enable

validation of the temperature dependence assumed in the XPFC model.
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