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We study the synchronization of a stochastically-driven, current-based, integrate-and-fire neuronal
model on a preferential-attachment network with scale-free characteristics and high clustering. The
synchrony is induced by cascading total firing events where every neuron in the network fires at
the same instant of time. We show that in the regime where the system remains in this highly
synchronous state, the firing rate of the network is completely independent of the synaptic coupling,
and depends solely on the external drive. On the other hand, the ability for the network to maintain
synchrony depends on a balance between the fluctuations of the external input and the synaptic
coupling strength. In order to accurately predict the probability of repeated cascading total firing
events we go beyond mean-field and tree-like approximations and conduct a detailed second order
calculation taking into account local clustering. Our explicit analytical results are shown to give
excellent agreement with direct numerical simulations for the particular preferential-attachment
network model investigated.
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I. INTRODUCTION

Pulse-coupled network models have recently proved
their utility in branches of science and engineering rang-
ing from internet traffic regulation [1, 2] to power grid
management [3] to epidemic spreading [4–9] in addition
to their well-established role in neuroscience [10–13]. In
neuroscience applications the node dynamics in the net-
work are often described by the integrate-and-fire (IF)
oscillator due to its simplicity [14, 15]. On the one
hand, networks of IF oscillators frequently capture net-
work mechanisms as accurately as the more complicated
models such as Hodgkin-Huxley, while on the other hand,
they are sufficiently simple to be simulated at a fraction
of the cost or even to be treated analytically.
The architectural connectivity influences the nature of

the dynamics exhibited by a given pulse-coupled network.
Naturally, the topology of such a network can be repre-
sented as a directed graph, with the network’s IF dy-
namical units represented by the graph’s nodes and the
connections between pairs of units by directed edges be-
tween pairs of nodes. In particular, each node is charac-
terized by the number of directed edges emanating from
it (outgoing degree) and terminating at it (incoming de-
gree). Frequently, only the statistics of these degrees are
known, or even just the asymptotic behavior of these
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statistics for large values of the outgoing and incoming
node-degrees. For example, scale-free networks are char-
acterized by the degrees being asymptotically distributed
according to decaying power laws. We are therefore inter-
ested in predicting the behavior of the dynamics based on
a few key statistical descriptors of the network topology.

A commonly studied dynamical regime of pulse-
coupled networks is synchronous oscillations. Within
the brain, there are rich oscillatory phenomena [16–21].
A great deal of theoretical work [22–28] has explored
mechanisms of synchrony in well-defined networks, of-
ten with deterministic driving. Particular attention was
frequently paid to which features of the phase response
curve are conducive to synchrony [27]. We will be con-
cerned with developing an inherently statistical approach
applicable to all-excitatory networks [23, 24, 29–32] that
have stochastic driving and only a statistical description
of their connectivity architecture.

To highlight our focus on these statistical aspects, we
will select a simple IF model for our investigation. In IF
networks with instantaneous pulse coupling, synchronous
oscillations can take the form of (statistically) periodic
total firing events during which all the neurons in the
network fire at once [24, 29–31]. While total firing events
are a highly idealized form of synchrony, their analysis
may provide insight into more realistic correlated firing
events in neuronal networks. For the case of all-to-all
connected networks, analytical methods were developed
in [29] (and in [24] for a discrete state IF model) to
quantify the strength of deterministic driving needed to
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completely synchronize the neuronal membrane-potential
trajectories, and in [30, 31] to characterize the parameter
regimes in which a network of neurons driven by inde-
pendent, stochastic Poisson pulse-trains has high prob-
ability to sustain total firing events. Note that under
independent Poisson pulse-train drive for each neuron,
while the neurons fire all at once as a result of cascad-
ing total firing events, the trajectories of their mem-
brane potentials between two cascading events evolve
separately. The emergence of synchrony in this case de-
pends strongly on the interplay between the spreading of
the membrane-potential trajectories induced by the in-
dependent Poisson-train drive to each neuron and their
synchronization due to their reset after every total firing
cascade [30, 31].

During a cascading total firing event in an all-to-all,
instantaneously-coupled, IF neuronal network, when the
first neuron fires, the membrane potentials of all the
remaining neurons jump instantaneously by the same
amount proportional to the coupling strength. If one or
more of these potentials exceed the firing threshold, the
corresponding neurons fire, and again instantaneously in-
crease the membrane potentials of all the remaining neu-
rons. This cascading process repeats until all the neurons
in the network have fired. The all-to-all connectivity of
the network is crucial in this process: if certain interneu-
ronal connections are missing, the firing of one neuron
does not necessarily increase the membrane potentials of
all the remaining neurons, but just of those connected
to it. A central advance presented in the present work
therefore addresses the interplay between the network
topology and the time-evolving ensemble of the neuronal
membrane potentials that enables cascading total firing
events to still take place with high probability in the ap-
propriate parameter regimes. We are thereby attempt-
ing to contribute insight from another perspective to the
broad question of how the statistical properties of the
network are reflected in the statistical properties of the
network dynamics [10, 32–37]. Moreover, we are here
building a connection between our previous results con-
cerning the statistical description of cascading total fir-
ing events in all-to-all coupled IF networks [30, 31] with
those addressing steady-state statistics of firing rates and
membrane-potential correlations in the asynchronous op-
erating regime of IF networks with specific nontrivial ar-
chitectural connectivity [33].

The statistics we derived in [30, 31] for the time in-
tervals between repeated cascading total firing events in
all-to-all connected networks carries over essentially un-
changed for nontrivial network topology, as we shall dis-
cuss in Subsection IIIA. We must however substantially
rework the derivation for the probability that such sta-
tistically synchronized firing dynamics is self-sustaining,
and the bulk of our effort in the current work is to develop
and apply a new theoretical approach for computing this
probability. We improve upon mean-field [28, 38–44] and
tree-like [45–48] approximations for network dynamics by
explicitly accounting for clustering. The derivation we

employ relies crucially on our empirical observation that,
in the parameter regimes exhibiting at least a partial de-
gree of synchrony, once two or three neurons have fired
in succession, the probability that the rest of the cascade
would fail becomes negligible. While our simulations and
specific calculations are carried out for a specific, scale-
free network, we emphasize that our general framework
for computing the probability of repeated cascading to-
tal firing events is applicable to IF networks with general
complex topology.

We employ two main ingredients in the derivation of
the probability of repeated cascading total firing events
in complex IF networks. The first is an exit-time problem
used for computing probability distribution of the time
when the first neuronal membrane potential reaches fir-
ing threshold after a total firing event, which is obtained
by solving a Fokker-Planck equation. The second is the
Gaussian approximation to the membrane-potential dis-
tribution for the neurons that have not yet fired, found
without consideration of the reset mechanism and us-
ing the exact evaluation of the membrane-potential cu-
mulants. Since between pairs of cascading total firing
events the neurons are effectively uncoupled, these two
ingredients are independent of the network architecture,
and can in fact be calculated for individual neurons with
feedforward Poisson-train drive. Therefore, we were able
to use the results of [30, 31] for both, and we here only
describe them briefly in order to complete the description
of our new combinatorial method for finding the proba-
bility of repeated cascading total firing events in systems
with complex network topology.

The remainder of the paper is organized as follows.
In Sec. II, we discuss the current-based integrate-and-
fire network model and define the network terminology
we use throughout this paper. We begin our theoretical
characterization of the perfectly synchronous firing state
in Sec. III. This begins with a derivation of the time
between total firing events in Sec. III A, and continues
in Sec. III B with the calculation of the probability to
see repeated cascading total firing events for a general
network topology. We complete this description for a
specific scale-free network, described in the beginning of
Sec. IV, by presenting distributions related to the out-
going degrees of one, two and three connected nodes in
Sec. IVA. In Sec. IVB, we obtain excellent agreement
between our theory and results of numerical simulation,
thus confirming the validity of our approximations. We
close with the conclusions in Sec. V.

Derivations of the analytical approximations are pre-
sented in the appendices. In Appendix A, we explain how
the distribution of the neuronal voltages can be approx-
imated in terms of a Gaussian distribution. Appendix B
complements the results of [33] to calculate the one-, two-
, and three-node statistics of the scale-free network model
needed in the analytical expressions for the probability to
see repeated total firing events. The development of our
precise second-order approximations for this probability
is presented in Appendix C, and a useful asymptotic sim-
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plification of one of these approximations is computed in
Appendix D. Some technical results needed for these
asymptotic calculations are derived in Appendix E.

II. NEURONAL NETWORK MODEL

The network model we consider consists of N cou-
pled, current-based, excitatory integrate-and-fire point
neurons [15, 49], which are governed by the system of
equations

dvj
dt

= −gL(vj − VR) + Ij(t), j = 1, . . . , N, (1a)

where vj is the membrane potential of the jth neuron, gL
is the leakage conductance, and VR is the reset voltage.
The injected current, Ij(t), is modeled by the pulse train

Ij(t) = f
∑

l

δ(t− sjl) + S
N−1
∑

i=0

∑

k

Djiδ(t− τik), (1b)

where δ(·) is the Dirac delta function. Once the voltage,
vj , surpasses the firing threshold, VT , its evolution by
Eq. (1) is interrupted. It is reset to the reset voltage, VR,
and then resumes its evolution under Eq. (1) again.
The external input to each neuron, the first term in

Eq. (1b), is modeled by an independent Poisson train of
current spikes with rate ν. At time t = sjl, when the lth
of these spikes arrives at the jth neuron, this neuron’s
voltage instantaneously increases by an amount f . The
input current spikes arriving from other neurons in the
network make up the second term in Eq. (1b). At time
τik, when the ith neuron fires its kth spike, the jth neu-
ron’s voltage will instantaneously increase by an amount
S precisely when Dji = 1. The N ×N connectivity ma-
trix, D, encodes the network architecture with Dji = 1
if the jth neuron has a directed connection from the ith
neuron and Dji = 0 otherwise. Due to the instantaneous
jumps in voltage at each spike time, and an analytical
solution to Eq. (1a) between arriving spike times, we are
able to efficiently simulate the system (1) without dis-
cretization errors using an event-driven algorithm similar
to the one reviewed in Sec. 2.4.1 of [50]. For the pur-
pose of numerical simulations in this paper, we use the
values gL = 1, VR = 0 and VT = 1. This nondimention-
alization can be derived by suitable scaling of realistic
physiological neuronal values [51].
In this work we will assume that D represents a graph

with only one strongly connected component, meaning
that between any pair of nodes in the graph there exists
a directed path from one to the other and back again.
(A directed path is a list of nodes where each node has
an outgoing directed edge emanating from it received by
the next node in the list. The path length is one less than
the number of nodes in the list.) If part of the network
were disconnected from the remaining network, then it
would be impossible for a cascading total firing event to
occur regardless of the synaptic coupling strength.

Later, in Sec. IV, we will look specifically at a directed
version of the network model with significant clustering
discussed in [52]. Clustering (also referred to as transitiv-
ity [48]) refers to a relative frequency of closed triangles –
three nodes in which each has an edge connecting it to the
other two . We believe that the clustering is an impor-
tant network statistic affecting the synchronizability of
the of the system (1), and requires developing techniques
that go beyond existing “tree-like” approximations that
ignore clustering.

III. THEORETICAL CHARACTERIZATION OF

SYNCHRONY

As discussed in the introduction, the stochastically-
driven model (1) maintains synchrony through cascad-
ing total firing events. Between such events the neu-
ronal voltage trajectories separate due to the indepen-
dent noise driving each neuron, in contrast to those in
the deterministic version of system (1). We characterize
the propensity of a network to sustain synchrony through
cascading total firing events by the probability to see
these events in succession. In particular, we define the
state of the N neuronal voltages, at the moment of time
some neuronal voltage first reaches threshold following
a cascading total firing event, to be cascade-susceptible
if the firing of that neuron induces the entire network
to fire, thus giving rise to another such event (we de-
fine cascade-susceptible precisely in Sec. III B). There
is a well defined random time between these two events
which depends solely on the external drive and not the
network topology. In Sec. III A we summarize the calcu-
lation of the probability density function (pdf) for this
random time between pairs of total firing events; the fir-
ing rate of the synchronous network is the inverse of its
mean. We then proceed in Sec. III B to calculate the
probability the network is cascade-susceptible when the
first neuron fires since the previous cascading total firing
event, using knowledge about the neuronal voltage dis-
tribution at the time the first neuron fires and the local
network topology.

A. Time between synchronous events

In the introduction we pointed out that between cas-
cading total firing events, the neurons are effectively un-
coupled as no neurons are firing. The random time be-
tween total firing events in a synchronous system is given
by the time T (1) at which the first neuron after a total fir-
ing event reaches threshold voltage VT . This is simply the
minimum of the N independent times that each neuron
would take to reach threshold voltage VT , if influenced
only by its own external drive. The network topology
plays no role in this random time T (1), so its pdf (needed
in Sec. III B) will be the same as for the all-to-all network
previously considered in [30, 31]. Note that the firing rate
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of the synchronous network is given by the statistical av-
erage of the inverse of T (1), and is consequently indeed
independent of network topology. We summarize next
the results from [30, 31] for the pdf of the random time
between total firing events in a synchronous network.

The pdf, p
(1)
T (t), of the minimum exit time, T (1), of

the N neurons is related to the pdf, pT (t), of a single
neuron’s exit time through the formula

p
(1)
T (t) = NpT (t)

(

1− FT (t)
)N−1

, (2)

where FT (t) =
∫ t

0 pT (t
′) dt′ is the cumulative distribution

function (cdf) of the exit time for a single neuron [53]. We
compute the single-neuron exit time distribution, pT (t),
using an equation describing the evolution of the func-
tion G(x, t), the probability that a neuron’s voltage has
not yet crossed the threshold given that it started at the
voltage x at the time t = 0. The cdf for the first exit
time, FT (t), is expressed as FT (t) = 1−G(VR, t), as the
neuronal voltage always evolves from the reversal poten-
tial after a cascading total firing event. Under a diffusion
approximation of the external driving [54], the function
G(x, t) satisfies the equation

∂

∂t
G(x, t) =

[

− gL(x− VR) + fν
] ∂

∂x
G(x, t)

+
f2ν

2

∂2

∂x2
G(x, t) (3a)

with the boundary conditions

∂

∂x
G(x, t)

∣

∣

∣

∣

x=VR

= 0 (3b)

and

G(VT , t) = 0, (3c)

and the initial condition

G(x, 0) = 1. (3d)

The system (3) gives a valid description provided the
external spike strength, f , is small, at least f ≪ VT −VR.
We find the cdf FT (t) = 1 − G(VR, t) by computing

the solution of the parabolic partial differential equation
for G(x, t), Eq. (3), using the Crank-Nicolson scheme [55,
Sec. 2.6.3]. We find the pdf pT (t) = dFT (t)/dt by nu-
merically differentiating the function FT (t). We use both
FT (t) and pT (t) to numerically evaluate the desired pdf,

p
(1)
T (t), for the minimum exit time of all the N voltages

via Eq. (2). Alternatively, the pdf p
(1)
T (t) can be found

exactly from a related Fokker-Planck Equation which de-
scribes the evolution of the neuronal voltage pdf in terms
of an eigenfunction expansion involving confluent hyper-
geometric functions, as discussed in [30].
We compare the theoretically obtained firing rate, the

inverse of the expected time between cascading total fir-
ing events,

〈

T (1)
〉

=

∫ ∞

0

tp
(1)
T (t)dt, (4)
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FIG. 1. (color online) Firing rate of a neuronal network in a
perfectly synchronous parameter regime as computed as the
inverse of Eq. (4) (lines) and from direct numerical simulation
of system (1) (symbols) for the directed version of the scale-
free network in [52] (and presented in Section IV) with N =
4000 neurons, network parameter m = 50, (circles) S = 0.075
(asterisks) S = 0.150 and for the indicated values of input
spike strength, f and mean external driving strength fν.

found by integrating over the pdf in Eq. (2), with direct
numerical simulations of the system (1), for the network
model to be defined in Section IV, as a function of the
mean external driving strength, fν, in Fig. 1. There is
excellent agreement in the superthreshold regime (fν >
1) and well into the subthreshold regime (fν < 1). Also,
we point out the dependence of the firing rate on the size
of the fluctuations. As f , the strength of the external
driving spikes, increases, it becomes more likely to find
one neuronal voltage further from the mean; this voltage
reaches threshold faster and causes a total firing event.
Therefore we see an increase in the mean firing rate of
the network with an increase of f , with external driving
strength fν held fixed. The exact scaling of the firing
rate in the superthreshold (fν > (VT − VR)/gL) region,
proportional to

√
f for fixed fν, was obtained in [31].

Finally, we note for the purposes of the calculation of
synchronizability, to which we turn next, that the above
analysis for the statistics of the time T (1) until some neu-
ron first crosses threshold after a total firing event applies
even if that neuron does not trigger a total firing event
(i.e., the network is not actually in a synchronized state.).

B. Synchronizability of a network

In this section, we investigate in which parameter
regimes the neuronal network (1) exhibits synchronous
behavior through total firing events by calculating the
probability that the neuronal voltages are cascade-
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susceptible when the first neuron fires after the previ-
ous total firing event. We employ the same strategy for
this analysis as in [30], but need to take into account
that, in contrast to the all-to-all network considered in
that work, neurons receive different numbers of spikes
depending on their connections in the more complex net-
work we will consider here. The neuron that initiates
a cascading firing event instantaneously sends a spike to
all its neighbors, the neurons connected to it via outgoing
edges in the network. For the cascading firing event to
continue, at least one of these neighboring neurons must
fire, instantaneously sending out another spike to all of
its neighbors. In this fashion, the cascading firing event
continues until all of the neurons in the network have
fired, or the spikes from the neurons that have fired fail
to excite any other neuronal voltages to threshold.
We approximate the probability that the cascading fir-

ing event includes all neurons by subtracting from unity
the probability that the cascade fails after one or two
neurons fire. Numerical simulations shown in Fig. 2 give
strong evidence that this approximation holds with a
high degree of accuracy, at least for the statistical net-
work model we consider in Section IV. Indeed, studies of
other IF neuronal network models [32, 56], Watts mod-
els [35, 46, 47, 57], and epidemic models [58] often find a
markedly bimodal distribution of cascade sizes, i.e., that
if the cascade does not terminate after a few neurons have
fired in succession, then most or all of the network will
be drawn into a “giant” cascade or “big burst.” Here,
of course, we are making the stronger assumption, sup-
ported by the numerical simulations in Fig. 2, that two
neurons is an adequate cutoff to account for cascades that
fail to entrain the whole network. For the calculation of
the probability of cascade failure on a network with com-
plex topology, it is important to keep track of the number
of spikes different neurons in the network have received
at various stages of the firing cascade. We include the ef-
fects of the network topology by including distributions
for the numbers of neighbors of the first and second neu-
ron to fire, as well as the number of neurons that will
receive two spikes if both neurons fire. In Sec. IV, we de-
rive these distributions for a specific scale-free network.
To calculate the probability, P (C), that the system is

cascade-susceptible, we first precisely formulate the no-
tion of cascade-susceptibility discussed previously in the
introduction and in the beginning of Sec. III. We define
the event C to consist of all arrangements of neuronal
voltages at the time when the first neuron fires so that a
cascading total firing event ensues. The time is measured
from the previous total firing event, giving the condition
that all neuronal voltages equal VR at time zero. We cal-
culate the probability of the event C by first integrating
over the conditional probability of the random time T (1)

at which the first neuron fires:

P (C) =

∫ ∞

0

P (C | T (1) = t)p
(1)
T (t)dt. (5)

Here, the pdf for the first exit time of the N neurons,
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FIG. 2. (color online) Probability distributions of the number
of neurons firing in a cascading firing event conditioned on the
cascade not including all N neurons, obtained from numerical
simulation. All three cases use the particular scale-free net-
work model (described in Section IV) with network parameter
m = 50, and external spike size f = 0.001. The parameters
(a) fν = 1.2, N = 4000 (b) fν = 1.2, N = 1000 and (c)
S = 0.02, N = 1000, are just three sets of examples indicat-
ing that the probability of a cascade failing after two neurons
have fired is negligible.
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p
(1)
T (t), is given in Eq. (2).
We will now proceed to evaluate the conditional prob-

ability in Eq. (5) by subtracting from unity the probabil-
ity of the complement of the event C, i.e. the probability
the cascade fails to include all neurons. The comple-
ment, CC , is divided into the mutually exclusive events
Aj , corresponding to exactly j of the N neurons firing
in the cascading event. The total probability of cascade
failure is the sum over failure at each possible step, and
the probability of the cascade succeeding is

P (C | T (1) = t) = 1−
N−1
∑

j=1

Pt(Aj), (6)

where we use the notation Pt(·) to indicate the probabil-
ity of an event given the condition T (1) = t. We do not
compute the probability of the events Aj in general, but
instead approximate Eq. (6) with the first two terms. As
stated previously, this approximation is empirically jus-
tified, at least for the network model to be studied in
Sec. IV, in Fig. 2.
The calculation of the failure probabilities, Pt(A1) and

Pt(A2), depends on the voltages of the neurons and
whether or not they themselves fire when receiving spikes.
We therefore must first consider the voltage distribution
for a typical neuron in the network other than the neuron
that initiates the cascading firing event at time T (1) = t.
Furthermore, as each incoming network spike increases
the voltages of the neurons at which it arrives by an
amount S, we divide the voltage interval VR ≤ x ≤ VT

into bins of width S starting at VT , so that the first bin is
VT − S < x ≤ VT . The probability, pk(t), for a neuron’s
voltage to be in the kth bin, given that a different neuron
fired at time T (1) = t, is described by the formula

pk(t) =

∫ VT−(k−1)S

VT−kS

p̃v(x, t)dx, (7)

where p̃v(x, t) is the pdf for voltage of a neuron that
did not fire up to time t. As described in [30, 31], we
approximate the conditioning on T (1) = t by truncating
the freely evolving single-neuronal voltage pdf, pv(x, t),
to the interval VR ≤ x ≤ VT and normalizing it to unit
integral:

p̃v(x, t) =
pv(x, t)

∫ VT

VR

pv(x
′, t) dx′

, VR ≤ x ≤ VT . (8)

For pv(x, t) we use the Gaussian approximation

pv(x, t) ∼
1√

2πσ(t)
exp

(

− (x− µ(t))2

2σ2(t)

)

, (9a)

with the average voltage

µ(t) = VR +
fν

gL

(

1− e−gLt
)

(9b)

and the voltage variance

σ2(t) =
f2ν

2gL

(

1− e−2gLt
)

, (9c)

derived in App. A following the standard technique
of computing cumulants from the characteristic func-
tion [54] in the limit of small f while fν = O(1).
Returning to Eq. (6), the first term, Pt(A1), is the

probability that only the neuron initiating the cascading
firing event spikes. We include the network topology by
conditioning on the number of outgoing connections (the
number of neighbors), K1, of the first neuron to fire.
Then we require that all K1 neurons receiving a spike
from it have voltage lower than VT − S, so that

Pt(A1) =

N−1
∑

k1=0

[

1− p1(t)
]k1

PK(k1), (10)

where p1(t) is given by Eq. (7). Note that the distribu-
tion for the number of outgoing connections, PK(k), is
independent of neuronal voltages. The one-term approx-
imation of P (C), from Eq. (5), is

P (C) ≈ 1− P (A1) ≈ 1−
∫ ∞

0

Pt(A1)p
(1)
T (t)dt (11)

where p
(1)
T (t) is the pdf of the minimum first exit time,

given by Eq. (2).
We now consider Pt(A2), the probability that exactly

two neurons fire in the cascade. As in the previous para-
graph, we condition on the number of outgoing connec-
tions, K1, of the first neuron to fire,

Pt(A2) =

N−1
∑

k1=0

Pt(A2 | K1 = k1)PK(k1). (12)

We note immediately that Pt(A2 | K1 = 0) = 0 because
there is no way a second neuron can fire if the initiating
neuron has no outgoing connections. We therefore can
drop the k1 = 0 term from the sum in Eq. (12), and will
implicitly assume k1 ≥ 1 in all further considerations.
We define F to be the event that exactly one of the K1

neurons connected to the first neuron fires. BecauseA2 ⊆
F ,

Pt(A2|K1 = k1) = Pt(A2|F,K1 = k1)Pt(F |K1 = k1).
(13)

To compute the probability of the event A2 we also con-
dition upon the second neuron to fire havingK2 outgoing
connections,

Pt(A2|F,K1 = k1) =

N−2
∑

k2=0

Pt(K2 = k2|F,K1 = k1)

× Pt(A2|F,K2 = k2,K1 = k1).

(14)

Note that we have assumed pairs of connected neurons
to share only one edge. Were this not the case, we would
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have to ignore the edge from the second neuron to fire
received by the first neuron to fire as this first neuron can-
not fire a second time. The first probability in Eq. (14)
is independent of the event F (as well as the first passage
time T (1)), and is given by PK2|K1

(k2|k1), the distribu-
tion of the number of outgoing connections from the sec-
ond neuron, given that it is connected by an edge directed
away from the first neuron, which has k1 outgoing con-
nections. Now, Pt(A2|F,K2 = k2,K1 = k1) is just the
probability that no other neurons connected to the sec-
ond firing neuron themselves fire a spike, conditioned on
the numbers of neurons receiving outgoing connections
from the first and second firing neurons. Note that the
total number of neurons under consideration may not be
k1 + k2 − 1.

In the all-to-all coupled network, all neurons connected
to the first neuron would also be connected to the second
neuron, and therefore would receive two spikes [30, 31].
For a general network, we condition on the number, L, of
neurons that will receive spikes from both neurons that
fire, and which we shall call doubly-excited neurons :

Pt(A2|F,K2 = k2,K1 = k1) =
κ
∑

l=0

Pt(A2|F,L = l,K2 = k2,K1 = k1)

× Pt(L = l|F,K2 = k2,K1 = k1),

(15)

where κ = min(k1− 1, k2). The second factor in Eq. (15)
is independent of the event F (as well as the first passage
time T (1)); it is given by PL|K1,K2

(l|k1, k2), the distribu-
tion of the number of neurons in the network receiving
connections from both the first neuron and the second

neuron to fire, given these two neurons are connected
and have k1 and k2 outgoing connections respectively.
The probability, Pt(A2|F,L = l,K2 = k2,K1 = k1), of

event A2, given the first neuron to fire has k1 outgoing
connections, exactly one other neuron fires which has k2
outgoing connections, and l neurons receive spikes from
both neurons that fire, is the probability that the neu-
rons receiving spikes from the second firing neuron do
not themselves spike,

Pt(A2|F,L = l,K2 = k2,K1 = k1)

=
[

1− q2(t)
]l[

1− p1(t)
]k2−l

,
(16)

where p1(t) is the probability the neuronal voltage is in
the bin B1 = [VT −S, VT ), defined in Eq. (7). The quan-
tity q2(t) is the probability a neuron’s voltage does not
lie in the bin B2 = [VT − 2S, VT − S), given that it does
not lie in the bin B1 = [VT − S, VT ), but in this bin’s
complement, BC

1 = [VR, VT − S). (This is known from
event F ; this neuron did not fire when it received the first
spike.) In terms of the probabilities defined in Eq. (7),

q2(t) = Pt(B2|BC
1 ) =

Pt(B2)

Pt(BC
1 )

=
p2(t)

1− p1(t)
.

We now proceed to the probability Pt(F |K1 = k1) in
Eq. (13). This event is that exactly one of the k1 neurons
connected to the first neuron fires due to the incoming
spike. This is equivalent to exactly one success out of k1
Bernoulli trials, each with a success probability of p1(t):

Pt(F |K1 = k1) = k1p1(t)
[

1− p1(t)
]k1−1

. (17)

Combining the derived quantities in Eqs. (13), (14), (15),
(16), and (17), we obtain Pt(A2) from Eq. (12) as

Pt(A2) =
N−1
∑

k1=1

N−2
∑

k2=0

k1p1(t)
(

1− p1(t)
)k1−1+k2





κ
∑

l=0

(

1− p1(t)− p2(t)
(

1− p1(t)
)2

)l

PL|K1,K2
(l|k1, k2)



PK2|K1
(k2|k1)PK(k1),

(18)

where κ = min(k1 − 1, k2). Here and throughout this
paper we use the notation PX|Y1,...,Yn

(x|y1, . . . , yn) for
the probability P (X = x|Y1 = y1, Y2 = y2, . . . , Yn = yn)
of any random variable X taking the value x given the
values of the random variables {Yj}nj=1 are {yj}nj=1.
The approximation for the probability that a network

is cascade-susceptible is obtained by approximating the
integrand in Eq. (5), i.e., the sum in Eq. (6), by its first
two terms:

P (C) ≈ 1−
[

P (A1) + P (A2)
]

=

1−
∫ ∞

0

[

Pt(A1) + Pt(A2)
]

p
(1)
T (t)dt

(19)

where Pt(A1) is given in Eq. (10), Pt(A2) in Eq. (18) and

p
(1)
T (t), the pdf of the minimum first exit time, in Eq. (2).

What remains to be defined are the network specific dis-
tributions, PL|K1,K2

(l|k1, k2), PK2|K1
(k2|k1) and PK(k1),

which we will develop for a specific scale-free network
model next in Sec. IVA. Note that for the all-to-all
coupled network with bidirectional edges, we can take
K1 = N −1,K2 = N −2 and L = N −2 with probability
one, and both Eq. (10) and (18) reduce to the formula
presented in [30, 31].

The computation of the term PL|K1,K2
, which is essen-

tially a measure of clustering, can be rather challenging,
and we will for comparison consider a “tree-like” approx-
imation in which such clustering effects are ignored alto-
gether, i.e., L is simply assumed to be exactly zero. Such
assumptions are made frequently in the literature on net-
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work dynamics [46–48], and can often yield surprisingly
effective approximations even in clustered networks [45].
Our tree-like approximation for Pt(A2) reads:

P tree
t (A2) ≡

N−1
∑

k1=1

N−2
∑

k2=0

k1p1(t)
(

1− p1(t)
)k1−1+k2

× PK2|K1
(k2|k1)PK(k1),

(20)

where κ = min(k1−1, k2), in place of Pt(A2) in Eq. (19).

Before proceeding to the analysis of a specific network
model, we note that the formula (18) is surprisingly am-
biguous about whether clustering, defined at the end of
Sec. II, should generally enhance or suppress the synchro-
nizability of a network. The expression does not directly
involve the conventional measures of clustering [48], but
we can think of the distribution of the random variable
L as characterizing the effects of clustering for our pur-
poses, in that it describes how many neurons form the
third edge of an appropriately directed triangle involv-
ing the first two nodes to fire. In particular, we would
expect a positive association between the mean value of
L and the clustering coefficient, which assigns a numeri-
cal value to the amount of clustering in the network (see
Sec. III B of [48] for various definitions of the clustering
coefficient). Note however that our approximations refer
to the full probability distribution of L, which should be
somewhat more comprehensive than a summary statistic
like the clustering coefficient. If the following inequality
holds:

ρ(t) ≡ 1− p1(t)− p2(t)

(1 − p1(t))2
< 1, (21)

then we would (not quite rigorously) conclude that in-
creasing clustering would, by generally increasing the size
of L, decrease Pt(A2) in Eq. (18) and therefore increase
P (C) in Eq. (19). That is, we would say more highly clus-
tered networks would be more synchronizable under our
IF model, in agreement with the findings of [35] for the
Watts model [57]. Indeed, recalling the definitions (7) of
pj(t) as the probability for a neuron (other than the neu-
ron initiating the potential cascade) to require exactly
j input spikes from other neurons to participate in the
cascade, we can interpret inequality (21) to say that it
is more likely for the first two neurons to excite a third
neuron by directing their outputs to a common neuron,
rather than to two distinct ones. However, we have not
found an argument for why Eq. (21) should generally
be true, other than some rough argument that, in most
cases, p2(t) will be substantially larger than p1(t) be-
cause the probability distribution of the other neuronal
voltages (8) at the first neuron’s firing time is usually
unimodal and peaked at more than two spike amplitudes,
2S, from threshold. And indeed, we do find through nu-
merical simulations that Eq. (21) does seem to hold for
the particular model on which we focus, and to which we
turn next.

IV. APPLICATION TO A SCALE-FREE

NETWORK MODEL

Here we investigate the interplay of the network topol-
ogy with the synchronizability of the system (1) for the
scale-free network with clustering presented in [52]. The
reasons for choosing this network are two-fold. First,
as shown in [52], this is a highly clustered network (as
defined in the last paragraph of Sec. II), which, in its
directed variant, provides high likelihood that between
each pair of nodes there exists a relatively short directed
path from one to the other (as defined in the last para-
graph of Sec. II). In terms of modeling neuronal activity,
this allows the spikes generated from the firing neurons to
quickly traverse the network and cause a cascading total
firing event. Second, this network has non-trivial local
topology around each node, yet not so complex that we
would be unable to obtain relatively accurate descrip-
tions of the probability distributions for the outgoing de-
gree of one node and two connected nodes, as well as
the number of nodes receiving outgoing edges from these
two connected nodes, which are necessary to evaluate the
probability of a cascading total firing event.
We begin our investigation in Sec. IVA by complet-

ing the theoretical characterization of the synchronizabil-
ity of the system (1) from Sec. III B. To this end, we
calculate the required distributions, i.e. the number of
outgoing connections, PK(k), the conditional probability
distribution for outgoing connections of two connected
neurons, PK2|K1

(k2|k1) and the number of neurons to re-
ceive two spikes, PL|K1,K2

(l|k1, k2). We do not find the
last of these three distributions exactly, but instead com-
pute very accurate approximations which moreover serve
as rigorous lower and upper bounds. When used to com-
pute the probability, Pt(A2), that the cascade fails after
exactly two neurons fire in Eq. (18), and then the prob-
ability, P (C), that the system is cascade-susceptible in
Eq. (5), the bounds result in approximations for P (C).
Then, in Sec. IVB, we compare the analytical calculation
of P (C) to direct numerical simulations of system (1),
describe when the higher-order network statistics are im-
portant for the description of synchrony, and discuss the
qualitative role of the clustering in the network.

A. Network construction and statistics

We create a realization of the undirected scale-free net-
work we have chosen to use as an example in this paper by
growing it in stages according to the algorithm described
in [52]. We begin with m all-to-all connected nodes that
are deemed active. Each stage has two steps: First, a
new active node is added to the network and undirected
edges are created to connect it with each of the m exist-
ing active nodes. Second, one of the m+ 1 active nodes
is randomly chosen to be permanently deactivated with
probability inversely proportional to its current degree
(the total number of edges). The stage ends as it began,
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with m active nodes. We repeat this procedure until the
network has grown to include N nodes, and then convert
it into a directed network by randomly assigning a direc-
tion to each edge. We note that “active” is only a term
used for the growing of the network and has nothing to
do with the numerical simulations of integrate-and-fire
neurons.
To compute the expressions in Sec. III B in our vari-

ous approximations of the cascade-susceptible probabil-
ity P (C), we need first of all the probability distributions
PK(k) and PK2|K1

(k2|k1) for the outgoing degrees of the
first two nodes to fire. Precise formulas are presented
and derived in Appendix B, with some results originating
in [52] and [33]. Here we will simply state some simpler
but useful approximations based on some more accurate
asymptotic expressions valid when the active cluster size
is large, and the network size is much larger than the
active cluster size (N ≫ m ≫ 1). First, we have the
following rough approximation for the outgoing degree
distribution of a single node based on the more precise
asymptotic formula (B4):

PK(k) ≈
{

m2

2k3 if k ≥ m/2,

0 if k < m/2.
(22)

Second, we have the following rough approximation for
the conditional outgoing degree distribution for the K2

outgoing connections of a second node which receives
a directed connection from an initially specified node
with K1 outgoing connections, based on the more pre-
cise asymptotic formula (B7):

PK2|K1
(k2|k1) ≈

{

m2(k1+k2−m)
2k3

2
if k1, k2 ≥ m/2,

0 else.

(23)

The one term (essentially mean field) approximation
can then be written explicitly for our scale-free network
model by substituting the approximation (22) (or its
more precise expression (B2)) for the single-node out-
going edge distribution PK(k) into the formula (10) for
Pt(A1), which appears in the one-term expansion (11)

for P (C). To proceed to a two-term expansion Eq. (19)
for P (C), we need to compute the expression (18) for
Pt(A2). First of all, this requires the conditional distri-
bution of the number of outgoing edges of two connected
nodes, PK2|K1

(k2|k1), given as a rough approximation in
Eq. (23) (and more precisely by the expression (B5)). A
much more challenging term in the expression (18) for
Pt(A2) is the distribution, PL|K1,K2

(l|k1, k2), which de-
scribes the probability that two connected neurons with
outgoing degrees k1 and k2 both have outgoing edges to L
common neurons, where k1 is the outgoing degree of the
first neuron to fire, and k2 is the outgoing degree of the
neuron that fires as a result of the first neuron’s firing.
The value of L determines the number of neurons that
will receive two spikes if both these neurons fire. The de-
termination of a precise expression for PL|K1,K2

appears
to involve a rather unwieldy calculation, so we will satisfy
ourselves with a range of approximations. The simplest
approximation of all is the tree-like approximation (20)
in which we simply take PL|K1,K2

(l|k1, k2) = δl,0, that
is, L ≡ 0. Another simple approximation would be to
take PL|K1,K2

(l|k1, k2) = δl,l̄, that is, L ≡ l̄, a nonzero
constant which would crudely characterize the clustering
without any measure of its variability or dependence on
outgoing degrees. Then the approximation for Eq. (18)
would read:

P
(L=l̄)
t (A2) = P tree

t (A2)

(

1− p1(t)− p2(t)
(

1− p1(t)
)2

)l̄

, (24)

where P tree
t (A2) is given in Eq. (20). We will consider the

particular choices l̄ = (m − 1)/4 and l̄ = (13m − 9)/36,
to be motivated as good estimates below.
Our most detailed estimation of PL|K1,K2

(l|k1, k2) will
use the network generation algorithm to define simpler
random variables L̃ and L̂ which we take as approxi-
mate proxies of L, but for which PL̃|K1,K2

(l|k1, k2) and

PL̂|K1,K2
(l|k1, k2) can be explicitly computed. The re-

sulting precise formulas are somewhat cumbersome and
thus presented in detail in Appendix C. We display here
only a systematic but not quite rigorous approximation
based on an asymptotic simplification for the statistics
of L̃:

P̃t(A2) . P tree
t (A2)

(

1− p1(t)− p2(t)

(1 − p1(t))2

)m/4

exp





3m

32

(

ln
1− p1(t)− p2(t)
(

1− p1(t)
)2

)2


 for N ≫ m ≫ 1. (25)

where P tree
t (A2) is given in Eq. (20). This approximation

is formally applicable when N ≫ m ≫ 1, that is, when
the size of the active cluster used to generate the network
is large, and the size of the network considerably larger
than the active cluster. We use the notation P̃ to stress
that this expression for the probability of A2 is an ap-

proximation based on using the simpler random variable
L̃ in place of L.

Our proxy random variables are in fact not only ap-
proximations, but rigorous bounds that satisfy L̃ ≤ L ≤
L̂ (in every realization of the network). As explained
in Appendix C 1, the approximations based on these
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FIG. 3. (color online) The probability, P (C), that the sys-
tem (1) becomes cascade-susceptible again after a total firing
event as a function of the coupling strength, S, for 4 different
approximations of P (C) in Eq. (6) using f = 0.001, ν = 1.2/f ,
m = 50 and N = 4, 000. (blue dash — 1 term) Eq. (6) trun-
cated after one term; (blue dot dash — tree) Eq. (6) trun-
cated after two terms with the network assumed to have a
tree-like structure (L = 0 with probability 1); (dashed black
— upper) an upper bound on the two term approximation by

using the distribution for L̂, the upper bound on L, Eq. (C4);
(solid red — lower) a lower bound on the two term approx-

imation by using the distribution for L̃, the lower bound on
L, Eq. (C3); (black circles — sim.) results from numerical
simulations averaged over 10 network realizations. Note that
the upper (dashed black) and lower (solid red) bounds almost
coincide with each other, and they are in excellent agreement
with the numerical results. (inset) The same data plotted on
a semi-log plot.

proxy random variables therefore produce explicit up-
per and lower bounds on Pt(A2), and therefore, respec-
tively, lower and upper bounds for the two-term approx-
imation (19) for P (C). This is why we have represented
the approximation in Eq. (25) using the notation ..

B. Results

Our theoretical characterization of synchronizability is
completed by combining the network specific distribu-
tions derived in Sec. IVA with the theoretical calcula-
tion in Sec. III B of the probability, P (C), that the sys-
tem (1) returns to a cascade-susceptible state after a total
firing event. Comparison of this theoretical characteriza-
tion with the results from numerical simulations allows
us to discuss the validity of our approximations, and to
investigate how the network synchrony depends on the
model parameters: f , the external input strength, S, the
synaptic input strength, and fν, the mean external drive
strength, as well as the network parameters: N , the num-

ber of nodes and m, the parameter that controls the total
number of edges in the network. The numerically simu-
lated values for P (C) are obtained by repeatedly start-
ing all neurons at reset voltage, which is the state after a
previous cascading total firing event, and simulating the
network dynamics until the first neuron fires; the proba-
bility to be cascade-susceptible is the fraction of the total
number of simulations represented by those that lead to
the firing of all N neurons in the network at that time.

We investigate the approximations in the theoretical
calculation of the cascade-susceptible probability P (C)
by plotting in Fig. 3 their predictions along with the re-
sults of numerical simulations of the system (1). The
one-term approximation, which assumes that either only
one neuron fires or all neurons fire in a cascade, P (C) ≈
1−P (A1) defined in Eq. (11), is determined by the prob-
ability of cascade failure after the first neuron fires and
the outgoing degree distribution of a single node, PK(k).
More sophisticated approximations can be obtained by
including the second term, P (A2), the probability that
the cascade fails after exactly two neurons fire, as in
Eq. (19). The tree-like approximation, using P tree

t (A2)
(Eq. (20)) in place of Pt(A2), just involves the distri-
bution relating the outgoing degrees of two connected
nodes, PK2|K1

(k2|k1). More systematic two-term approx-
imations can be taken from replacing the distribution of
L with that of its lower bounding random variable L̃
from Eq. (C3), or of its upper bounding random variable

L̂ from Eq. (C4). These latter approximations, based on
these bounding random variables, are based on the sta-
tistical rules for generating the network, and are not sim-
ply obtained from joint statistics of two nodes. That is,
the form of these upper and lower bounds, developed in
Appendix C, would have to be rederived for different sta-
tistical network models. We will also explore an interme-

diate approximation P
(L=l̄)
t (A2) (Eq. (24)) for Pt(A2) in

which L is replaced by a constant l̄. We will consider the
two particular values l̄ = (m−1)/4 and l̄ = (13m−9)/36
which correspond to the means of the lower and upper
bounding random variables, L̃ and L̂, respectively, when
N ≫ m ≫ 1 (see Appendix C).

We see from Fig. 3 that the one-term approximation
(dashed blue line) gives excellent agreement with the sim-
ulations for sufficiently large coupling strengths, but de-
viates significantly in characterizing less synchronizable
networks (P (C) . 0.3). The overall quality of the one-
term approximation reflects the idea that the mean of
the degree distribution of the nodes is the most impor-
tant determinant of synchrony, which was emphasized
by [59] for a different (Hindmarsh-Rose) neuronal model
on k-regular networks. The tree-like two-term approxi-
mation (dot-dashed blue line) actually gives a worse ap-
proximation than the one-term approximation for all but
quite small coupling strengths. We remark, though, that
the tree-like approximation may still be considered some-
what “unreasonably effective,” despite the highly clus-
tered character of our statistical network model, for rea-
sons expounded in [45]. The lower (red solid line) and
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upper (black dashed line) bounds for the two-term ap-
proximation not only serve as bounds, as they should,
but also as accurate approximations and substantial im-
provements to the one-term approximation for networks
with low synchronizability (10−4 . P (C) . 0.3). More-
over, in Fig. 4, we see that the simplified asymptotic ap-
proximation (25) for the lower bound is excellent for all
S < 0.06, though breaks down for S ∼ 0.06, presumably
because 1−ρ(t) does not remain suitably small, as implic-
itly assumed in the approximation (see the discussion at
the end of Appendix D). The simple approximation (24)
obtained by treating the number of doubly-excited neu-
rons L as a constant (given by the mean of the corre-
sponding bound on L) are seen to work remarkably well,
though their relative error deteriorates considerably more
rapidly with coupling strength than the more systematic
asymptotic approximation (25). Figure 4 shows, there-
fore, that the plots of the upper and lower bounds in
Fig. 3, which refer to the precise but complicated expres-
sions (C3) and (C4), can be very well approximated by
using the much simpler heuristic expression (24), and the
lower bound can be even better approximated by the ex-
plicit expression (25) obtained from a systematic asymp-
totic calculation.

The good performance of the simple approxima-
tion (24), applied pointwise for all possible times t > 0
of the firing of the first neuron to the approximation of
the term Pt(A2) in Eq. (18), raises a question of whether
a similar scaling approximation could work for the time-
integrated quantity, namely:

P (L=l̄)(A2) = P tree(A2)
[

F (S, f, ν)
]l̄

(26)

where P tree(A2) is the value obtained by substituting
the tree-like (L ≡ 0) approximation P tree

t (A2) in place
of Pt(A2) in Eq. (19), l̄ is some constant exponent, and
F (S, f, ν) is some suitable scaling factor. Because the ef-
fect of clustering in the two-term approximation (19) of
the cascade-susceptible probability, P (C), is contained
entirely in the term P (A2), P

tree(A2) neglects clustering
all together, and the scaling factor F (S, f, ν) is a func-
tion only of neuronal parameters but not the network,
the hypothesis (26) implies the effects of clustering can
be captured entirely by some single summary statistic l̄.
Because of the way in which the random variable L ap-
pears in the expression for Pt(A2) in Eq. (18), we would
expect that the best choice for l̄ would be the mean of the
random variable L. As we do not know how to compute
this directly, we will instead, in analogy with our stud-
ies of the local-in-time approximations Eq. (24), consider
the values l̄ = (m − 1)/4 and l̄ = (13m − 9)/36, the
means of the lower and upper bounding random vari-
ables for L (derived in Appendix C). We stress that even
if the approximation (24) were valid for all t, the rela-
tion (26) does not necessarily follow because the time
integrals don’t commute with exponentiation, unless the
integrand in Eq. (19) were tightly concentrated near a
single point in time.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.02

0.04

0.06

0.08

0.1

S

P
(A

2)

 

 

Lower, Eq. (C3)
Lower, Eq. (25)
Lower, Eq. (24)
Upper, Eq. (C4)
Upper, Eq. (24)

0 0.02 0.04 0.06
0

0.5

1

S

∆

FIG. 4. (color online) Comparison of approximate expres-
sions for P (A2), the probability for a cascade to terminate
with the second neuron. We display the following expres-
sions involving the lower bounding random variable L̃: (solid
red) precise evaluation (Eq. (C3)); (blue dot-dash) asymp-
totic approximation (Eq. (25)); (green stars) simple heuristic
approximation (Eq. (24)) using the value l̄ = (m−1)/4 (mean

of lower bound L̃). We display the following expressions in-

volving the upper bounding random variable L̂: (cyan solid)
precise evaluation (Eq. (C4)); (black dash) simple heuristic
approximation (Eq. (24)) using the values l̄ = (13m − 9)/36

(approximate mean of upper bound L̂) Note that, as explained

in Appendix C1, the lower (respectively upper) bound L̃ (L̂)
gives rise to an upper (lower) bound on P (A2) and conse-
quently a lower (upper) bound on P (C) via Eq. (19). The
inset ∆ displays the relative errors to the corresponding pre-
cise expressions (Eq. (C3) or (C4)), with the same colors and
linestyles as in the main plot.

To explore the validity of the hypothesized simple cor-
rection Eq. (26) to a tree-like approximation, we plot in
Fig. 5 the quantity

(

P (A2)

P tree(A2)

)1/l̄

(27)

for the two values l̄ = (m− 1)/4 and l̄ = (13m− 9)/36,
for three different choices of network parameters. P (A2)
is computed by integrating over Pt(A2) in Eq. (18) us-
ing, respectively, the lower and upper bound distribu-
tions (C3) and (C4), whose means (for N ≫ m ≫ 1) are
(m − 1)/4 and (13m− 9)/36; we recall from Fig. 3 that
these theoretical expressions give very good representa-
tions of the simulated values of P (A2). If the hypothe-
sis (26) were true, then the plots in Fig. 5 for different
network parameters (but the same neuronal parameters
f , S, and ν) should fall on top of each other on a curve,
which would then represent the function F (f, S, ν).
For small values of the coupling strength, S, the scaling

approximation Eq. (26) gives an excellent description of
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FIG. 5. (color online) The quantity (P (A2)/P
tree(A2))

1/l̄

from Eq. (27) plotted for the indicated values of m and
f = 0.001, fν = 1.2 and N = 4, 000. (solid lines) The
lower bound distribution for L, Eq. (C3), or the (dashed
lines) upper bound distribution for L, Eq. (C4), is used for
both the computation of Pt(A2) in Eq. (18) and for choos-
ing the value of l̄ as the respective means, (m − 1)/4 and
(13m − 9)/36, of these distributions. (inset) The same data

plotted as 1− (P (A2)/P
tree(A2))

1/l̄ with a logarithmic scale.

the dependence on clustering, as can be most clearly seen
form the logarithmic plot in the inset. For larger values
of S, we see some divergence of the plots across networks,
more so for the value l̄ = (13m− 9)/36 corresponding to
the upper bound bounding random variable for L. The
value l̄ = (m − 1)/4, corresponding to the mean of the
lower bounding random variable for L , however, does
give quite good collapse and suggests that the simple
representation Eq. (26) for clustering may work well with
l̄ = (m− 1)/4.
We also investigate the effect of the network parame-

ter m on P (C), the probability to return to a cascade-
susceptible state after a total firing event. Note that m
governs the mean degree of the nodes in the network, but
changing it also affects other statistical network quanti-
ties. The leading order effect of increasing m amounts
to increasing, on average, the degree of the first neuron
to fire, leading to smaller probabilities of cascade failure.
This statement is confirmed over a broad range of synap-
tic coupling strength, S, in Fig. 6 (top). Nonetheless,
there is still a significant higher-order effect. If we com-
pare scale-free networks with the same average degree, as
in Fig. 6 (bottom), a noticeable dependence on network
size – another network property – still remains.
The synchronizability of the system (1) has a direct de-

pendence on the size of the external input fluctuations.
While keeping the mean external input, fν, constant, we
plot in Fig. 7(a) the probability, P (C), that the systems
is cascade-susceptible as a function of coupling strength,
S, for four different value of external input spike strength,
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FIG. 6. (color online) (a) The probability, P (C), that the sys-
tem (1) is again cascade-susceptible after a total firing event,
as a function of the coupling strength, S, for the three indi-
cated values of network parameter m, f = 0.001, ν = 1.2/f ,
and N = 4, 000. Analytical computation from Sec. III B (solid
lines) using the lower bound on L, Eq. (C3), and (dashed
lines) the upper bound on L, Eq. (C4), are compared to
(symbols) results from direct numerical simulations. Note
that the solid and dashed lines representing the lower and
upper bound calculations almost coincide. (b) The probabil-
ity, P (C), that the system (1) is cascade-susceptible after a
total firing event, as a function of average degree of a node,
m(m−1)

2N
+ (N−m)m

N
, for the indicated values of network size

N , f = 0.001, fν = 1.2, and S = 0.0301, averaged over 500
Monte Carlo simulations and 20 networks.

f . Decreasing f (while keeping fν, constant) allows the
system to maintain a higher level of synchrony at a lower
value of coupling strength, S. This is partially explained
by the fact that smaller fluctuations in the external in-
put naturally narrow the distribution of neuronal volt-
ages, as the voltage variance in Eq. (9c) scales like f
while keeping fν constant. But our characterization of
synchronizability depends on the voltage distribution at
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FIG. 7. (color online) The probability, P (C), the system (1)
is again cascade-susceptible after a total firing event, as a
function of the coupling strength, S, scaled by the magni-
tude of the standard deviation of a single neuronal voltage,
σ ∼ f

√

ν/2, which removes much of the dependence on the
external spike strength, f . (solid lines) Analytical expressions
using the lower bound distribution (C3) for L to compute
Pt(A2) in (18) are compared to results from direct numerical
simulations (symbols). (left) The scale-free network model
with N = 4, 000, m = 50 and ν = 1.2/f and (inset) same
data without the scaling. (right) Reproduction of the data
for an all-to-all network model explored in [31] with N = 100
and ν = 1.2/f .

the first exit time, T (1); for which the pdf in Eq. (2) de-
pends separately (through FT in Eq. (3a)) on fν and f .
As seen in Fig. 1 in Sec. III A, decreasing the external
input spike strength, f (for fixed fν), increases the time
between total firing events and therefore the variability
of the neuronal voltages.

We find empirically that we can account for these var-
ious effects of the external input spike strength f by sim-
ply rescaling the coupling strength by the magnitude,
f
√

ν/2, of the standard deviation of a single neuronal
voltage (see Eq. (9c)), as seen in Fig. 7(b). That is, the
synchronizability of the network seems to depend primar-
ily on the ratio of the coupling strength S to the standard
deviation of the neuronal voltages. The deviations of the
results of direct numerical simulations when f = 0.05
and 0.1 from the theoretical expressions can be readily
understood from the known deterioration of the diffusion
approximation behind Eq. (3), which defines the first exit
time pdf, and the Gaussian approximation of the voltage
distribution, Eq. (9) as f increases. A rather system-
atic exploration of the dependence of the synchronizabil-
ity (characterized differently than here) on the governing
parameters of another scale-free network model with dis-
crete IF dynamics can be found in [32]. They found it
difficult to achieve data collapse with respect to primi-
tive quantities, such as our combination S/(f

√

ν/2), but
their discrete model had no simple way to characterize
the standard deviation of voltages of neurons at the time
of cascade initiation. The work [32] also finds substan-
tial variability, across realizations of scale-free networks
with the same parameter values, of the synchronizability
of the network under their dynamical model.

V. CONCLUSIONS

Neurons exhibit synchronous firing not only in a num-
ber of model networks [16–21], but in experimental mea-
surements as well [60–64]. Their underlying mechanisms
and possible functions may not be fully understood, but
there is certainly a link between the network represent-
ing the neuronal connections and the appearance of syn-
chronous firing. In fact, some network topologies may en-
hance a network’s ability to synchronize [65], or increase
the speed at which it is attracted to the synchronous
state [10]. In this work, we demonstrate a means for char-
acterizing the ability of a stochastically-driven, pulse-
coupled, current-based integrate-and-fire model to main-
tain a synchronous firing state, and present an analytical
calculation for the probability to see repeated cascading
total firing events based on a statistical representation of
the local network topology around a single firing neuron.

Although this definition of synchrony is rather strin-
gent, it offers a way to quantitatively compare the syn-
chronous states in a probabilistic setting across different
networks, and its calculation involves techniques which
may prove useful to more general studies of dynamics
on networks. This framework for describing synchrony
was employed in [66] for all-to-all networks of both in-
hibitory and excitatory neurons, leading to a reduced
description similar to a firing rate model, but with the
addition of a stochastic jump process to account for small
synchronous bursts [67]. While the relaxation of instan-
taneous synapses to more realistic time courses does not
allow for instantaneous bursts, we expect the bursts to be
spread over a characteristic time-window width, leaving
the underlying mechanism of competition between noise
and excitation; see for example, Sec. VC in [31].

The calculation of how a global property of a coupled
system depends upon its network topology is a broad
question being pursued by many researchers other than
neuroscientists. For example, those interested in the
spread of epidemics [4–9, 68–70] are also investigating
techniques for representing dynamical disease spread over
a network. One important question is how much informa-
tion about the network is needed to accurately describe
the global property. In epidemic modeling, accurate pre-
dictions for the infected fraction of the population was
carried out by writing differential equations for interact-
ing nodes, and using a moment-closure for interacting
triples of nodes [4, 5]. Another useful technique for deal-
ing with random graphs is to assume the network has
a tree-like structure, and apply results from branching
process and bond-percolation theory [71, 72], which al-
lows for the calculation of epidemic size [6–8]. In this
work, we found that a tree-like approximation signifi-
cantly underestimates the network’s ability to maintain
a synchronous firing state (see for example Fig 3). Such a
tree-like approximation was also abandoned for this scale-
free network in [52] and instead the epidemic threshold
was calculated in terms of the average degree of the neigh-
bors of the largest degree nodes (a.k.a. hubs) in the net-
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work. Our approach also differs conceptually from pair
approximation procedures, such as those reviewed in [68]
and [73].
The techniques in this paper, accounting explicitly for

the statistical network topology including clustering ef-
fects, may apply to studying other coupled dynamical
systems on networks. For example, numerical simula-
tion studies in [35] of “information cascades” (the Watts
model [57]) on a different random network model found
that global cascades occur more easily as the network
becomes more clustered, and our results agree with this
conclusion for our network dynamics as well. Some re-
cent theories [74, 75] have extended tree-like approxima-
tions to account for triangles, but these are generally
applied to special random configuration models [74] for
which triangles are introduced explicitly in the genera-
tion of the network, and therefore relatively easy to ac-
count for. Here we have computed clustering effects for
a random directed scale-free network model [52], which
to be sure is idealized, but for which the statistics of ap-
propriately directed triangles required a nontrivial calcu-
lation (App. C). These calculations have been shown to
substantially improve upon the accuracy of tree-like or
mean field approximations and give excellent agreement
with the direct numerical simulations.
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Appendix A: Voltage pdf for freely evolving neuron

In this appendix, we derive the Gaussian approxima-
tion, Eq. (9), of the pdf for a typical freely evolving neu-
ronal voltage. By freely evolving we mean that it is not
reset to VR when it reaches VT and it is not subject to
any injected current spikes from other neurons in the net-
work. If at t = 0 we set vj(0) = VR, j = 1, . . . , N then
the solution to Eq. (1) under these conditions is

vj(t) = VR + f

Mj(t)
∑

l=1

e−gL(t−sjl). (A1)

The number Mj(t) of the external spikes arriving at the
jth neuron before the time t is random and Poisson-
distributed with mean νt. After the random sum in (A1)
is shifted by its mean and scaled by its standard devia-
tion, the cumulants of this rescaled voltage are calculated

using successive derivatives of the logarithm of its charac-
teristic function. As f → 0 while fν = O(1), cumulants
of order three and higher can be neglected. Therefore,
in the small-fluctuation regime, when f is small while
fν = O(1), we can reasonably approximate the distribu-
tion of the neuronal voltage, vj(t), which is not reset to
VR upon reaching VT , by the Gaussian distribution [54]
in Eq. (9). More details concerning this argument can be
found in Newhall et al. [30, 31].

Appendix B: Statistical Distributions of Network

Model

We collect here various formulas for probability dis-
tributions which are used in approximation formulas in
the main text and Appendix C. We present in turn, the
needed statistical distributions for the properties of a sin-
gle node (Appendix B 1) and two nodes (Appendix B2).
Typically these distributions, which involve reference to
as many as three random variables, will be composed of
distributions involving fewer random variables. The fun-
damental building blocks of our calculations are the prior
results from Klemm and Egúıluz [52] and Shkarayev et al.
[33] which are derived under the assumption N ≫ m ≫
1, i.e., that the network size is large relative to the size
of the active cluster which generated the network, which
is itself large. All our numerical examples work at least
plausibly in such a regime. The derivation of the proba-
bility distributions presented in Appendices B 1 and B 2
are collected in Appendix B3. We will also report some
asymptotic simplifications formaly valid for N ≫ m ≫ 1;
these are derived in Shkarayev et al. [33] as well as within
Appendix D.

1. Single-node Distribution

In order to obtain the distribution of a node’s outgo-
ing degree, PK(k), we recall that the direction of each
undirected edge is assigned randomly, i.e. for a given
node, the probability that an undirected adjoining edge
becomes an outgoing edge is 1/2. Therefore, the prob-
ability a node with degree E (the sum of its outgoing
degree and its incoming degree) becomes a node with
outgoing degree K when direction is assigned is given by
the binomial distribution:

PK|E(k|ǫ) =
(

ǫ
k

)(

1

2

)ǫ

, (B1)

when ǫ ≥ k, and vanishes otherwise. We determine the
distribution PK(k), by considering all possible values for
the undirected degree, E, that could lead to a node with
outgoing degree K:

PK(k) =

N−1
∑

ǫ=m̂

PK|E(k|ǫ)PE(ǫ) (B2)
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where m̂ = max(m, k). The analytical expression for the
distribution of a node’s undirected degree, PE(ǫ), in the
limit of large N and m, was found in [52] to be

PE(ǫ) ∼
{

2m2

ǫ3 for ǫ ≥ m,

0 else,
for N ≫ m ≫ 1. (B3)

We can also obtain the following simplified partial de-
scription of the outgoing edge distribution using the
derivation in Shkarayev et al. [33]:

PK(k) ∼
{

TST(m−1) if k−m/2√
m

≪ −1,
m2

2k3 if k−m/2√
m

≫ 1.
for N ≫ m ≫ 1.

(B4)
TST(m−1) refers to a quantity transcendentally small
with respect to the small parameter m−1 (and which we
neglect in practice).

2. Two-node Distribution

We proceed next to joint network statistics of two
nodes, where node 2 receives an outgoing edge from node
1. We stress that in this context we pick pairs of con-
nected nodes in the manner neurons fire in cascading
firing events, as opposed to selecting an edge at random.
That is, we select node 1 at random (as node 1 represents
the first neuron to fire), and then select node 2 randomly
from one of the nodes that are at the other end of one
of the K1 outgoing edges from node 1. We are always
implicitly assuming K1 ≥ 1 when we refer to a two-node
distribution, otherwise node 2 would be undefined.
We begin with the conditional distribution

PK2|K1
(k2|k1) that node 2 has k2 outgoing edges,

given that node 1 has k1 outgoing edges. We determine
PK2|K1

(k2|k1) by considering all possible combinations
of E1 and E2, the numbers of undirected edges, that
could lead to the just-described arrangement of outgoing
directed edges:

PK2|K1
(k2|k1) =

N−1
∑

ǫ1=m̂1

N−1
∑

ǫ2=m̂2

(

ǫ2 − 1
k2

)(

ǫ1
k1

)

PE2|E1
(ǫ2|ǫ1)PE(ǫ1)

2ǫ1+ǫ2−1PK(k1)
,

(B5)
where m̂1 = max(m, k1) and m̂2 = max(m, k2). A
detailed derivation of Eq. (B5) is presented in Ap-
pendix B3 b. The conditional distribution, PE2|E1

(ǫ2|ǫ1),
of the number of undirected edges of node 2, E2, given
node 2 is connected to node 1 which has E1 undirected
edges,

PE2|E1
(ǫ2|ǫ1) = ǫ−1

1 PE(ǫ2)(ǫ1+ǫ2−2m), for N ≫ m ≫ 1.
(B6)

is derived in Appendix B 3 a. We can also state a sim-
plified partial description of the conditional outgoing de-
gree distribution by substituting Eq. (B6) and (B3) into

Eq. (D3), derived in Appendix D:

PK2|K1
(k2|k1) ∼

{

TST(m−1) if {ki−m/2√
m

}i=1,2 ≪ −1,
m2(k1+k2−m)

2k3
2

if {ki−m/2√
m

}i=1,2 ≫ 1.
for N ≫ m ≫ 1.

(B7)
We also will need to modify the conditional probabil-

ity distribution (B1) for the number of outgoing edges,
given the total number of incident edges, when referring
to node 2, because it is known by definition to have an
incoming edge (from node 1):

PK2|E2
(k2|ǫ2) =

(

ǫ2 − 1
k2

)(

1

2

)ǫ2−1

(B8)

Eq. (B1) does apply to node 1 (PK1|E1
(k1|ǫ1) =

PK|E(k1|ǫ1)) since it is indeed selected completely ran-
domly from the network.
Finally, the formulas for the approximations (C3)

and (C4) to PL|K1,K2
using the lower bounding random

variable L̃ and upper bounding random variable L̂ make
reference to certain conditional probability distributions
involving combinations of three random variables asso-
ciated to the two nodes. Here we present the formulas
relating these somewhat more complex probability dis-
tributions to the more elementary conditional probabil-
ity distributions involving one or two random variables
listed above:

PE2|K1,K2
(ǫ2|k1, k2) =

PK2|E2
(k2|ǫ2)

PK2|K1
(k2|k1)PK(k1)

×
N−1
∑

ǫ1=m̂1

PK|E(k1|ǫ1)PE2|E1
(ǫ2|ǫ1)PE(ǫ1),

(B9)

where m̂1 = max(m, k1).

PE1|K1,K2
(ǫ1|k1, k2) =

PK|E(k1|ǫ1)PE(ǫ1)

PK2|K1
(k2|k1)PK(k1)

×
N−1
∑

ǫ2=m̂2

PK2|E2
(k2|ǫ2)PE2|E1

(ǫ2|ǫ1),
(B10)

where m̂2 = max(m, k2).

PE1|E2,K1
(ǫ1|ǫ2, k1) =

PK|E(k1|ǫ1)PE2|E1
(ǫ2|ǫ1)PE(ǫ1)

N−1
∑

ǫ=m̂1

PK|E(k1|ǫ)PE2|E1
(ǫ2|ǫ)PE(ǫ)

. (B11)

3. Derivation of Key Multi-Node Statistical

Distributions

We present here the derivations of the formulas listed
previously in this appendix.
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a. Conditional Distribution for the the Degrees of Two
Connected Nodes

For two connected nodes 1 and 2, we derive the condi-
tional distribution, PE2|E1

(ǫ2|ǫ1) in Eq. (B6), which en-
codes the correlation between the degrees, E1 and E2, of
these two nodes. We begin with the formula from [33] for
the “edge-distribution function” T (x, y) describing the
probability that a randomly chosen edge with randomly
chosen direction would originate in a node of degree x
and terminate in a node of degree y:

T (x, y) =

{

PE(x)PE(y)
x+y−2m

2m x, y ≥ m

0 else
, (B12)

where PE(·) is the distribution in Eq. (B3). This for-
mula for T (x, y) was obtained by writing a set of recur-
sive equations for how pairs involving active and inactive
nodes gain edges during the network generation process,
and solving these equations under the assumption of large
network size and large active cluster size, N ≫ m ≫ 1.
We next recall that the (marginal) degree distribution

of a randomly chosen node from a randomly chosen edge
is given in terms of the usual degree distribution PE(ǫ)
of a randomly chosen node by

xPE(x)
∑N−1

ǫ=m ǫPE(ǫ)
∼ xPE(x)

2m
for N ≫ m ≫ 1,

because there are x as many edges incident to a node
of degree x as there are nodes of degree x. The second
expression follows from using the asymptotic form (B3)
for the degree distribution PE(ǫ). Consequently, we have
that the conditional distribution for the degree y of the
second node on a randomly chosen edge, given the degree
x of the other node on the edge, can be expressed as:

T (x, y)

xPE(x)/2m
= PE(y)

x+ y − 2m

x
.

But conditioning a random edge on the degree of a spec-
ified node is equivalent to choosing a random edge of a
node with that degree, so the last expression must be
equal to PE2|E1

(y|x), yielding the result in Eq. (B6).

b. Conditional Distribution for the the Outgoing Degrees of
Two Connected Nodes

For two connected nodes, we derive the conditional
distribution, PK2|K1

(k2|k1) in Eq. (B5), which encodes
the correlation between the outgoing degrees,K1 andK2,
of these two nodes. We derive this distribution from the
joint distribution, PK2,K1(k2, k1), of the outgoing degrees
K1 and K2 using the formula

PK2|K1
(k2|k1) =

PK2,K1(k2, k1)

PK(k1)
, (B13)

where PK(k1) is computed from Eq. (B2). By summing
over all possible numbers, E1 and E2, of edges the two
nodes had before direction was assigned, we obtain the
following equation for the joint distribution:

PK2,K1(k2, k1) =

N−1
∑

ǫ1=m̂1

N−1
∑

ǫ2=m̂2

PE2|E1
(ǫ2|ǫ1)

× PK2,K1|E1,E2
(k2, k1|ǫ1, ǫ2)PE(ǫ1),

(B14)

where m̂1 = max(m, k1), m̂2 = max(m, k2) and PE(ǫ1)
is given in Eq. (B3). As the outgoing degrees, K1 and
K2, of the connected nodes under consideration are con-
ditionally independent given their undirected degrees,
the probability PK2,K1|E1,E2

(k2, k1|ǫ1, ǫ2) can be factored
into

PK2,K1|E1,E2
(k2, k1|ǫ1, ǫ2) = PK2|E2

(k2|ǫ2)PK|E(k1|ǫ1),
(B15)

where PK2|E2
is given by the expression (B8). Combining

Eq. (B15) and Eq. (B14) with Eqs. (B1), (B6), (B8),
and (B13), we obtain Eq. (B5).

c. Conditional distribution for the degree of node 2 given
its outgoing degree and the outgoing degree of node 1

We derive in terms of known distributions the distribu-
tion PE2|K1,K2

(ǫ2|k1, k2) (Eq. (B9)) of the degree, E2, of
node 2, given that node 1 has K1 outgoing connections,
one of which is received by node 2 which has K2 outgoing
connections. We employ Bayes’ Law and obtain

PE2|K1,K2
(ǫ2|k1, k2) =

PE2|K1
(ǫ2|k1)PK2|E2

(k2|ǫ2)
PK2|K1

(k2|k1)
,

(B16)
where we have used conditional independence to write
PK2|E2,K1

(k2|ǫ2, k1) as PK2|E2
(k2|ǫ2). We determine the

probability PE2|K1
(ǫ2|k1) by summing over all possible

numbers of connections, E1, node 1 had,

PE2|K1
(ǫ2|k1) =

N−1
∑

ǫ1=m̂1

PE2|E1,K1
(ǫ2|ǫ1, k1)PE|K(ǫ1|k1),

(B17)
where m̂1 = max(m, k1). To determine the second prob-
ability, PE|K(ǫ1|k1), in Eq. (B17), we apply Bayes’ Law
and obtain,

PE|K(ǫ1|k1) =
PE(ǫ1)PK|E(k1|ǫ1)

PK(k1)
(B18)

Equation (B17) reduces to

PE2|K1
(ǫ2|k1) =
N−1
∑

ǫ1=m̂1

PK|E(k1|ǫ1)
PE2|E1

(ǫ2|ǫ1)PE(ǫ1)

PK(k1)
.

(B19)

This equation, when substituted back into Eq. (B16)
yields Eq. (B9).
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d. Conditional distribution for the degree of node 1 given
its outgoing degree and the outgoing degree of node 2

In a similar manner to Appendix B3 c, we de-
rive in terms of known distributions the distribution
PE1|K1,K2

(ǫ1|k1, k2) (Eq. (B10)) of the degree, E1, of
node 1, given that node 1 has K1 outgoing connections,
one of which is received by node 2 which has K2 outgoing
connections. We employ Bayes’ Law and obtain

PE1|K1,K2
(ǫ1|k1, k2) =

PK2|E1
(k2|ǫ1)PE|K(ǫ1|k1)
PK2|K1

(k2|k1)
,

(B20)
where we have used conditional independence to write
PK2|E1,K1

(k2|ǫ1, k1) as PK2|E1
(k2|ǫ1). We determine the

probability PK2|E1
(k2|ǫ1) by summing over all possible

number of edges, E2, node 2 has,

PK2|E1
(k2|ǫ1) =

N−1
∑

ǫ2=m̂2

PK2|E1,E2
(k2|ǫ1, ǫ2)PE2|E1

(ǫ2|ǫ1)

(B21)
where m̂2 = max(m, k2). The first probability,
PK2|E1,E2

(k2|ǫ1, ǫ2), in Eq. (B21) is equivalent to
PK2|E2

(k2|ǫ2) as K2 is conditionally independent of E1

once the value of E2 is known. Substituting Eq. (B21)
into Eq. (B20), and using Bayes’ law to express

PE|K(ǫ1|k1) =
PK|E(k1|ǫ1)PE(ǫ1)

PK(k1)
, (B22)

we arrive at the desired Eq. (B10).

e. Conditional distribution for the degree of node 1 given
its outgoing degree and the outgoing degree of node 2

We derive in terms of known distributions, the distri-
bution PE1|E2,K1

(ǫ1|ǫ2, k1) for the degree, E1 of node 1
given that it has k1 outgoing connections, one of which
is received by node 2, with degree ǫ2. Applying Bayes’
Law we obtain

PE1|E2,K1
(ǫ1|ǫ2, k1) =

PE|K(ǫ1|k1)PE2|E1,K1
(ǫ2|ǫ1, k1)

PE2|K1
(ǫ2|k1)

.

(B23)
The probability PE|K(ǫ1|k1) is given in Eq. (B18) and
the probability PE2|E1,K1

(ǫ2|ǫ1, k1) is independent of K1

and equals PE2|E1
(ǫ2|ǫ1). Together with PE2|K1

(ǫ2|k1) in
Eq. (B19), Eq. (B23) reduces to Eq. (B11).

Appendix C: Derivation of Analytical Expressions

for Upper and Lower Bounds for Second Order

Approximation of Cascade-Susceptible Probability

We describe here how we obtain computable two-term
approximations (19) of the cascade-susceptible proba-
bility P (C) through the explicit construction of lower

and upper bounding random variables, L̃ ≤ L ≤ L̂,
for the key random variable L representing the num-
ber of doubly-excited nodes receiving inputs from the
two nodes defined in the discussion in Subsection III B,
and which we label as “1” and “2” in the same way.
First in Appendix C 1, we outline the general strategy.
In Appendix C 2, we define the explicit lower and up-
per bounding random variables, L̃ and L̂, that we will
use. The resulting approximations for P (C) are pre-
sented in Appendix C3. These results are derived in
precise form through purely probabilistic manipulations
in Appendix C 4.

1. Approximation and Bounding Strategy

Our introduction of computable bounding random
variables for L not only gives us an approximation
of P (C) but also bounds on the two-term approxima-
tion (19). This follows from the fact that L only affects
the two-term approximation (19) in the term Pt(A2) in
Eq. (18), and this term is monotonic with respect to L
if the inequality Eq. (21) is satisfied. As noted in the
main text, we will not attempt to derive the conditions
under which this inequality holds, but will simply accept
it as an empirical observation. Proceeding under this as-
sumption, we note that the square bracket [·] in Eq. (18)
can be written as E[(ρ(t))L|K1 = k1,K2 = k2], a con-
ditional expectation of a function g(l) = (ρ(t))l of L.
Taking Eq. (21) as granted, we have that g(l) = (ρ(t))l

is a monotonically decreasing function of l, so

E
[

(ρ(t))L̂
∣

∣K1 = k1,K2 = k2
]

≤ E
[

(ρ(t))L
∣

∣K1 = k1,K2 = k2
]

≤ E
[

(ρ(t))L̃
∣

∣K1 = k1,K2 = k2
]

In other words, by replacing PL|K1,2(l|k1, k2) in Eq. (18)
by PL̃|K1,K2

(l|k1, k2), we obtain an upper bound on

Pt(A2) (and a lower bound on the approximation
for P (C) in Eq. (19)). Similarly, by replacing
PL|K1,2(l|k1, k2) in Eq. (18) by PL̂|K1,K2

(l|k1, k2), we ob-
tain a lower bound on Pt(A2) (and therefore an upper
bound on the approximation for P (C) in Eq. (19)).
If Eq. (21) fails to hold, then we no longer can claim

this strategy will lead necessarily to bounds, but we can
still study the results as approximations, which presum-
ably have more to do with how well the bounding random
variables L̃ and L̂ actually approximate L.

2. Definition of Bounding Random Variables

We now proceed to define our lower and upper bound
variables, L̃ and L̂ respectively, by (possibly) undercount-
ing or overcounting, respectively the set of nodes that are
connected to both nodes 1 and 2 by inwardly directed
edges. Returning to the construction of the undirected
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1 2 1 2

(a) Network at the time 

node 2 is added (m=5)

(b) Network while both 

nodes 1 and 2 remain active

1 2

(c) Network if node 2 

decativeates before 1

1 2

(d) Network if node 1 

decativates before 2

FIG. 8. (color online) Depiction of the undirected network
around two connected nodes as it is being grown. Blue: ex-
isting connections from node 1 to deactivated nodes at the
time node 2 joined the network. Orange dash: the known
connection between node 1 and node 2. Green: primal con-
nections to the m− 1 other active nodes when node 2 joined
the network. Black: connections made while both nodes 1
and 2 remain active. Red: connections made to the remaining
active node once one of the two nodes has been deactivated.

network (described at the beginning of Sec. (IVA)), we
note that at the step the later of these two nodes entered
the network, the earlier node was active, and therefore
both of these nodes were connected at this step to the
other m− 1 active nodes (Fig. 8a). We call the connec-
tions to these m − 1 nodes primal, noting that the edge
connecting node 1 to node 2 is not counted as primal. We
will define L̃ to be the number of nodes in the network
that are connected to nodes 1 and 2 by primal connec-
tions that are both inwardly directed toward that node.
Since the set of primal connections is a subset of the set
of all connections, the result is a lower bound of L in each
realization of the network: L̃ ≤ L.

We define the upper bound random variable L̂ in
each realization by the following process: 1) determin-
ing which node, 1 or 2, has the lesser degree (and calling
it node A and the other node B), 2) successively replacing
each edge between node A and a non-neighbor of node
B with an edge between node A and a randomly chosen
neighbor of node B (that does not already have a connec-
tion to node A), preserving directionality of the edge with

respect to node A, and 3) defining L̂ to be the number of
nodes in this rewired network that are connected to both
nodes 1 and 2 by inwardly directed edges. If nodes 1 and
2 have the same degree, then in step 1, we assign one of
them to be node A (and the other node B) with equal

probability. Clearly L ≤ L̂ because the rewiring moves
do not disrupt any nodes that were connected, via ap-

propriate directions, to nodes 1 and 2, and only possibly
make some new nodes fall into this category.
In Fig. 8 we provide a visualization for these upper and

lower bounds in terms of various stages in the generation
of the undirected network, taking (without any real loss
of generality) node 1 to be the first of the two nodes to
enter the network. Panel a) shows a generic picture of
the part of the network directly connected to nodes 1 or
2 immediately after the second node enters the network.
The orange edge is the connection between nodes 1 and
2, green edges denote the primal connections created at
this step; and the blue edges portray the other edges ad-
jacent to node 1 that were generated at previous steps.
While nodes 1 and 2 remain active, they are simultane-
ously connected jointly to further nodes (denoted with
black edges in panel b). At some point, either node 1 or
node 2 will deactivate. If node 2 deactivates first, then
node 1 will continue to accrue new connections (red edges
in panel c) until it also deactivates. If on the other hand,
node 1 deactivates first, then node 2 will accrue more
connections (red edges in panel d) until it also deacti-
vates. If the network generation terminates before either
node deactivates, we would simply have the special case
of panel c) or d) in which no red edges appear. Now,
we can interpret L as the number of nodes connected to
both nodes 1 and 2 by either green or black edges, with
appropriate directions. Similarly, the lower bound L̃ is
the number of nodes connected to both nodes 1 and 2 by
green (not black) edges, with appropriate directions. If
we have the situation of panel c), so that node 2 plays the
role of node A, then in fact the upper bound is precise
(L̂ = L) because no rewiring is done in the construc-

tion of L̂. In the situation of panel d), some edges of
the node of lower degree (which here happen to be the
blue edges incident to node 1, playing the role of node
A) are redrawn to connect to neighbors of the other node
(here those dangling nodes incident to the red edges), so

L̂ would overcount by the number of those neighboring
nodes whose edges in the rewired network were appropri-
ately directed. The fact that the number of rewired edges
drawn is determined by the node with smaller degree may
give us some a priori confidence that the upper bound-
ing random variable L̂ may be fairly close to L. This is
further bolstered by the observation that the situation
in panel c) (with no overcounting at all) will occur more
often that the situation in panel d) because the deactiva-
tion rate of a node is inversely proportional to its current
degree. We will see in fact in Subsection IVB that both
the lower and upper bounds based on the random vari-
ables L̂ and L̃ are sharp in practice.

3. Statistics of Random Variables Bounding the

Number L of Doubly-Excited Nodes

For each of the bounding random variables, L̃ and
L̂ defined in Appendix C 2 we will need their (uncon-
ditional) mean as well as their probability distribution,
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conditioned upon the number of outgoing edges of each
of the two neurons under consideration. Here we present
the formulas, and derive them in Appendix C 4. Beyond
the one-node and two-node probability distributions pre-
sented in Appendix B, the results will repeatedly involve
the hypergeometric distribution [53, pg. 68]

H(k;n, r, s) =
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n− r

s− k









n

s





for 0 ≤ k ≤ r, s ≤ n,

0 else,

(C1)
which describes the probability of choosing exactly k spe-
cial objects when s objects are chosen without replace-
ment from among n objects, of which r are special ob-
jects.
The (unconditional) means of the bounding random

variables are:

EL̃ = (m− 1)/4, EL̂ = (13m− 9)/36. (C2)

The conditional probability distribution for the lower
bounding random variable L̃, given the number of out-
going edges of the two neurons under consideration is:

PL̃|K1,K2
(l|k1, k2) =

m−1
∑

g1=0

m−1
∑

g2=0

H(l;m− 1, g1, g2)

×
[

N−1
∑

ǫ1=m̂1

H(g1; ǫ1 − 1,m− 1, k1 − 1)PE1|K1,K2
(ǫ1|k1, k2)

]

×
[

N−1
∑

ǫ2=m̂2

H(g2; ǫ2 − 1,m− 1, k2)PE2|K1,K2
(ǫ2|k1, k2)

]

,

(C3)
where m̂1 = max(m, k1) and m̂2 = max(m, k2). This
expression becomes directly computable in terms of the
specified random network statistics when we use the ex-
pressions (B10) and (B9) for PE1|K1,K2

and PE2|K1,K2
,

in conjunction with the explicit expressions for PK|E
(Eq. (B1)), PK2|E2

(Eq. (B8)), PK(k1) (Eq. (B2)),
PE(ǫ1) (Eq. (B3)), PK2|K1

(k2|k1) (Eq. (B5)), and PE2|E1

(Eq. (B6)). Substituting this result into Eq. (18) gives
an explicit, albeit admittedly cumbersome, theoretical
lower bound on the two-term approximation for P (C)
presented in Eq. (19). We show in Appendix D how the
simpler expression (25) can be derived semi-rigorously
from Eq. (C3).
The conditional probability distribution for the upper

bounding random variable L̃, given the number of out-
going edges of the two neurons under consideration is:

PL̂|K1,K2
(l|k1, k2) =

N−1
∑

ǫ2=m̂2

PE2|K1,K2
(ǫ2|k1, k2)

×
N−1
∑

ǫ1=m̂1

H(l; ǫM , k1 − 1, k2)PE1|E2,K1
(ǫ1|ǫ2, k1),

(C4)

where ǫM = max(ǫ1, ǫ2) − 1. We obtain an explic-
itly computable formula for this conditional probabil-
ity PL̂|K1,K2

by combining this expression with the con-

ditional probability distributions, PE2|K1,K2
(ǫ2|k1, k2),

given in Eq. (B9), and PE1|E2,K1
(ǫ1|ǫ2, k1), given in

Eq. (B11), in conjunction with the explicit expressions for
PK|E (Eq. (B1)), PK2|E2

(Eq. (B8)), PE2|E1
(Eq. (B6)),

and PE (Eq. (B3)).

Though the upper bound estimate for P (C) result-
ing from substituting Eq. (C4) into Eq. (18) in place of
PL|K1,K2

involves one fewer summation than the lower
bound estimate proceeding from Eq. (C3), we were not
successful in obtaining a useful asymptotic simplification
parallel to that in Eq. (25). The culprit is the appear-
ance of ǫM = max(ǫ1, ǫ2) as an argument deep in the ex-
pression (C4), which spoils our procedure in Appendix D
relying on successive approximations, for N ≫ m ≫ 1,
of the sums by integrals of Gaussian functions over the
whole real line.

4. Derivation of Precise Statistical Formulas for

Bounding Random Variables

a. Probability distribution for lower bound

We proceed to consider how to compute the dis-
tribution, PL̃|K1,K2

(l|k1, k2) (to be substituted for

PL|K1,K2
(l|k1, k2) in Eq. (18) to evaluate a lower bound

for P (C)), for the lower bound, L̃, on the number of neu-
rons receiving two spikes when both the neurons with k1
outgoing edges and the neuron with k2 outgoing edges
fire. The random variable L̃ considers only those neu-
rons with primal connections from both node 1 and node
2. With no other information, L̃ would be binomially
distributed with m− 1 trials, each with probability 1/4,
which comes from picking the correct direction for both
primal edges emanating from each of the two nodes.
From this, we immediately compute that the mean value
EL̃ = (m− 1)/4.

For the conditional probability distribution, the fact
that the information about k1 and k2 is given, compli-
cates the situation. For example, if the total number of
undirected connections, E1, is only slightly larger than
k1, then we know that almost all the connections must
have been picked to be outgoing, including those that
are primal. The conditional probability that any given
primal connection is outgoing from node 1 would not sim-
ply be 1/2 in general. To address this issue, we take into
account the number of outgoing primal connections, G1

and G2, from node 1 and node 2. Note in particular the
value of L̃ cannot be larger than either G1 or G2.
The number of primal connections, without regard to

direction, is m − 1 from each node. If we knew that
there were g1 and g2 outgoing primal connections em-
anating from node 1 and node 2 respectively, then the
lower bound, L̃, would satisfy the hypergeometric distri-
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bution, H(l;m − 1, g1, g2), defined in Eq. (C1). This is

because L̃ is the number of the m − 1 nodes, with pri-
mal connections to both nodes 1 and 2, that are both
among the subset of g1 nodes receiving outgoing primal
connections from node 1 and the subset of g2 nodes re-
ceiving outgoing primal connections from node 2, with
both subsets determined randomly and independently.
In order to determine the desired distribution,

PL̃|K1,K2
(l|k1, k2), we apply the law of total probabil-

ity [53] by summing over all possible values for G1 and
G2, the numbers of outgoing primal connections,

P L̃|K1,K2
(l|k1, k2) =

m−1
∑

g1=0

m−1
∑

g2=0

PL̃|K1,K2,G1,G2
(l|k1, k2, g1, g2)

× PG1|K1,K2
(g1|k1, k2)PG2|K1,K2

(g2|k1, k2).

(C5)

Note that G1 and G2 are conditionally independent of
each other given the numbers of outgoing connections,
K1 and K2. Moreover, the value of L̃ is conditionally in-
dependent of K1 and K2 once the values of G1 = g1 and
G2 = g2 are known, and cannot exceed either g1 or g2.
Therefore, the distribution PL̃|K1,K2,G1,G2

(l|k1, k2, g1, g2)
is equivalent to PL̃|G1,G2

(l|g1, g2), which in turn is

H(l;m−1, g1, g2) as discussed in the previous paragraph.
If the degree, E1 = ǫ1, of node 1 were also known, the

number of its outgoing primal connections would obey
the hypergeometric distribution H(g1; ǫ1 − 1,m− 1, k1 −
1). This can be understood as G1 is the number of the
m−1 primal edges that are selected to be outgoing when
k1 − 1 connections (since we do not count the outgoing
connection from node 1 to node 2) out of the total ǫ1 −
1 are selected to be outgoing. Therefore, we evaluate
PG1|K1,K2

(g1|k1, k2) by considering all possible values for
E1,

PG1|K1,K2
(g1|k1, k2) =

N−1
∑

ǫ1=m̂1

PG1|E1,K1,K2
(g1|ǫ1, k1, k2)

× PE1|K1,K2
(ǫ1|k1, k2),

(C6)
where m̂1 = max(m, k1). With this information
G1 is conditionally independent of K2, and the first
distribution PG1|E1,K1,K2

(g1|ǫ1, k1, k2) is equivalent to
PG1|E1,K1

(g1|ǫ1, k1), which in turn is H(g1; ǫ1 − 1,m −
1, k1 − 1).
The distribution PG2|K1,K2

(g2|k1, k2) in Eq. (C5)
is found in an almost identical fashion to
PG1|K1,K2

(g1|k1, k2), except that the known edge
to node 1 is incoming rather than outgoing:

PG2|K1,K2
(g2|k1, k2) =

N−1
∑

ǫ2=m̂2

PE2|K1,K2
(ǫ2|k1, k2)

×H(g2; ǫ2 − 1,m− 1, k2)

(C7)

where m̂2 = max(m, k2). Assembling the above results,
we obtain Eq. (C3).

b. Probability distribution for upper bound

Here we derive the mean and the distribution in
Eq. (C4) for the upper bound, L̂, of the random variable
L. We begin by noting that, after the rewiring proce-
dure described in Subsection C 2, the number of nodes
connected by edges, without regard to direction, to both
nodes 1 and 2 is min(E1, E2)− 1, where E1 is the degree
of node 1 and E2 is the degree of node 2.
From this observation, together with the assignment of

each possible direction to each edge independently with
probability 1/2, we find that the number L̂ of nodes re-
ceiving outgoing connections from both nodes 1 and 2 in
this rewired network must satisfy:

E(L̂|E1, E2) =
1

4
(min(E1, E2)− 1). (C8)

The unconditional mean of L̂ is then computed by ap-
plying the law of total expectation [53]:

EL̂ =

N−1
∑

ǫ1=1

N−1
∑

ǫ2=1

E(L̂|E1 = ǫ1, E2 = ǫ2)PE1,E2(ǫ1, ǫ2)

(C9)
For 1 ≪ m ≪ N , we have an explicit formula
for PE1,E2(ǫ1, ǫ2) = PE2|E1

(ǫ2|ǫ1)PE(ǫ1) by appeal to
Eqs. (B6) and (B3). Substituting this expression and
Eq. (C8) into Eq. (C9), and approximating the sums
by semidefinite integrals (consistent with the assumption
1 ≪ m ≪ N), we have

EL̂ ∼
∫ ∞

m

∫ ∞

m

1

4
(min(ǫ1, ǫ2)− 1)

ǫ1 + ǫ2 − 2m

ǫ1

(

2m2

ǫ31

)

×
(

2m2

ǫ32

)

dǫ1 dǫ2

= −1

4
+m4

∫ ∞

m

[
∫ ǫ1

m

ǫ1 + ǫ2 − 2m

ǫ41ǫ
2
2

dǫ2

+

∫ ∞

ǫ1

ǫ1 + ǫ2 − 2m

ǫ31ǫ
3
2

dǫ2

]

=
13m− 9

36
.

To determine the full conditional probability distribu-
tion, PL̂|K1,K2

(l|k1, k2), we sum over all possible values

for E1 and E2 using the law of total probability:

PL̂|K1,K2
(l|k1, k2) =

N−1
∑

ǫ1=m̂1

N−1
∑

ǫ2=m̂2

PL̂|E1,E2,K1,K2
(l|ǫ1, ǫ2, k1, k2)

× PE1|E2,K1,K2
(ǫ1|ǫ2, k1, k2)PE2|K1,K2

(ǫ2|k1, k2),
(C10)

where m̂1 = max(m, k1) and m̂2 = max(m, k2). We ob-
tain the distribution PE1|E2,K1,K2

(ǫ1|ǫ2, k1, k2) by first
noting that it equals PE1|E2,K1

(ǫ1|ǫ2, k1) as E1 is con-
ditionally independent of K2 once the value e2 is known.
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Next, we consider first the case where node 1 plays
the role of node A in generating the rewired network
(so in particular E1 ≤ E2). Noting that in the rewired
network, all neighbors of node 1 are also neighbors of
node 2, we see that the value of L̂ is the number of the
k1 − 1 nodes receiving outgoing connections from node 1
that are among the ǫ2− 1 other neighbors of node 2 that
receive one of the k2 outgoing connections from node 2
(the minus one is because we exclude the known outgoing
connection from node 1 to node 2). The random variable

L̂ therefore satisfies the hypergeometric distribution, de-
fined in Eq. (C1),

PL̂|E1,E2,K1,K2
(l|ǫ1, ǫ2, k1, k2) = H(l; ǫ2 − 1, k1 − 1, k2).

When node 2 plays the role of node A in generating
the rewired network (so that E2 ≤ E1, then all neighbors
of node 2 are also neighbors of node 1, and the value of
L̂ is the number of the k2 nodes receiving outgoing con-
nections from node 2 that are among the e1 − 1 other
neighbors of node 1 that receive one of the k1 − 1 out-
going connections from node 1. The random variable L̂
therefore satisfies the hypergeometric distribution,

PL̂|E1,E2,K1,K2
(l|ǫ1, ǫ2, k1, k2) = H(l; ǫ1 − 1, k2, k1 − 1).

The hypergeometric distribution is symmetric under
interchange of the last two arguments [53], so we may
combine the above results to write the distribution for
the upper bound L̂ as

PL̂|E1,E2,K1,K2
(l|ǫ1, ǫ2, k1, k2) = H(l; ǫM , k1 − 1, k2)

(C11)
where ǫM = max(ǫ1, ǫ2)−1. By substituting the distribu-
tion in Eq. (C11) into Eq. (C10) we obtain the expression

for L̂ that appears in Eq. (C4).

Appendix D: Central Limit Approximations for

Large m

Explicit formulas for some of the scale-free network
statistics presented in Appendix B generally relied on
the assumption N ≫ m ≫ 1. Those results followed
from standard asymptotic results in probability theory
and the approximation of the discrete probability distri-
butions by continuous ones [33], and are quite rigorously
derived. We now show how we obtain the approximate
formula (25) for the probability of cascade failure at the
second step from the precise expression (C3) for the con-

ditional probability distribution for the lower bound L̃ on
the number of doubly-excited nodes in the same asymp-
totic regimeN ≫ m ≫ 1. This calculation will be mostly
systematic, but will encounter some steps where we make
uncontrolled approximations. For this reason, we sepa-
rately report and consider the more precise formula (C3)
as well as the simpler explicit approximation in Eq. (25),
as the asymptotic simplification is theoretically less se-
cure than those reported in Appendix B.

We proceed essentially through successive applications
of Laplace’s method [76], which can be interpreted as
approximations akin to the central limit theorem. The
main complication in this asymptotic calculation is the
propagation of the Gaussian approximations through the
successive levels of conditioning.
We begin with a standard Gaussian approximation [53,

77, 78]) to the binomial distribution (B1), recalling that
ǫ ≥ m so that large m implies large ǫ:

PK|E(k|ǫ) ∼ φ(k; ǫ/2, ǫ/4) for m ≫ 1 (D1)

where

φ(x;µ, σ2) ≡
exp

(

− (x−µ)2

2σ2

)

√
2πσ2

denotes a Gaussian with mean µ and variance σ2. More
precisely, the DeMoivre-Laplace theorem [77, 78] proves
that such approximation (D1) is only valid in the core of
the probability distribution (i,e., within a few standard
deviations of the mean), but not in the tails. But one
can check that the statistics of interest are all dominated
for large m by the core of the probability distributions,
so we will not state explicitly this restriction of validity.
Next, we apply the same concepts from the proof of

the DeMoivre-Laplace theorem successively to other for-
mulas building on this conditional probability. The rel-
evant technical results regarding asymptotic evaluation
of integrals are collected in Appendix E. We begin with
Eq. (B2), where the fact that m is large, PE has sup-
port only on ǫ ≥ m ≫ 1 and varies on a scale m ≫ 1
(Eq. (B3)), and, from Eq. (D1), PK|E varies on a length

scale &
√
m ≫ 1 suggests that we can approximate the

sum with unit step by an integral:

PK(k) ∼
∫ ∞

m

φ(k; ǫ/2, ǫ/4)PE(e) dǫ

Next we rescale the integration variable ǫ = mǫ̃ to obtain:

PK(k) ∼
∫ ∞

1

φ(k;mǫ̃/2,mǫ̃/4)PẼ(ǫ̃) dǫ̃

where PẼ(ǫ̃) = mPE(mǫ̃) is a rescaled probability dis-

tribution for Ẽ = E/m. From Eq. (B3) we see that the
function PẼ is independent of m for largem. We now ap-
ply Lemma 1 from Appendix E concerning the integral
of a slowly varying function against a sharply peaked
Gaussian (standard variation small compared to mean)
to obtain:

PK(k) ∼
{

TST(1/m) if k−m/2√
m

≪ −1,
2
mPẼ(2k/m) if k−m/2√

m
≫ 1

=

{

TST(1/m) if k−m/2√
m

≪ −1,

2PE(2k) if k−m/2√
m

≫ 1.

(D2)

That is, the degree distribution of the outgoing edges is,
for large m, well approximated by a simple rescaling of
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the total edge distribution for a node (similar results were
derived in somewhat less precise form in Shkarayev et al.
[33]). This could have been argued also using simpler
asymptotic arguments on probability generating func-
tions, but we used the above argument because we will
need a generalization of it later in the calculation. Simi-
lar arguments show:

PK1,K2(k1, k2) ∼
{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,

4PE1,E2(2k1, 2k2) if k1−m/2√
m

, k2−m/2√
m

≫ 1.

and therefore

PK2|K1
(k2|k1) ∼

{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,

2PE2|E1
(2k2|2k1) if k1−m/2√

m
, k2−m/2√

m
≫ 1.

(D3)

We now apply these approximations to simplify the
expressions for PE2|K1,K2

in Eq. (B9) and PE1|K1,K2
in

Eq. (B10). We will proceed using formal asymptotic anal-
ysis, without attempting to be fully rigorous. To this end,
note from Eq. (B6) that when m is large, PE2|E1

(ǫ2|ǫ1)
has support only on ǫ1, ǫ2 ≥ m ≫ 1 and varies on a scale
m ≫ 1, and, from Eq. (D1), PK|E varies on a length scale

&
√
m ≫ 1. This suggests that we can approximate the

sum with unit step by an integral:

N−1
∑

ǫ2=m̂2

PK2|E2
(k2|ǫ2)PE2|E1

(ǫ2|ǫ1)

∼
∫ ∞

m̂2

PK2|E2
(k2|ǫ2)PE2|E1

(ǫ2|ǫ1) dǫ2

∼
∫ ∞

m̂2

φ(k2; ǫ2/2, ǫ2/4)PE2|E1
(ǫ2|ǫ1) dǫ2

∼
∫ ∞

m̂2/m

φ(k2;mǫ̃2/2,mǫ̃2/4)PẼ2|Ẽ1
(ǫ̃2|ǫ1/m) dǫ̃2

(D4)
where PẼ2|Ẽ1

(ǫ̃2|ǫ̃1) = mPE2|E1
(mǫ̃2|mǫ̃1) is a rescaled

probability distribution. From Eq. (B6) we see that the
function PẼ2|Ẽ1

becomes independent of m for large m.

To Eq. (D4), we now apply Lemma 1 from Appendix E:

N−1
∑

ǫ2=m̂2

PK2|E2
(k2|ǫ2)PE2|E1

(ǫ2|ǫ1)

∼
{

TST(1/m) if k2−m̂2/2√
m̂2

≪ −1,
2
mPẼ2|Ẽ1

(2k2/m|ǫ1/m) if k2−m̂2/2√
m̂2

≫ 1.

∼
{

TST(1/m) if k2−m̂2/2√
m̂2

≪ −1,

2PE2|E1
(2k2|ǫ1) if k2−m̂2/2√

m̂2
≫ 1.

Recalling that m̂2 = max(m, k2), applying the Gaus-
sian approximation (D1) to the factor PK|E(k1|ǫ1) in
Eq. (B10), we deduce:

PE1|K1,K2
(ǫ1|k1, k2) ∼

{

TST(1/m) if k2−m/2√
m

≪ −1,
2PE2|E1

(2k2|ǫ1)φ(k1;ǫ1/2,ǫ1/4)PE(ǫ1)

PK2|K1
(k2|k1)PK1 (k1)

if k2−m/2√
m

≫ 1.
(D5)

Arguing similarly regarding the expression Eq. (B9), we can simplify it for large m to:

PE2|K1,K2
(ǫ2|k1, k2) ∼

{

TST(1/m) if k1−m/2√
m

≪ −1,
2PE2|E1

(ǫ2|2k1)φ(k2;ǫ2/2,ǫ2/4)PE(2k1)

PK2|K1
(k2|k1)PK1 (k1)

if k1−m/2√
m

≫ 1.
(D6)

Having used the large m asymptotics to remove the sum-
mations in these conditional probabilities, we turn next
to approximating the summations in the [·] brackets in
Eq. (C3).

The hypergeometric functions appearing here can also
be approximated for large m using the following asymp-
totic result [77]:

H(k;n, r, s) ∼ φ(k; rs/n, rs(n − r)(n− s)/n3)

for n ≫ 1; r/n, s/n, k/n ∼ ord (1).
(D7)

This distinguished asymptotic limit is applicable to all

hypergeometric functions appearing in Eq. (C3), with m
playing the role of large parameter, because the prob-
ability distribution for the edges is concentrated about
ǫ1, ǫ2 ∼ ord (m), and from Eqs. (D5) and (D6), the con-
tributions from k1, k2 6∼ ord (m) are transcendentally
small. (To be more rigorous, we might concern ourselves
with situations where these parameters are in fact much
larger than m, but given the decay of the edge distri-
bution PE(ǫ) and the fact that in our simulations the
network size N is not orders of magnitude larger than
m make it plausible that we can neglect the contribution
from this regime, at least to leading order.) Also, if g1 or
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g2 are much smaller or larger than m, the true hypergeo-
metric distribution as well as the approximation (D7) will
both give transcendentally small weight so we will simply
extend the approximation (D7) to those regimes with no

loss to leading order accuracy. Applying these observa-
tions to the first [·] bracket in Eq. (C3), approximating
the sum by an integral for similar reasons as above, and
rescaling the integration variable ǫ̃1 = ǫ1/m, we obtain:

N−1
∑

ǫ1=m̂1

H(g1; ǫ1 − 1,m− 1, k1 − 1)PE1|K1,K2
(ǫ1|k1, k2)

∼







TST(1/m) if k2−m/2√
m

≪ −1,
∫∞
m̂1/m

2PE2|Ẽ1
(2k2|mǫ̃1)PẼ(ǫ̃1)φ(g1;k1/ǫ̃1,m(k1/m)(ǫ̃1−1)(ǫ̃1−k1/m)/ǫ̃31)φ(k1;mǫ̃1/2,mǫ̃1/4)

PK2|K1
(k2|k1)PK1 (k1)

dǫ̃1 if k2−m/2√
m

≫ 1.

Now we cannot apply Lemma 1 from Appendix E to
this integral because each of the Gaussians fails to have
logarithmically bounded derivative, and more fundamen-
tally, are sharply peaked functions (standard deviation

∼ ord (
√
m) much smaller than their mean ∼ ord (m).)

We therefore apply Lemma 2 from Appendix E, adapted
to this calculation, which yields:

N−1
∑

ǫ1=m̂1

H(g1; ǫ1 − 1,m− 1, k1 − 1)PE1|K1,K2
(ǫ1|k1, k2)

∼
{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,
4PE2|E1

(2k2|2k1)PE(2k1)

PK2|K1
(k2|k1)PK1 (k1)

φ
(

g1;
m
2 ,

m
4

)

if k1−m/2√
m

, k2−m/2√
m

≫ 1,

∼
{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,

φ
(

g1;
m
2 ,

m
4

)

if k1−m/2√
m

, k2−m/2√
m

≫ 1,

(D8)

The fraction was removed in the last expression through
the use of Eqs. (D2) and (D3).
A similar calculation shows

N−1
∑

ǫ2=m̂2

H(g2; ǫ2 − 1,m− 1, k2)PE2|K1,K2
(ǫ2|k1, k2)

∼
{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,

φ
(

g2;
m
2 ,

m
4

)

if k1−m/2√
m

, k2−m/2√
m

≫ 1,

(D9)

We next turn to the summation over g1 and g2
in Eq. (C3). Applying the asymptotic approximation
Eq. (D7) of the hypergeometric distribution H(l;m −
1, g1, g2) and the approximations (D8) and (D9) to the
other factors, and then approximating the sums over g1
and g2 by integrals, and then rescaling the integration
variables to be order unity, we have:

PL̃|K1,K2
(l|k1, k2)

∼
{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,
∫ 1

0

∫ 1

0 φ(l;mg̃1g̃2,mg̃1g̃2(1− g̃1)(1 − g̃2))φ
(

g̃1;
1
2 ,

1
4m

)

φ
(

g̃2;
1
2 ,

1
4m

)

dg̃1 dg̃2 if k1−m/2√
m

, k2−m/2√
m

≫ 1.

The integrals here essentially amount to computing the
unconditional distributions of random variables L̃, which

is Gaussian when conditioned on two independent Gaus-
sian random variables G1 and G2. This can be eval-
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uated asymptotically for large m using Lemma 3 from
Appendix E separately for each integral to obtain:

PL̃|K1,K2
(l|k1, k2)

∼
{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,

φ
(

l; m4 ,
3m
16

)

if k1−m/2√
m

, k2−m/2√
m

≫ 1.

(D10)
Admittedly, this is such a simple result that it seems like
a more direct argument should have sufficed to achieve
it. We have however not been able to find a more elegant
derivation. The Gaussian structure could presumably be
argued informally through central limit theorem ideas,
and its mean is easy to see. But the value of the variance
is important, and we have found no more efficient method
to compute its value correctly than chasing through the
above sequence of calculations. In essence, one could say
the above efforts have amounted to more or less comput-
ing the large m asymptotics for the conditional variance
of L̃ on K1 and K2 by averaging its variance conditioned
on the other random variables whose probability distri-
butions we have integrated out.
Anyway, the last step in the derivation of the lower

bound approximation to Pt(A2) is to approximate the
summation over l in Eq. (18), when the approxima-
tion (D10) for PL̃|K1,K2

is substituted in place of

PL|K1,K2
, and the summation approximated by an in-

tegral:

κ
∑

l=0

(

1− p1(t)− p2(t)
(

1− p1(t)
)2

)l

PL̃|K1,K2
(l|k1, k2)

∼
{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,
∫ κ

0 φ
(

l; m4 ,
3m
16

)

(ρ(t))l dl if k1−m/2√
m

, k2−m/2√
m

≫ 1,

where ρ(t) is defined in Eq. (21). Now we rescale the
integration variable and complete the square in the ex-
ponent:

∫ κ

0

φ

(

l;
m

4
,
3m

16

)

(ρ(t))l dl

=

∫ κ/m

0

φ

(

l̃;
1

4
,

3

16m

)

(ρ(t))(ml̃) dl̃

=
1

√

3π/(8m)

∫ κ/m

0

e
−
(

(l̃−1/4)2

3/(8m)

)

+ml̃ ln ρ(t)
dl̃

=
1

√

3π/(8m)

∫ κ/m

0

e−
8m
3 (l̃−1/4− 3

16 ln ρ(t))
2

× e
m
4 ln ρ(t)+ 3m

32 (ln ρ(t))2 dl̃.
(D11)

We will now use the observation that ρ(t) is generally
fairly close to 1 in our numerical examples, so that
ln ρ(t) is small. Then, since the upper integration limit
κ/m & 1/2 over the range of k1, k2 values for which the
integral approximation is appropriate, the integral in the
last expression in Eq. (D11) involves a Gaussian centered

near 1/4 with small O(1/m) variance, integrated over at
least the interval [0, 1/2]. This justifies replacing the inte-
gral over the finite domain by an integral over the whole
real line, yielding:

∫ κ

0

φ

(

l;
m

4
,
3m

16

)

(ρ(t))l dl

∼ exp

[

m

4
ln ρ(t) +

3m

32
(ln ρ(t))2

]

So we have argued that:

κ
∑

l=0

(

1− p1(t)− p2(t)
(

1− p1(t)
)2

)l

PL̃|K1,K2
(l|k1, k2)

∼
{

TST(1/m) if k1−m/2√
m

, k2−m/2√
m

≪ −1,

(ρ(t))m/4 exp
[

3m
32 (ln ρ(t))

2
]

if k1−m/2√
m

, k2−m/2√
m

≫ 1.

(D12)
Thus far, we have attempted to be precise and system-
atic, if not fully mathematically rigorous, in our asymp-
totic derivations. But continuing in the same vein beyond
this point becomes much more arduous so we will pro-
ceed the rest of the way without the same level of system-
atic argument, justifying our arguments post hoc through
agreement with numerical computations (Fig. 5).
First of all, ρ(t) (21) is independent of m, so the ex-

pression (D12) may appear to be transcendentally small
with respect to 1/m if ρ(t) < 1, and one may ask why
we don’t neglect this expression in the same way as we
have other transcendentally small terms. The reason is
that we can see from the definition of ρ(t) that it should
be close to unity if the spike size S is small enough, and
indeed in our numerical experiments, we find this to be
at least roughly true. Now, to be fully precise, we should
connect the closeness of ρ(t) to unity in terms of the small
parameter 1/m through certain restrictions on the neu-
ronal parameters, but we will not attempt this. Rather
we will simply take the expression (D12) as a proposed
approximation based on the above mostly systematic ar-
guments. We pause only to point out that if indeed we
were to assume 1−ρ(t) is really ord (1/m) in some formal
sense, then ln ρ(t) ∼ ord (1/m) and the expression (D12)
actually simplifies asymptotically (for N ≫ m ≫ 1) to
the approximation Eq. (24) where L is simply replaced

by the constant L = l̄ = EL̃ = m/4. This could ex-
plain the very good performance of this approximation
in Fig. 5. We note though the improved accuracy (em-
phasized in the inset figure) of the expression (25), which
we next show to follow from the more precise approxima-
tion (D12).
We proceed then, with these caveats, to take Eq. (D12)

as a proposed approximation based on our mostly sys-
tematic arguments from above. Now when we attempt
to substitute this approximation into Eq. (18), we en-
counter the fact that we must sum over all nonnegative
integer values of k1 and k2, and we only have asymp-
totics for limited parameter regimes. One expects though
that the sums will be concentrated at values of k1 and
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k2 for which the nontrivial approximation in Eq. (D12)
applies. Indeed the factors PK2|K1

(k2|k1)PK(k1) would,
according to Eqs. (D2) and (D3), seem to be primarly
concentrated on these values. The other factors in the
sum, which depend exponentially on k1 and k2 will skew
the weight somewhat to smaller values, but we will not
attempt a precise argument here. Rather, we will sim-
ply posit that we can simply replace the sum over l
in Eq. (18) for all k1 and k2 by the nontrivial expres-
sion in Eq. (D12) that was derived only for the regime

(k1 − m/2)/
√
m, (k2 − m/2)/

√
m ≫ 1. This is how we

obtain the simplified expression Eq. (25) for the upper
bound for Pt(A2) in the main text.

Appendix E: Asymptotic Results for Gaussian

Integrals

We collect in this appendix a couple of key results, and
their derivations, that are repeatedly applied in the large
m asymptotic simplifications in Appendix D.

Lemma 1 For smooth functions g with bounded logarithmic derivative d ln g
dy on the positive real axis and positive

constants c1 , c2, and c3 independent of λ (at least asymptotically),

∫ ∞

c3

φ(x;λc1y, λc2y)g(y) dy ∼
{

1
λc1

g(x/c1λ) if x−λc1c3√
λc2c3

≫ 1,

TST(1/λ) if x−λc1c3√
λc2c3

≪ −1 and x > 0,
for λ ≫ 1. (E1)

where TST(1/λ) denotes transcendentally small terms with respect to the small parameter 1/λ

Note we will want to apply this lemma to a case in which
g(y) diverges at y = 0 so we don’t want to replace the
right hand side simply by g(0). Intuitively, the lemma
says the integral is negligible when the core of the Gaus-
sian is outside the integration domain, but when it is
inside the integration domain, it is thin enough relative
to its mean that g can be approximated as constant over
this Gaussian core. The extra factor of 1/(λc1) arises
because of the need to express the Gaussian in terms of
the integration variable y rather than its more natural
argument x.

To be more precise, the validity of this lemma can be
established for the case x− λc1c3 ≪ −

√
λc2c3 by noting

that for all y′ in the integration domain, the Gaussian
factor is evaluated many standard deviations away from

its mean ( |x−λc1y
′|√

λc2y′ ≫ 1), giving a transcendentally small

contribution. To see why, note that the function

h(y′) =
|x− λc1y

′|√
λc2y′

=
λc1y

′ − x√
λc2y′

=

√

λc1c
−1
2 (y′1/2 − xy′−1/2)

has positive derivative for y′ > 0 and x > 0, and is
therefore minimized on the integration domain at y′ = c3,
and h(c3) = |x− λc1c3|/

√
λc2c3 ≫ 1 by hypothesis.

To treat the case (x − λc1c3)/
√
λc2c3 ≫ 1, we first

note that this hypothesis implies the Gaussian in the in-
tegrand is many standard deviations away from the lower
limit. Together with the boundedness of the logarithmic
derivative of g, this implies that the integral will be domi-
nated by the core of the Gaussian factor (again with tran-
scendentally small error). We therefore make a nonlinear

change of variable to bring the Gaussian into focus:

η(x, y) =
c1λy − x√

c2λy
. (E2)

The slight complication here is that the variance of the
Gaussian in Eq. (E1) is set by the integration variable y
rather than the external parameter x, so the change of
variable η(x, y) is nonlinear in the integration variable.
Proceeding, we have:

∫ ∞

c3

φ(x;λc1y, λc2y)g(y) dy

=
1√

2πc2λ

∫ ∞

η(x,c3)

e−η2/2 g(y(η, x))
√

y(η, x)

∣

∣

∣

∣

∂y(η, x)

∂η

∣

∣

∣

∣

dη,

where y(η, x) is the inverse function obtained by solving
Eq. (E2) for y. This can be done with the quadratic
formula, but we can take a more direct approach to its
asymptotic approximation by rewriting Eq. (E2) as:

y =
x

c1λ
+

√
c2yη

c1
√
λ
.

As noted above, only order unity values of η are relevant,
and by hypothesis x is at least ord (λ) in magnitude. The
only self-consistent dominant balance in this relationship
is therefore y ∼ x

c1λ
, from which iteration shows:

y =
x

c1λ
+

√
c2xη

c
3/2
1 λ

+O(λ−1). (E3)

Since g(y)/y has bounded logarithmic derivative, it can
be well approximated by the leading term in this iterated
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asymptotic expansion, and we have:

∫ ∞

c3

φ(x;λc1y, λc2y)g(y) dy

∼ 1√
2πc2λ

∫ ∞

η(x,c3)

e−η2/2 g(x/(c1λ))
√

x/(c1λ)

√
c2x

c
3/2
1 λ

dη.

The hypothesis (x − λc1c3)/
√
λc2c3 ≫ 1 implies

η(x, c3) ≪ −1, so we may replace the lower limit by −∞,

perform the Gaussian integral over η, leaving the result
in Eq. (E1).

Lemma 2 For smooth functions g, h with bounded logarithmic derivatives over positive values of their arguments,
and positive constants c1 , c2, and c3 independent of λ (at least asymptotically),

∫ ∞

c3

φ(x;λc1y, λc2y)φ(z; c4x/y, λh(x/λ, y))g(y) dy

∼
{

TST(1/λ) if x−λc1c3√
λc2c3

≪ −1 and x > 0,
1

c1λ
g(x/(c1λ))φ(z; c1c4λ, λh(

x
λ ,

x
c1λ

) + c1c2c
2
4λ

2x−1) if x−λc1c3√
λc2c3

≫ 1
for λ ≫ 1.

(E4)

We note that a naive application of Lemma 1 to the
expression Eq. (E4), i.e., simply evaluating the second
Gaussian factor at the peak value y = x/(λc1) of the
first Gaussian, yields an incorrect result. This is an in-
valid application of Lemma 1 because the logarithmic
derivative of the second factor is actually ord (λ), and

therefore surely not bounded as λ → ∞.
To establish this lemma, we first note that the integral

is transcendentally small for x − λc1c3 ≪ −√
λc2c3 for

the same reasons as in Lemma 1. For x−λc1c3√
λc2c3

≫ 1, we

make the same change of variable (E2) as in Lemma 1,
yielding now:

∫ ∞

c3

φ(x;λc1y, λc2y)φ(z; c4x/y), λh(x/λ, y))g(y) dy

=
1√

2πc2λ

∫ ∞

η(x,c3)

e−η2/2φ(z; c4x/y(η, x)), λh(x/λ, y(η, x)))
g(y(η, x))
√

y(η, x)

∣

∣

∣

∣

∂y(η, x)

∂η

∣

∣

∣

∣

dη.

Substituting now the asymptotic expansion (E3) for y(η, x), we obtain:
∫ ∞

c3

φ(x;λc1y, λc2y)φ(z; c4x/y), λh(x/λ, y))g(y) dy

∼ 1√
2πc2λ

∫ ∞

η(x,c3)

e−η2/2φ
(

z; c1c4λ
(

1− η
√

c2/(c1x) +O(x−1)
)

, λh(x/λ, (x/(c1λ))(1 +O(x−1/2))
)

× g(x/(c1λ)(1 +O(x−1/2)))
√

x/(c1λ)(1 +O(x−1/2))

√
c2x

c
3/2
1 λ

(1 +O(x−1/2)) dη.

Recalling that x & ord (λ) by assumption, dropping all terms that don’t contribute to leading order (which requires
some care in the Gaussian factor), and noting for the reasons as in Lemma 1 we can take the lower integration limit
to −∞, we find:

∫ ∞

c3

φ(x;λc1y, λc2y)φ(z; c4x/y), λh(x/λ, y))g(y) dy

∼ 1√
2πc1λ

∫ ∞

−∞
e−η2/2φ

(

z; c1c4λ
(

1− η
√

c2/(c1x)
)

, λh(x/λ, x/(c1λ))
)

g(x/(c1λ)) dη

=
1

c1λ
g(x/(c1λ))

∫ ∞

−∞
φ(η; 0, 1)φ

(

z; c1c4λ
(

1− η
√

c2/(c1x)
)

, λh(x/λ, x/(c1λ))
)

dη

This last integral can be evaluated tediously by combin-
ing the Gaussians and completing the square with respect

to the integration variable η in the exponential. Alter-
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natively and more simply, one can interpret the integral,
through the law of total probability for continuous ran-
dom variables [53], as giving the probability density of
a random variable Z, which is Gaussian with mean and
variance given by the arguments of the second Gaussian
factor, when conditioned on a standard Gaussian ran-
dom variable N . Because N only influences Z through
the conditional mean, the random variable Z can be seen
to be unconditionally Gaussian, with mean and variance
given in terms of those of the component random vari-
ables N and Z by the formulas for total mean and total
variance [53]. We thereby obtain directly the expression
in Eq. (E4).

Lemma 3 For a smooth function h with bounded loga-

rithmic derivatives over positive values of its argument
and positive constants c1 < c3 and c2 independent of λ
(at least asymptotically),

∫ c3

0

φ(y; c1, λ
−1c2)φ(z;λc4y, λh(y)) dy

∼ φ
(

z;λc4c1, λ(h(c1) + c2c
2
4)
)

. for λ ≫ 1.

The derivation is just an easier application of the tech-
niques used for the previous lemma, now using the sim-
pler change of variables:

ξ(y) =
√
λ(y − c1)/

√
c2, (E5)

leading to:

∫ c3

0

φ(y; c1, λ
−1c2)φ(z; c4λy, λh(y)) dy =

∫ λ1/2(c3−c1)/c2

−λ1/2c1/c2

φ(ξ; 0, 1)φ(z;λc4(c1 +
√

c2/λξ), λh(c1 +
√

c2/λξ)) dξ

∼
∫ ∞

−∞
φ(ξ; 0, 1)φ(z;λc4c1 + λ1/2c4c

1/2
2 ξ, λh(c1)) dξ

= φ
(

z;λc4c1, λ(h(c1) + c24c2)
)

.
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