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The average mean square displacement, 〈r2〉, of H atoms in a protein is frequently determined us-
ing incoherent neutron scattering experiments. 〈r2〉 is obtained from the observed elastic incoherent
dynamic structure factor, Si(Q,ω = 0), assuming the form Si(Q,ω = 0) = exp(− Q2〈 r2〉/3). This
is often referred to as the Gaussian approximation (GA) to Si(Q,ω = 0). 〈r2〉 obtained in this way
depends on the value of the wave vector, Q considered. Equivalently, the observed Si(Q,ω = 0) de-
viates from the GA. We investigate the origin of the Q dependence of 〈r2〉 by evaluating the scatter-
ing functions in different approximations using molecular dynamics (MD) simulation of the protein
lysozyme. We find that keeping only the Gaussian term in a cumulant expansion of S(Q,ω) is an
accurate approximation and is not the origin of the Q dependence of 〈r2〉. This is demonstrated by
showing that the term beyond the Gaussian is negligible and that the GA is valid for an individual
atom in the protein. Rather, the Q dependence (deviation from the GA) arises from the dynamical
heterogeneity of the H in the protein. Specifically it arises from representing, in the analysis of
data, this diverse dynamics by a single average scattering center that has a single, average 〈r2〉. The
observed Q dependence of 〈r2〉 can be used to provide information on the dynamical heterogeneity
in proteins.

I. INTRODUCTION

The averaged mean-square motional displacement
(MSD) of nuclei in proteins is extensively investigated
using neutron scattering methods [1–12]. An MSD, 〈r2〉,
can be expressed in terms of the elastic (ω = 0) compo-
nent of the incoherent dynamic structure factor (DSF),
Si(Q,ω = 0), where Q is the wave vector transfer in the
scattering. For simplicity and generality, the data are
typically analyzed using the approximate relation

Si(Q,ω = 0) = AIi(Q, t = ∞) ≃ A exp(−
1

3
Q2〈r2〉), (1)

where 〈r2〉 is an average MSD of the nuclei in the pro-
tein. A = Si(Q = 0, ω = 0) is a convenient normalizing
constant, the elastic DSF at Q = 0. Ii(Q, t = ∞) is the
infinite time limit of the incoherent intermediate scatter-
ing function,

Ii(Q, t) =
1

N

N∑
j=1

〈e−iQ·rj(t)eiQ·rj(0)〉 (2)

=
1

N

N∑
j=1

〈e−iQ·(rj(t)−rj(0))〉. (3)

The second expression for Ii(Q, t = ∞) holds in the clas-
sical limit. Since hydrogen (the proton) has a large in-
coherent scattering cross - section, 10 - 20 times that of
other nuclei in the protein, the sum over j in Eq. (2)
is well represented by a sum over the H in the protein.
Hence, the average MSD, 〈r2〉 is dominated by that of H
in the protein (and in its associated hydration water, if
any). Si(Q,ω = 0) = AIi(Q, t = ∞) is often denoted the
elastic incoherent structure factor (EISF).
Based on Eq. (1), the MSD 〈r2〉 can be obtained from

the observed Si(Q,ω = 0) as,

〈r2〉 = −3
d lnSi(Q,ω = 0)

dQ2
. (4)

Similarly, based on Eq. (1), lnSi(Q,ω = 0) vs. Q2 will
be a straight line. Using this approach, much progress
has been made in determining the increase of 〈r2〉 with
temperature. In a wide range of hydrated proteins, there
is a dynamical transition at a temperature TD ≃ 220 K
to a rapid increase of 〈r2〉 with temperature. The large
〈r2〉 values at higher temperature have been associated
with protein function.
A number of assumptions are made in Eq. (1). For ex-

ample, the use of Eq. (1) assumes that Si(Q,ω = 0) can
be measured. In practice, since neutron instruments have
a finite energy resolution width, W , Si(Q,ω) around
ω = 0 is always incorporated. As a result, a reduced
〈r2(τR)〉 that has had only a limited time τR ≃ ~/W
to develop is observed, rather than the fully-developed,
long time, intrinsic 〈r2〉. The time scales, τR over
which 〈r2(τR)〉 is observed have been extensively dis-
cussed [6, 9, 10, 13]. Methods have been developed to
extract the intrinsic 〈r2〉 from data taken at finite W and
from Ii(Q, t) calculated out to limited times only [14, 15].
These show, for example, that in lysozyme the intrinsic
〈r2〉 is roughly twice the 〈r2(τR)〉 obtained from Eq. (1)
at low Q for a resolution width W = 1 µeV (τR ≃ 1
ns). IN16 at Institut Laue-Langevin (ILL) and HFBS at
National Institute of Standards and Technology (NIST)
with W = 1 µeV are the instruments having the highest
energy resolution.
The MSD obtained using Eq. (1) often depends on the

value of Q at which the derivative in Eq. (4) is taken.
Equivalently, the observed lnSi(Q,ω = 0) vs. Q2 is
not a straight line. In short, the observed 〈r2〉 obtained
from Eq. (1) is Q dependent [1, 10, 16, 17]; Si(Q,ω =



2

0) deviates from the Gaussian approximation assumed
in Eq. (1). Fig. 1 (Top) shows the lnSi(Q,ω = 0) vs.
Q2 observed by Daniel et al. in glutamate dehydro-
genase [18]. The lines are a guide to the eye through
the observed Si(Q,ω = 0). Clearly, a straight line
lnSi(Q,ω = 0) vs. Q2, as would be required to ob-
tain a Q -independent 〈r2〉 from Eq. (1), is not observed.
The observed 〈r2〉 generally decreases with increasing
Q. Fig. 1 (Bottom) shows a Q -dependent 〈r2〉 obtained
by Calandrini et al. [19] from a molecular dynam-
ics (MD) simulation-derived Si(Q,ω = 0) in lysozyme
at ambient temperature. In Fig. 2 we show values of
〈r2〉 obtained by us [15] from fits of a model I(Q, t) that
contains I(Q, t → ∞) = exp[− 1

3Q
2〈r2〉] to an MD

simulation-derived Ii(Q, t) for lysozyme. The fitted val-
ues of 〈r2〉 clearly decrease with increasing Q as do ob-
served values, especially at high temperature.
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FIG. 1: (Color online) (Top): Elastic component (ω = 0) of
the dynamical structure factor, S(Q,ω), as a function of wave
vector Q of glutamate dehydrogenase observed by Daniel et
al. [18] (also reproduced in Becker et al. [20]). The solid lines
are a guide to the eye. (Bottom): An MSD obtained from
fitting to S(Q,ω) derived from MD simulation of lysozyme in
Calandrini et al., which shows a strong Q dependence [19]).
The solid circles and open squares represent the MSD for
p = 0.1 MPa and p = 300 MPa.

The dependence of 〈r2〉 on Q is unlikely to be physical.
Rather, it arises because Eq. (1) is an approximate ex-
pression. The goal of the present paper is to examine the
approximations in Eq. (1) and to determine the origin of

this Q dependence. Specifically, our goal is to assess the
validity of the approximations for the long-time, intrinsic
〈r2〉 rather than on the resolution dependent/time lim-
ited MSD 〈r2(τR)〉. In the following subsection we iden-

0.0 0.4 0.8 1.2 1.6
0.0

0.4

0.8

1.2

1.6

2.0
 300 K
 250 K
 200 K
 150 K
 100 K

<r
2 > 

(Å
2 )

Q (Å)

FIG. 2: (Color online) An intrinsic, long-time MSD in
lysozyme which shows a strong Q dependence at 300 K. The
MSD is obtained [15] by fitting a model intermediate scatter-
ing function I(Q, t) to a calculated, Ii(Q, t), obtained from a
1 µs MD simulation

tify the approximations and highlight some assessments
of them.

1. Approximations and their validity

Beginning from Eq. (2), the first approximation (I)
made to obtain Eq. (1) is a cumulant expansion of the in-
dividual terms (j) in Ii(Q, t) and Ii(Q, t = ∞) and reten-
tion of only the lowest-order, Gaussian term. With this
approximation, the classical limit of Ii(Q, t) in Eq. (2)
reduces to IiG(Q, t) given by,

IiG(Q, t) =
1

N

N∑
j=1

exp(−
1

2
〈[Q · (rj(t)− rj(0))]

2〉)(5)

≃
1

N

N∑
j=1

exp(−
1

6
Q2∆2

j(t)), (6)

where ∆2
j(t) = 〈(rj(t)− rj(0))

2〉. In the second approxi-
mation (II), we assume that the motional distribution of
the individual H has cubic or spherical symmetry so that
〈[Q ·(rj(t)−rj(0))]

2〉 = Q2∆2
j(t)/3. With approximation

II, Eq. (5) reduces to Eq. (6). In the limit t → ∞, which
is assumed in Eq. (1), ∆2

j(t) is,

∆2
j(t = ∞) = 〈r2j (∞)〉 + 〈r2j (0)〉 = 2〈r2j 〉. (7)

At t → ∞, IiG(Q, t) in Eq. (6) is,

IiG(Q, t = ∞) =
1

N

N∑
j=1

exp(−
1

3
Q2〈r2j 〉). (8)
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The third approximation (III) is to neglect the mo-
tional heterogeneity of H in the protein and assume
that the 〈r2j 〉 of all H is the same, 〈r2j 〉 = 〈r2〉. With
this approximation IiG(Q, t = ∞) in Eq. (8) reduces to
Ii(Q, t = ∞) in Eq. (1). However, even though each
individual term in Eq. (8) is Gaussian the sum is not
Gaussian if the 〈r2j 〉 are not the same. With these three
approximations and in the limit t → ∞ we arrive at
Eq. (1).
It is also useful to introduce an MSD that can be cal-

culated directly from a MD simulation,

∆2(t) =
1

N

N∑
j=1

∆2
j (t) =

1

N

N∑
j=1

〈[rj(t)− rj(0)]
2〉. (9)

In the limit t → ∞,

∆2(t = ∞) =
2

N

N∑
j=1

〈r2j 〉 = 2〈r2〉MD. (10)

We note that the MSD 〈r2〉MD in Eq. (10) is not the
same as an average 〈r2〉 calculated from Eq. (1) since the
〈r2〉 in Eq. (1) arises from an average over exponentials
as in Eq. (8).
To investigate the accuracy of retaining only the Gaus-

sian term in the cumulant expansion, Hayward and Smith
[21] calculated the full Ii(Q, t) for individual H (in-
dividual terms j in Eq. (2)) in an MD simulation of
dry bovine pancreatic trypsin inhibitor. The Ii(Q, t) at
long time was evaluated. If only the Gaussian cumu-
lant in Ii(Q, t) is significant (i.e. Eq. (5) is valid), then
lnIi(Q, t) vs. Q2 should be a straight line. They found
that for many individual H a straight line fitted well, for
a significant number of H there was a modest deviation
and for a handful of H having a large 〈r2j 〉 there was a sig-
nificant deviation. They concluded that keeping only the
Gaussian cumulant was accurate at low Q. They inves-
tigated the dynamical heterogeneity (DH) by calculating
an average ∆2(t) from the slope of IiG(Q, t) in Eq. (6)
vs. Q2 and an average ∆2(t) from Eq. (9). If there is
no DH then the two ∆2(t) will be the same. They found
that the average ∆2(t) calculated from Eq. (9) was 70 %
larger than that obtained from Eq. (6) if the slope was
averaged over a range 0 < Q < 4 Å−1. DH was clearly
significant.
DH can also be described within equilibrium statisti-

cal mechanics using an H in a rugged potential landscape
V (r) representing the different environments seen by H.
In this way DH was illustrated by Bicout [22] and Bicout
and Zaccai [23] using a model of H in two different sites
(cages). An equation similar to Eq. (8) above was used
with j = 1,2. The temperature dependence was particu-
larly developed.
Similarly, to model DH, Daniel et al. [3] and Becker

and Smith [20] expressed the Ii(Q, t) in Eq. (2) at long
times in terms of an average 〈r2〉 as in Eq. (1) and a
standard deviation, σ, of 〈r2j 〉 from the average. They
found that they could fit the curved lnSi(Q,ω = 0) vs.

Q2 well with this expression as shown in Fig. 1 (Top)
where the curvature arises from the finite σ. Similarly,
Yi et al. [24] determined σ for cytochrome P450cam from
fits to experimental data.

Tokuhisa et al. [25] evaluated (1) two higher-order
terms (fourth and sixth order) beyond the Gaussian in
a cumulant expansion of Ii(Q, t) for individual atoms,
(2) the degree of anisotropy in the motion of individ-
ual atoms and (3) the degree of dynamical heterogeneity
among the atoms in the sum over j in Eq. (6), all from an
MD simulation of staphylococal nuclase (SNase). They
found that the two higher-order cumulants are negligible,
and that the motional distribution of 90 % of the atoms
is isotropic but again that DH is significant. They con-
cluded that the deviation of Si(Q,ω = 0) from a Gaus-
sian can be used to assess the nature and degree of DH
in SNase. In a more recent study Kneller and Chevrot
[26] found that the motional anisotropy of individual H
in lysozyme to be non-negligible.
In treating DH Meinhold et al. [27] and Kneller and

Hinsen [28] have replaced the sum over j in Eq. (8) by
an integral over a continuous distribution, ρ(〈r2〉), of
〈r2〉 values. Meinhold et al. employed a Weibull dis-
tribution that has two parameters. They fitted ρ(〈r2〉)
to MD-derived values of 〈r2j 〉 at long time, calculated

lnIiG(Q, t) vs. Q2, and found a good fit to the observed
Si(Q,ω = 0) vs. Q2 except at Q > 3 Å−1. Kneller and
Hinsen used a Gamma distribution for ρ(〈r2〉), to calcu-
late IiG(Q, t) at t → ∞ (Si(Q,ω = 0)) from the equiva-
lent of Eq. (8). They found a good fit to an Ii(Q, t) at
long time calculated from a MD simulation of lysozyme.
In Appendix C, we note that Ii(Q, t) a along time t (e.g.
t = 1 − 10 ns) generally does not represent Ii(Q, t = ∞)
in the EISF S1(Q,ω = 0) = AIi(Q, t = ∞) well.

In further work, Peters and Kneller [29] fitted the
Gamma distribution model of Si(Q,ω = 0), to Si(Q,ω =
0) of human acetylcholinesterase (hSChE) observed on
3 neutron spectrometers at the Institut Laue-Langevin,
IN6 (W = 50 µeV), IN13 (W = 8 µeV) and IN16 (W =
0.9 µeV). They were able to obtain good fits to the data
for which a Gaussian with a single 〈r2〉, as in Eq. (1),
failed. Also the average MSD, 〈r2〉, when DH is incorpo-
rated showed a sharper and more clearly defined increase
with T at the dynamical transition (DT). This means
the DH widened above the DT. The average MSD was
approximately 30-40 % larger at high temperature than
that obtained using a fit with a single “average” 〈r2〉. All
the 〈r2〉 quoted are “resolution broadened” values.

Finally, we remark that there could be a genuine de-
pendence of 〈r2〉 on Q. That is, a specific Q value implies
that length scales up to l = 2π/Q only can be sampled.
If the motional displacement 〈r2〉1/2 is longer than l, the
observed 〈r2〉1/2 could limited to l and therefore limited
by Q. For example, at Q = 2 Å−1, 〈r2〉 observed would
be limited to lengths of order 〈r2〉 < π2 Å2. However,
from this argument we expect only very large MSD would
be limited by using a Q of, say 2, Å−1.

In the following sections we investigate the impact of
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making the Gaussian approximation, of neglecting dy-
namical heterogeneity and of possible limits to 〈r2〉 at
specific Q values. We investigate these approximations
to Ii(Q, t) itself and in fits to Ii(Q, t).

II. SIMULATION AND SCATTERING

FUNCTIONS

A. Molecular dynamics simulation of lysozyme

Two lysozyme molecules (1AKI [30]) were arbitrarily
oriented and placed in a simulation box of dimensions 6.5
nm × 3.4 nm × 3.6 nm. The lysozyme molecules were
surrounded by 636 water molecules, corresponding to a
hydration level h = 0.4 g water/g protein. The box was
replicated using periodic boundary conditions to mimic
the environment of an experimental powder sample. The
system was simulated using GROMACS 4.5.1 [31]. The
OPLS-AA force field [32] was used for the protein and
TIP4P [33] for the water. The van der Waals interactions
were truncated at 1.4 nm, and the electrostatic interac-
tions represented using the Particle Mesh Ewald method
[34] with a real-space cutoff of 0.9 nm. All bonds in-
cluding hydrogen bonds were constrained with a linear
constraints solver algorithm (LINCS) [35]. The energy
of the system was first minimized using 50000 steepest
descent steps. The system was then equilibrated in the
NVT (mole-volume-temperature) ensemble at each tem-
perature investigated for 10 ns and in the NPT (mole-
pressure-temperature) ensemble at 1 bar for 10 ns. The
Nose-Hoover algorithm [36] with a coupling time τ = 1
ps and the Parrinello-Rahman algorithm [37] with a cou-
pling time τ = 3 ps were used for the temperature cou-
pling and pressure coupling, respectively.
Simulations of 100 ns length were performed at 300 K.

The data were collected every 10 ps.

B. Scattering functions and MSD

The full incoherent intermediate scattering function,
Ii(Q, t) is given by Eq. (2). We evaluated Ii(Q, t) arising
from all the H in lysozyme including those that can ex-
change with H in the hydration water. The trajectories
rj(t) of the H were taken from the simulation described
above. The ensemble average in Eq. (2) is an average
over typically 100 time slices of the 100 ns simulation.
In programs such as GROMACS and SASSENA, the

Ii(Q, t) is averaged over many directions in the protein to
obtain an Ii(Q, t) that is a function of the absolute value
of Q only. We found that the Ii(Q, t) averaged over many
directions in these programs could be accurately repre-
sented by an average of Q over just three perpendicular
directions, as discussed in Appendix B. Hence, in what
follows, we used Ii(Q, t) averaged over these three direc-
tions only.

Ii(Q, t) in the Gaussian approximation, IiG(Q, t), de-
fined in Eq. (5), was also calculated from the same sim-
ulation and averaged over three perpendicular directions
(exactly as was Ii(Q, t)) to obtain a Gaussian approxima-
tion IiG(Q, t)(see Appendix B). In this way, Ii(Q, t) and
IiG(Q, t) can be compared directly.
To analyse the simulation-derived data we fit a model

of a single scatterer intermediate scattering function,

I(Q, t) = 〈exp(−iQ.r(t)) exp(iQ.r(0))〉. (11)

to the full Ii(Q, t) and to individual terms j in Ii(Q, t).
The model is [14, 15],

I(Q, t) = I∞(Q) + (1− I∞(Q))C(Q, t), (12)

where

I∞ = I(Q, t = ∞) = exp(−
1

3
Q2〈 r2〉). (13)

is the infinite time limit of I(Q, t) that defines an infi-
nite time, intrinsic MSD, 〈r2〉. In the previous work we
used this model to obtain intrinsic long-time MSDs from
experiment and simulations [14, 15].
The model is essentially a separation of I(Q, t) into a

time independent part, I∞ and a time dependent part,
I ′(Q, t) = (1 − I∞)C(Q, t), where C(Q, t) has the limits
C(Q, t = 0) = 1, C(Q, t → ∞) = 0. C(Q, t) is repre-
sented by a stretched exponential function,

C(Q, t) = exp(−(λt)β), (14)

where λ and β are constants. C(Q, t) represents the de-
cay of correlations in the protein and has the desired
limits.
The time independent part is the t → ∞ limit of

I(Q, t),

I(Q, t = ∞) (15)

= 〈exp(−iQ · r(∞))〉〈exp(iQ · r(0))〉

= 〈exp(−iQ · r)〉〈exp(iQ · r)〉

= 〈exp[−〈[Q · r]2〉+
1

12
(〈[Q · r]4〉 − 3〈[Q · r]2〉2) + · · · ].

To obtain the last line of Eq. (15) we have assumed (1)
that r(∞) and r(0) are statistically independent, and (2)
that 〈r(∞)〉 = 〈r(0)〉 = 〈r〉 is independent of time and (3)
made a cumulant expansion [14] of 〈exp(±iQ · r)〉. The
expression I∞= exp[− 1

3Q
2〈r2〉] is obtained by neglecting

all the higher-order cumulants in Eq. (15) beyond the
second order, Gaussian cumulant and assuming cubic or
spherical symmetry so that 〈[Q · r]2〉 = 1

3Q
2〈r2〉.

The model was fitted to calculated Ii(Q, t) and
IiG(Q, t) with 〈r2〉, λ and β treated as free fitting pa-
rameters to be determined. In this way we obtain an
intrinsic MSD, 〈r2〉, from fits to simulations of Ii(Q, t) in
much the same way that 〈r2〉 is determined from experi-
mental data.
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III. RESULTS

A. Higher cumulants and the Gaussian

approximation

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

Q=1.6Å-1

Q=1.6Å-1

Q=0.8Å-1

Q=0.4Å-1

Q=2Å-1

 Gaussian I iG(Q,t)
 Full I i(Q,t)

I(Q
,t)

time (ns)

All H 

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Q=2 Å-1

Q=1.6 Å-1

Q=1.2 Å-1

Q=0.8 Å-1

 

 

(I i-I iG
)/I

i x
 1

02

time (ns)

All H

FIG. 3: (Color online) (Top): Comparison of the full inter-
mediate scattering function (ISF), Ii(Q, t), containing all cu-
mulants (red solid lines) and the Gaussian limit, IiG(Q, t),
containing only the second order cumulant (blue solid lines)
calculated for all H in lysozyme at 300 K for 0 < t < 1 ns
obtained from a 100 ns MD simulation. From top to bot-
tom the Q values are 0.4, 0.8, 1.2, 1.6 and 2 Å−1. (Bottom)
The percentage difference between Ii(Q, t) and IiG(Q, t) for
Q values 2 to 0.4 Å−1.

In this section, we assess the importance of higher cu-
mulants in the DSF. To do this, we firstly compare the
full ISF, Ii(Q, t), given by Eq. (3), which contains all the
cumulants, with that obtained making the Gaussian ap-
proximation for each individual atom and summing the
Gaussians (Eq. (6)). We may view this as comparing the
full and Gaussian ISF for each individual H in the pro-
tein and summing over all H, j = 1 to N . Fig. 3(top)
shows the full Ii(Q, t) and the Gaussian IiG(Q, t) arising
from all H in lysozyme at 300 K. At low Q, as expected,

the difference between the two is negligible. However, at
Q = 2 Å−1, an observable difference develops with time
and amounts to 8% after 1 ns (Fig. 3(bottom)).
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FIG. 4: (Color online) The MSD, 〈r2〉, (Top (a)) and the
relaxation parameter, λ, (Bottom (b)) obtained from fits of
the model I(Q, t) given by Eq. (12) to the calculated full
Ii(Q, t) (red solid squares) and to the Gaussian approximation
IiG(Q, t) given by Eq. (6) (blue solid circles). The MSD ob-
tained from a fit to the Gaussian approximation IiG(Q, t) re-
mains Q dependent and similar to that obtained from a fit to
the full Ii(Q, t).

To test the impact of this difference, we fit the model
function I(Q, t) given by Eq. (3) to both Ii(Q, t) and
IiG(Q, t). The aim is to determine the intrinsic MSD,
〈r2〉, and decay parameters λ and β in the stretched ex-
ponential and see how much they are affected by omit-
ting the higher-order cumulants. The 〈r2〉 and λ obtained
from the fits are shown in Fig. 4. A detailed discussion of
the fits can be found in Ref. [15]. Error bars for 〈r2〉 and
λ are shown in Fig. 4 for some Q values, e.g. Q = 0.2
and 2.0 Å−1 for 〈r2〉 and Q = 1.6 and 2.0 Å−1 for λ.
These error bars were obtained directly from a fit pro-
gram and as such are not always precise. The smooth
variation of both 〈r2〉 and λ with Q in Fig. 4 suggests
an error bar comparable to the size of the points. The
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FIG. 5: (Color online) The kurtosis γα of the 4th cumulant defined in Eq. (19) along x (red open circles), y (black open squares)
and z (blue open triangle) for a single H in lysozyme at 300 K using r(t) calculated in a 100 ns MD simulation. In ILE55 and
in ARG68, the single H is bonded to Cβ and in THR40 and in VAL109 the single H is in CγH3 bonded to Cβ.

best fit β was found to be largely independent of Q, at
β ≃ 0.24. Hence, for consistency, β was held fixed at
β = 0.24 in both cases. The decay parameter, λ, obtained
is not exactly proportional to Q2. A Q2 dependence is
expected for purely diffusive motions, e.g, the ISF for
translational diffusion is given by I(Q, t) = exp(−λt)
with λ = τ−1 ∝ DQ2 where D is diffusion constant [38].
The best fit values of the intrinsic 〈r2〉 are clearly similar
for both Ii(Q, t) and IiG(Q, t) which shows that making
the Gaussian approximation has only a small impact on
the MSD extracted (Fig. 4). The 〈r2〉 remains Q depen-
dent in both cases (Fig. 4(top)). In particular, if we fit
a model I(Q, t) in which the Gaussian approximation is
made to an IiG(Q, t) in which the Gaussian approxima-
tion is also made, we still obtain a Q dependent MSD.

A second test can be made: we can explicitly calculate
the magnitude of the higher cumulants for the individual
H in the full Ii(Q, t) in Eq. (2) and determine whether
they are significant compared to the second order, Gaus-
sian term. The next cumulant beyond the Gaussian is
that of fourth-order. Retaining the fourth cumulant (see

Appendix A), the ISF at (t → ∞) is,

Ii(Q, t = ∞) =
1

N

N∑
j=1

exp(−
1

3
Q2〈r2〉j [1− ajQ

2]) (16)

where aj represents the magnitude of the 4th cumulant
of atom j. From Appendix A we see that for a specific
H a = 1

36 〈r
2〉γα where 〈r2〉 is the MSD and γα is the

kurtosis of the distribution projected along axis α of the
specific H. The fourth cumulant is negligible if aQ2 <<
1. We evaluated the MSD and kurtosis of many H atoms
in lysozyme at 300 K.
Fig. 5 shows γα for four of these H. H in ILE55 and

ARG68 refer to H bonded to Cβ , and H in THR40 and
VAL109 refer to H in CγH3 in these residues. In For
H in ILE55, γα is small (γα < 0.1). Indeed, most H in
lysozyme have a small γα, comparable to that in ILE55.
In contrast, the γα for H in VAL 109 is exceptionally
large. Generally, the larger the MSD the larger is γα (see
Fig. 9 for a histogram of the MSDs). For the H in ILE55,
taking γα = ≃ 0.1 and 〈r2〉 = 0.4 Å2 (see Fig. 7), we have
at Q = 2 Å−1, aQ2 ≃ 0.005. In comparison, for the H

atoms in THR40, ARG68 and VAL109 aQ2 is 0.01, 0.07
and 0.50, respectively. We found that, of the 1918 H in
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lysozyme, only for LYS116 and VAL109 is aQ2 significant
compared to the Gaussian term (aQ2 & 0.1). As a result,
when summed over all the H in lysozyme, the fourth-
order cumulant is negligible. The kurtosis and all higher
cumulants are exactly zero if the motional distribution
of the H is Gaussian. In summary, then, from a direct
calculation, we find the fourth cumulant can practically
be neglected.

B. Dynamical heterogeneity

To test the impact of dynamical heterogeneity we cal-
culate Ii(Q, t) for individual H in the lysozyme. Fig. 6
shows Ii(Q, t) and IiG(Q, t) for a single specific H in
ILE55 in lysozyme at 300 K. The Ii(Q, t) for this sin-
gle H has a similar shape to that for averaged over all
H in lysozyme (Fig. 3(top)) but reaches a plateau in a
shorter time. We investigated many single H. For each
of these, Ii(Q, t) and IiG(Q, t) are very similar if 〈r2〉 of
the H is small (as for ILE55) but there is some difference
between them when the 〈r2〉 is larger (e.g. 〈r2〉 & 2.0
Å2).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
H in ILE55

 Full I i(Q,t)
 Gaussian I iG(Q,t)

 

 

I(Q
,t)

time (ns)

FIG. 6: (Color online) The Ii(Q, t) (red solid lines) and
IiG(Q, t) (blue solid lines) as in Fig. 3 calculated for a sin-
gle H in lysozyme at 300 K, denoted H in ILE55, versus t
obtained from a 100 ns MD simulation . The Q values are 1
to 4 Å−1, top to bottom.

Fig. 7 shows the 〈r2〉 and λ obtained by fitting the
model I(Q, t) to the calculated Ii(Q, t) for the single H in
ILE55. The 〈r2〉 is quite independent of Q. The value of λ
obtained from fits to Ii(Q, t) and IiG(Q, t) are somewhat
different but β is small in each case. A small β means that
the motional decay (C(Q, t)) has a long tail extending out
to long times.
Fig. 8 shows 〈r2〉 of several individual H obtained from

fits to Ii(Q, t). Again, as shown in the top frame of Fig. 8,
the fitted 〈r2〉 are quite independent of Q if the 〈r2〉 is
small, 〈r2〉 . 2 Å2. This is the case for the vast majority

of the H in lysozyme. In contrast, for the few individual
H that have very large 〈r2〉, 〈r2〉 & 3 Å2, the 〈r2〉 is found
to be Q dependent, as shown in the bottom frame of
Fig. 8. However, there are so few H that have large MSD,
〈r2〉 & 3 Å2, that these exceptional H atoms contribute
little to the Ii(Q, t) summed over all H (some 1918 H ).
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FIG. 7: (Color online) The MSD, 〈r2〉, (Top (a)) and the re-
laxation parameter, λ, (Bottom (b)) obtained from fits of the
model I(Q, t) given by Eq. (12) to the calculated Ii(Q, t) (red
solid squares) and Gaussian approximation IiG(Q, t) (blue
solid circles) for a single H in lysozyme at 300 K, (the same
single H as shown in Fig. 6, i.e. a H in ILE55). The MSD,
〈r2〉, obtained is independent of Q in both cases.

In Fig. 9 (Top) we show 〈r2〉 for two individual H (in
CβH3 in ALA122 and in CγH3 in THR40) for which
both 〈r2〉 and the kurtosis are large. For these two
H there is a small but significant difference between
〈r2〉 obtained from Ii(Q, t) and IiG(Q, t). The results
of the section above suggest that this difference arises
from the higher cumulants in Ii(Q, t) that are neglected
in IiG(Q, t). However, the difference is small and the
〈r2〉 are approximately independent ofQ, confirming that
the large observed Q dependence does not arise from ne-
glecting higher cumulants.

Fig. 9 (Bottom) shows a histogram of the MSD
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FIG. 8: (Color online) The MSD, 〈r2〉, obtained from fits
of the model I(Q, t) to simulations of Ii(Q, t) for a single
H in lysozyme (no dynamical heterogeneity). (Top): The
MSD of H in ALA122 (solid circles), of H in THR40 (solid
diamonds) and H in ILE55 (open stars) which are of moderate
size and independent of Q. (Bottom): The MSD of two single
H that have large and Q dependent MSDs, H in LYS116
(solid squares) and H in VAL109 (solid triangles).

∆2
j(t) defined in Eq. (7) calculated from the 100 ns sim-

ulation at time t = 1 ns. The ∆2
j (t)/2 at t = 1 ns are

lower but approximately equal to 〈r2j 〉. For example, for

H in THR40 and in ALA122 the ∆2
j(t)/2 lie 1% and 5%

below 〈r2j 〉, respectively. From the histogram we see that
the H in ILE55 lies in the main peak of the distribu-
tion, i.e., H that have MSDs 〈r2j 〉 ≃ 0.5 Å2. The H in
ALA122 and THR40 belong to a smaller group of H that
have MSDs in the range 〈r2j 〉 ≈ 1.5 Å2. In contrast the
H in VAL109 belongs to a very small group that has ex-
ceptionally large MSDs, 〈r2j 〉 ≃ 2.5 − 3.5 Å2. In Fig. 9
(Bottom), the H in ILE55 which lies in the main peak is
embedded in lysozyme, whereas the H in ALA122 which
lies in the second peak at 1.3 Å2 is located on the surface
of lysozyme. We also observed a small peak in the dis-
tribution function at 2.7 Å2, and H in VAL109 lying in
this peak has a large MSD and is located on the surface
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FIG. 9: (Color online) (Top): The 〈r2〉 obtained from the
fit of the model I(Q, t) to the Full Ii(Q, t) (solid squares)
and the Gaussian approximation IiG(Q, t) (solid circles) for
individualH in ALA122 and THR40 that have large MSD and
kurtosis. There is some difference in the MSD obtained from
Ii(Q, t) and IiG(Q, t) but the difference is small. (Bottom):
The distribution of the MSD of individual H in lysozyme at
300 K calculated using ∆2

j (t)/2 = 〈(rj(t)− rj(0))
2〉/2 at time

t = 1 ns from a 100 ns MD simulation.

.

of the mouth part of lysozyme.
From these results, we may conclude that the Q de-

pendence of 〈r2〉 obtained by fitting the model I(Q, t) to
Ii(Q, t) for all H in lysozyme (e.g. Fig. 4) arises from
the dynamical heterogeneity of the H in Ii(Q, t), a di-
versity that is not contained in the model I(Q, t). When
the same model is fitted to Ii(Q, t) of a single H, a Q
independent 〈r2〉 is obtained (e.g. Figs. 7 and 9).

IV. DISCUSSION

A. Cumulant Expansion

In the previous section we assessed the accuracy of
keeping only the lowest order (second order), Gaussian
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term in a cumulant expansion of the incoherent DSF of a
globular protein. We found it to be an accurate approxi-
mation up to Q = 2− 3 Å−1. We tested the accuracy in
two ways. Firstly, we compared the full incoherent ISF,
Ii(Q, t), given by Eq. (2), which contains all the cumu-
lants, with the ISF, IiG(Q, t), given by Eq. (6) which con-
tains only the lowest order, Gaussian cumulant. There is
a small difference between the two which increases with
increasing time (see Fig. 3). At 300 K and Q = 2 Å−1 the
difference reached 8 % after t= 1 ns, the longest time con-
sidered. The difference between the MSD, 〈r2〉, obtained
by fitting to Ii(Q, t) and to IiG(Q, t) was not significant
(see Fig. 4). Both the associated 〈r2〉 depend markedly
on Q. This shows that omitting all higher cumulants
does not change the Q dependence of 〈r2〉 and that the
higher cumulants are not responsible for the deviation of
〈r2〉 in Eq. (4) from a constant.

Secondly, for the individual H(j), we evaluated the
leading cumulant beyond the Gaussian (fourth-order) in
the cumulant expansion of the EISF = Ii(Q, t = ∞). The
fourth-order cumulant for individual H was found to be
quite negligible except for a few of the 1918 H atoms in
lysozyme. Consequently, when summed over all H at Q
= 2 Å−1, the fourth cumulant is negligible compared to
the Gaussian term.

As noted in the Introduction, Tokuhisa and cowork-
ers [25] evaluated the cumulant expansion of the EISF
for individual atoms in Staphylococcal Nuclase (SNase)
keeping terms up to 4th and 6th order. They found
that the 4th and 6th order terms were negligible com-
pared to the Gaussian when the average over all the H

in the protein was taken. Since the higher cumulants
are negligible in both SNase and lysozyme, it is tempting
to extrapolate this finding and conclude that retaining
only the Gaussian term in a cumulant expansion of the
EISF or Ii(Q, t) is an excellent approximation for H in
most folded proteins. It would be of interest to exam-
ine whether this observation also holds for denatured or
intrinsically disordered proteins.

The higher cumulants beyond the Gaussian are exactly
zero for a Gaussian motional distribution. The above
results suggests that the motional distributions of H in
proteins are indeed nearly Gaussian. For example, Hong
et al. [39] find that the motion of H at 300 K in lysozyme
is well represented by a Gaussian motional distribution
in different sites with rapid jumps between these sites.
Diffusion in a harmonic potential has a Gaussian spatial
distribution.

Tokuhisa and coworkers [25] also find that the isotropic
approximation, in which 〈[Q · rj(t)]

2〉 is replaced by
Q2〈rj

2〉/3, is valid in SNase and not responsible for any
deviation of the EISF from a Gaussian. Although some
10 % of H in SNase show an anisotropic 〈rj

2〉 the 10 %
have small 〈r2〉 values and contribute little to the EISF.
We did not evaluate this approximation in lysozyme. We
did, however, find that Ii(Q, t) itself is quite isotropic.
Specifically Ii(Q, t) evaluated for three perpendicular Q
values are indistinguishable from one another and inde-

pendent of direction (see Appendix B). We attribute this
isotropy of Ii(Q, t) to there being a large number of H
in similar structures that have different orientations in
lysozyme.

B. Dynamical heterogeneity

We find that the Q dependence of the average 〈r2〉 ob-
tained from Eq. (4), or equivalently the deviation of
Si(Q,ω = 0) from a Gaussian in Q, arises from the dy-
namical heterogeneity of H in lysozyme. We showed this
by fitting the same “representative atom” model that led
to a Q dependent 〈r2〉 to the calculated Ii(Q, t) of sin-
gle H atoms where there can be no dynamical hetero-
geneity, leading to a Q independent 〈(rj)

2〉 for the sin-
gle H atoms. Tokuhisa and coworkers [25] reached an
equivalent conclusion for SNase. This opens the way to
using the Q dependence of 〈r2〉 to test models of dis-
tribution of the 〈(rj)

2〉 without concern that the Q de-
pendence could arise from other factors. Several studies
aimed at extracting the distribution of 〈r2〉 values, or
moments of the distribution, have already been proposed
[3, 24, 28, 29, 40]. For example, Nakagawa et al. [40] find
a bimodal distribution of MSDs is consistent with data.
A somewhat bimodal distribution of MSDs is found in
simulations of SNase [25] and a clearly bimodal distribu-
tion here in Fig. 9 for lysozyme. Daniel et al. [3] and Yi
et al. [24] determined the second moment of the distri-
bution of 〈(rj)

2〉 from fits to data.
Peters and Kneller [29] have made fits to observed

EISF using a model in which the 〈r2〉 have a Gamma
distribution [28]. In this distribution a large fraction of
the H have small 〈r2〉 values with a tail in the distribution
reaching large 〈r2〉 values. For example, the histogram of
〈r2〉 ≃ ∆2/2 in lysozyme shown in Fig. 9 has a peak at
〈r2〉 ≃ 0.25 Å2 and a tail reaching up to 〈r2〉 = 3− 4 Å2.
A much better fit was found to the observed EISF out
to Q = 4.5 Å−1 using a Gamma distribution than using
a single average 〈r2〉 [29]. Furthermore, when a distribu-
tion of 〈r2〉 was used, the average 〈r2〉 obtained was also
much larger and the dynamical transition temperature,
TD, more consistently determined. In Fig. 2, we showed
an average 〈r2〉 in lysozyme that has a large dependence
on Q at high temperature (300 K) indicating high dy-
namical heterogeneity. In Ref. [24, 29], both the average
〈r2〉 and the mean square deviation of the 〈r2〉 from the
average increase significantly with temperature at tem-
peratures above the dynamical transition temperature,
TD.

V. CONCLUSION

We have investigated the origin of Q dependent values
of the average MSD, 〈r2〉, observed in neutron scatter-
ing experiments. A Q dependent 〈r2〉 is found assuming
that the elastic part of the normalized, incoherent DSF,
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Si(Q,ω = 0) = AIi(Q, t = ∞), is given by Eq. (1). A
Q dependent MSD is equivalent to finding a deviation
of Ii(Q, t) from a Gaussian. The origin of the deviation
was investigated by calculating Ii(Q, t) exactly and with
approximations from a simulation of lysozyme.

We find that the deviation from a Gaussian does not
arise from neglecting the higher order cumulants in the
elastic incoherent DSF. Rather, we find that retaining
only the second order, Gaussian term in the cumulant
expansion is an accurate approximation out to Q = 2 -
3 Å−1. The approximation was tested firstly by calcu-
lating the full incoherent function Ii(Q, t) and the Gaus-
sian approximation to it, IiG(Q, t), for all H and showing
that the difference between the two is small and that the
MSD 〈r2〉 obtained from the two differs insignificantly.
It was secondly tested by calculating the leading term
beyond the Gaussian, the fourth cumulant, and showing
that this is negligible. The Q dependence of the MSD
obtained from experiments does not arise from keeping
only the Gaussian cumulant in S(Q, ω = 0).

We find that the apparent Q dependence of the ob-
served MSD arises from neglecting the dynamical hetero-
geneity of H in a protein in the analysis of data. It is the
use of a single scatterer or “representative atom” model
to fit data arising from thousands H that have a wide
spectrum of MSD values that leads to a Q dependent av-
erage MSD. If the same model is fitted to Ii(Q, t) arising
from a single H, then a Q independent 〈r2〉 is obtained.
This holds except for a few individual H that have very
large MSD and may have a non-Gaussian distribution.
There are so few such H that this does not affect the
observed 〈r2〉.

The finding that the deviation of Si(Q,ω = 0) from a
Gaussian and the Q dependence of 〈r2〉 arises solely from
the dynamical heterogeneity opens the way for confident
empirical determination of the distribution of 〈r2〉 values
in proteins from neutron scattering data.

VI. APPENDIX A : THE IMPORTANCE OF

FOURTH CUMULANT TERM

To assess the importance of higher cumulants, we cal-
culate the fourth cumulant explicitly for individual H in
Eq. (2) in lysozyme in the long time limit. The interme-
diate scattering function I(Q, t) at infinite time (t → ∞)
for a specific H in Eq. (2) is, as in Eq. (15),

I(Q,∞) = exp[−〈[Q·r]2〉+
1

12
[〈[Q·r]4〉−3〈[Q·r]2〉2]+· · · ]

(17)
For Q parallel to the direction α, 〈[Q · r]2〉 = Q2〈r2α〉,
〈[Q · r]4〉 = Q4〈r4α〉, and

I(Q,∞) = exp[−Q2〈r2α〉+
1

12
Q4[〈r4α〉 − 3〈r2α〉

2]]

= exp[−Q2〈r2α〉[1 −
1

12
Q2γα〈r

2
α〉]] (18)

where

γα =
〈r4α〉 − 3〈r2α〉

2

〈r2α〉
2

(19)

is the kurtosis of the motional distribution.
The 4th cumulant is negligible if the kurtosis γα is

small enough that the term 1
12Q

2γα〈r
2
α〉 in Eq. (18) is

small compared to 1. Note 〈r2α〉 ≈ 1
3 〈r

2〉. For exam-

ple, for γα ∼ 1, 〈r2〉 ∼ 1 Å2, Q2 ∼ 4 Å−2, we obtain
1
36Q

2γα〈r
2〉 ∼ 2

18 ∼ 1
10 . For almost all H in lysozyme,

as shown in the top half of Fig. 5 for ILE55 and THR40,
γα is much less than unity, 〈r2〉 < 1, and the 4th cumu-
lant is negligible at Q ∼ 2 Å−1. Only in those very few
exceptional H, such as VAL 109 for which 〈r2〉 ∼ 3 Å2

and γα ∼ 1 − 2, is the 4th cumulant of any significance
at Q ∼ 2 Å−1.

VII. APPENDIX B : CALCULATING THE FULL

Ii(Q, t) AND GAUSSIAN IiG(Q, t)
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FIG. 10: Comparison of the ISF, Ii(Q, t), arising from all H in
lysozyme (red solid lines) calculated from Eq. (20) and from
all nuclei in lysozyme (black dashed lines) calculated using
SASSENA.

The incoherent ISF Ii(Q, t) in Eq. (2) depends on the
vector Q. The Ii(Q, t) observed in neutron scattering
experiments is an average of Ii(Q, t) over all directions
so that Ii(Q, t) depends only on the magnitude of Q.
In the calculation of Ii(Q, t), we make this average over
directions by choosing Q as Q = Qx, Q = Qy and Q =
Qz, and taking an average over these three directions:

Ii(Q, t) =
1

3
[Ii(Qx, t) + Ii(Qy, t) + Ii(Qz, t)]. (20)

where Ii(Qx, t)), Ii(Qy, t)) and Ii(Qz, t)) are calculated
from Eq. (3). Fig. 10 shows that the Ii(Q, t) calculated
from Eq. (20) for all H averaged over three directions
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agrees well with the Ii(Q, t) averaged over many direc-
tions as calculated by SASSENA. We believe these aver-
ages over directions agree well because the sum over all
H includes H in many orientations.
The average of IiG(Q, t) over directions was calculated

in the same way as Ii(Q, t) so that a direct comparison
of the two can be made. i.e. IiG(Q, t) was obtained as

IiG(Q, t) =
1

3
[IiG(Qx, t)+ IiG(Qy, t)+ IiG(Qz, t)]. (21)

where IiG(Qx, t)), IiG(Qy, t)) and IiG(Qz, t)) are calcu-
lated from Eq. (6).
Explicitly, Fig. 11 shows the Ii(Q, t) calculated from

Eq. (2) for all H for Q = Qx, Q = Qy and Q = Qz, and
the Ii(Q, t) averaged over these three directions. The
Ii(Q, t) for each direction are the same within statisical
error. This indicates that Ii(Q, t) is independent of the
direction selected for the vector Q within present statis-
tical error.
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FIG. 11: Comparison of the ISF, Ii(Q, t), arising from all H
in lysozyme for Q = Qx (purple solid line), Q = Qy (red
solid line), Q = Qz (black solid line) and average over these
there Q (blue solid lines), which are calculated from Eq. (2).

VIII. APPENDIX C : ON CALCULATING THE

EISF

In this appendix we discuss calculation of the elastic
component of the DSF, S(Q,ω = 0) = AIi(Q, t = ∞),
denoted the EISF. We propose a method of calculating
the EISF which is more accurate than is often found in
the literature.
The DSF is defined as

S(Q,ω) =
1

2π

∫
∞

−∞

dt exp(iωt)I(Q, t) (22)

with I(Q, t) given by Eq. (2). We have dropped the sub-
script i. The elastic DSF is

S(Q,ω = 0) =
1

2π

∫
∞

−∞

dtI(Q, t) (23)

which cannot be calculated directly from a MD simu-
lation because we cannot extend the simulation out to
long times. We can introduce, as in experiment, an in-
strument resolution function R(ω) and convolute S(Q,ω)
with the resolution function. The convolution broadened
SR(Q,ω = 0) written in time space is

SR(Q,ω = 0) =
1

2π

∫
∞

−∞

dtI(Q, t)R(t) (24)

where

R(t) =
1

2π

∫
∞

−∞

dt exp(iωt)R(ω) (25)

is the Fourier transform of R(ω). Essentially R(t)
serves to cut off the integration after a finite time.
If R(ω) = π−1Γ/(ω2 + Γ2) is a Lorentzian function,
R(t) = exp(−Γt) and the integral is cut off after a time
τR ∼ Γ−1.
To identify the EISF it is convenient to formally sep-

arate I(Q, t) into a time independent and a time depen-
dent part,

I(Q, t) = I(Q,∞) + [I(Q, t)− I(Q,∞)]. (26)

Substituting Eq. (26) into Eq. (24), we obtain

SR(Q,ω = 0) = I(Q,∞)

∫
∞

−∞

dtR(t)

+

∫
∞

−∞

dt[I(Q, t)− I(Q,∞)]R(t)

= R(ω = 0)I(Q,∞)

+

∫
∞

−∞

dt[I(Q, t)− I(Q,∞)]R(t)(27)

As done in experiment, and to obtain regular functions
when we go to high resolution (W = 2Γ → 0) where
R(ω) = δ(ω), we normalize SR(Q,ω = 0) by SR(Q =
0, ω = 0) ≡ SR(0, ω = 0). Using I(Q = 0, t) = 1 at all
times, we obtain, substituting I(0, t) = 1 into Eq. (27),

SR(0, ω = 0) = R(ω = 0) (28)

and

S(Q, 0)

S(0, 0)
= I(Q,∞)

+

∫
∞

−∞

dt[I(Q, t)− I(Q,∞)]
R(t)

R(ω = 0)
(29)

In the limit of infinitely high resolution where R(ω) =
δ(ω) the last term is zero and we obtain

S(Q,ω = 0)

S(0, ω = 0)
= I(Q,∞) = limt→∞I(Q, t) (30)
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which is our desired result relating S(Q,ω = 0) and
I(Q,∞).
In the present paper we used I(Q,∞) =

exp(− 1
3Q

2〈r2〉) which is valid (1) keeping Gaussian
terms only in the cumulant expansion, (2) neglecting dy-
namical heterogeneity and (3) assuming cubic motional
symmetry. We can obtain I(Q,∞) by fitting a model of
the form Eq. (26) such as the model used in section IIB,

I(Q, t) = I∞ + [1− I∞]C(Q, t), (31)

where I∞ ≡ I(Q,∞), to calculated values of I(Q, t) com-
puted from a simulation. I(Q,∞) (〈r2〉) is obtained as
a fitting parameter. We believe this represents I(Q,∞)
within the approximations above and the limits of the
simple model.
The EISF is often calculated as

S(Q,ω = 0)/S(0, ω = 0) ≃ I(Q, τ) (32)

where τ is a reasonably long time of order 1− 10 ns. We
can estimate the error in this latter estimate of the EISF
using the simple model (Eq. (31)) which gives

I(Q, τ)

I∞
= 1 +

1− I∞
I∞

C(τ) (33)

and

I(Q, τ) − I∞ = (1− I∞)C(τ). (34)

From the C(Q, t) obtained from fits to the simulated
I(Q, t) in lysozyme (see Figs. 2 and 6 of Ref. [15]), we

see that C(Q, t) ≃ 0.25 even for long times up to 10 ns,
typically longer than τ used in Eq. (32). C(Q, t) has
not reached to zero as would be required for Eq. (32)
to be accurate. A similar value of C(Q, t) at t = 10
ns was obtained earlier by Calandrini and Kneller [41]
using the Mittag-Leffler function. Employing I∞ =
exp(− 1

3Q
2〈r2〉) to estimate I∞ and selecting 〈r2〉 = 1 Å2,

we see that at Q → 0, I∞ → 1 and there is no error in
using I(Q, τ). However, at Q = 3 Å−1 where I∞ ≃ 0.05,
we see from Eqs. (33) and (34) that I(Q, τ)/I∞ ≃ 5 and
I(Q, τ) − I(Q,∞) = 0.25. At Q = 3 Å−1, I(Q, τ) is
dominated by the error and does not represent I(Q,∞)
at all. Thus, we believe it is important to use a fitting
procedure or something similar to obtain I(Q,∞), rather
than Eq. (32). This is particularly the case if the goal is
to assess properties of the protein from the Q dependence
of the EISF calculated from a simulation.
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