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I. INTRODUCTION

The spectroscopic and measuring technolo-
gies, developed during last few decades, have
allowed experimental scientists to examine very
rapid dynamical processes, including those
in biological systems. One of them is the
very powerful 2D femtosecond nonlinear spec-
troscopy, which is a special case of parametric
four-wave mixing, in which three pulses inter-
act with the system to produce a signal field in
a particular phase-matched direction. In this
case, the 2D frequency spectra at different de-
lay times is used to recover the dynamics of the
electron population between different sites of
the bio-complexes, and estimate the character-
istic decoherence time in these systems (time-
decay of the non-diagonal elements of the den-
sity matrix) [1]. In particular, it was demon-
strated that, even at room temperature, photo-
synthetic bio-complexes exhibit collective quan-
tum coherence (CQC) during primary electron
transfer (ET) processes that occur on the time-
scale of some hundreds of femtoseconds [1]. The
CQC is resulted from the fact that the pri-
mary processes of exciton transfer and charge
separation are so rapid (on a time-scale of a
few picoseconds) that the protein environment
does not have time to recombine the exciton
and destroy the CQC. In [2], the integrated
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two-color coherence photon echo (2CCPE) ap-
proach, based on the 2D femtosecond nonlin-
ear spectroscopy, was used to partly suppress
the inhomogeneous broadening of excitonic co-
herence in a strongly coupled dimer system,
such as the bacteriopheophytinbacteriochloro-
phyll pair in the bacterial reaction center. In
particular, the authors of [2] demonstrated that
beside the ensemble dephasing, the coherence in
such a system exhibits a bi-exponential decay
with a slow component with a lifetime of hun-
dreds of femtoseconds and a rapid component
with a lifetime of tens of femtoseconds.

The optical spin echo spectroscopy is a mod-
ification of the well-known approach which was
initially developed in the nuclear magnetic res-
onance [3, 4]. This Hahn spin echo spec-
troscopy (HSES) is a linear approach, which
allows one to reduce the effects of the “inho-
mogeneous broadening” (dephasing) in an en-
semble of spins and to increase the time of the
signal generated by the transverse magnetiza-
tion (free induction, FI).

The important development of the HSES
during the last decade was the recognition that
it can be successfully applied not only to an en-
semble of effective spins, but also to an individ-
ual spin, or to an individual two-level quantum
system (TLS) [5]. In this case, inhomogeneous
broadening is absent. But still one can partly
suppress the broadening of the FI decay re-
sulted from a pure dynamical (time-dependent)
noise. In [5–8] the HSES was applied to a single
quantum two-level system - the superconduct-
ing qubit. In this case, the qubit is considered
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in the so-called diagonal representation, with
the main characteristic being the energy gap
(usually tens of gigahertz) between the ground
and the excited states. The dynamical noise,
acting on the qubit, is generated by the time-
fluctuations of the electron charge, bias cur-
rent, external magnetic flux, and other sources.
All these sources of noise for superconducting
qubits are relatively weak, so the perturbation
approaches can be used.
In contrast to a superconducting qubit, an

individual effective two-level quantum system
(a dimer) in a bio-complex is usually charac-
terized in the so-called site representation, us-
ing such main parameters as the energy gap
(redox potential) between the excited states of
the chlorophylls realizing this dimer, and the
matrix element of the dipole-dipole or the ex-
change interactions between these two excited
states. Also, the dimer usually experiences a
strong interaction with the protein fluctuations
(characterized by the reconstruction energy),
caused by dynamical noise, that must be taken
into account in bio-applications of the spin echo
spectroscopy.
In this paper, we analyze analytically and

numerically the application of the HSES for
both an individual dimer and for an ensem-
ble of dimers in bio-complexes, for the case
of strong interaction with the protein environ-
ment. In our model, a single dimer in the light-
harvesting complex (LHC) is composed of the
excited states, |1〉 and |2〉, of two chlorophylls,
Chl1 (donor) and Chl2 (acceptor). If, for ex-
ample, initially the donor is populated, the en-
ergy (exciton) can be transfered to the accep-
tor due to (i) the interaction of the transitional
dipole moments of two chlorophylls, which is
characterized by the matrix element, V12 (time-
reversal dynamics), and (ii) the Coulomb in-
teractions between the electron in the states
|1〉 and |2〉 and the protein fluctuations. (The
environment-assisted energy transfer [9].) Usu-
ally, the protein fluctuations are modeled by
the ensemble of quantum harmonic oscillators
of nuclear degrees of freedom, or by the corre-
sponding bosonic electromagnetic modes. (See
[9–11], and references therein.) Also, some dif-
ferent models for the protein fluctuations are
used based on (i) an external noise [12–15] and
(ii) the hybrid approaches [16]. For our pur-
poses, we assume that the dimer experiences
the influence of a stochastic process (noise)
from the protein environment, which is char-
acterized by two parameters: (i) the amplitude
of noise and (ii) the decay rate (or correlation
time) of the noise correlation function (non-

Markovian approximation). This approxima-
tion corresponds to the “infinite temperature”
regime, and reasonably describes the Coulomb
interaction of the electron in the excited states
of the chlorophyll molecules with the electro-
magnetic protein fluctuations, if one is inter-
ested in the fast electron transfer dynamics,
and is not interested in the temperature depen-
dences of the electron transfer rates.

We recognize that the application of the lin-
ear HSES may not be the optimal realization of
the spin echo protocols in the optical domain.
At the same time, the main effects, discussed in
this paper, can easily be demonstrated by using
a simple HSES, with possible further general-
izations for more complex protocols used in the
optical applications.

We show that both the dynamical and the in-
homogeneous broadening of the FI decay can be
successfully suppressed by the spin echo pulses,
in a wide range of parameters. Our conclusion
is that (i) even for strong interaction with the
dynamical noise and (ii) in the presence of re-
laxation (transverse noise), the spin echo spec-
troscopy can serve as the useful complemen-
tary spectroscopic technique for characterizing
the bio-complexes that include both individual
dimers and an ensemble of dimers.

The important advantage of our approach
is that it is based on the exact and closed
system of ordinary linear differential equations
with constant coefficients, which we derived for
time-depended observable variables. So, our
approach does not use the approximations like
small interaction constants with protein envi-
ronment. In particular, our approach includes
the results which followed from the well-known
Bloch-Redfield theory [17–19] as a limited case.
The structure of the paper is the following.

In Section II, we introduce the model and derive
the closed system of differential equations for
the averaged Bloch vector. In Section III, we
apply our approach to describe homogeneous
broadening due to dynamical noise, and present
the results of the numerical simulations for both
exact and approximate solutions. In Section
III, we consider simultaneous action of the ho-
mogeneous and inhomogeneous disorder. In the
Conclusion, we summarize our results and for-
mulate some challenges for future research.

II. DESCRIPTION OF THE MODEL

First, consider a single dimer in the LHC
composed of the excited states, |1〉 and |2〉,
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of two chlorophylls, Chl1 (donor) and Chl2
(acceptor), interacting through the matrix el-
ement, V12 (see above). We assume that each
chlorophyll experiences a diagonal noise (see
[10, 11] for details), provided by the protein
environment, which is described by the ran-
dom variable, ξ(t). Similar to the Coulomb in-
teraction of the excited electron in the dimer
with the different electromagnetic modes of the
thermal protein environment, in our model the
same electron interacts with the electromag-
netic modes provided by noisy protein fluctu-
ations which are characterized by two parame-
ters: (i) the amplitude and (ii) the decay rate
of the correlation function. Usually, the protein
noise is also characterized by the corresponding
spectral density of noise, S(ω), where ω is the
frequency of the noisy component. The inter-
actions between the protein noise and the two
dimer states are characterized by two interac-
tion constants, λ1,2, which usually are not small
in bio-systems at ambient conditions.
In the site (donor-acceptor) representation,

the Hamiltonian of the system can be writ-
ten as follows: H = E1|1〉〈1| + E2|2〉〈2| +
(1/2)(V12|1〉〈2|+h.c.)+ξ(t)(λ1|1〉〈1|+λ2|2〉〈2|).
We assume that noise is produced by the sta-

tionary random telegraph process (RTP) with:
〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = χ(t − t′), where,

χ(t− t′) = σ2e−2γ|t−t′|, is the correlation func-
tion; σ, 2γ, and λ1,2, are the amplitude of
noise, the decay rate of the correlation func-
tion, and the interaction constants with noise,
correspondingly.
In the diagonal representation of the unper-

turbed Hamiltonian, we obtain the total Hamil-
tonian for the effective TLS,

H =
λ0

2
I +

1

2
Ωσz +

1

2
Dλ,zξ(t)σz+

1

2
Dλ,⊥ξ(t)(cosφσx + sinφσy), (1)

where, σx,y,z, are the Pauli matrices, λ0 =
E1 + E2 + (λ1 + λ2)ξ(t), λ = λ1 − λ2, Ω =
√

(E1 − E2)2 + |V12|2, Dλ,z = λ cos θ, and

Dλ,⊥ = λ sin θ. We set: V12 = |V12|e
−iφ, and

cos θ = (E1 − E2)/Ω.

The Bloch-Redfield approximation

The dynamics of a TLS is described by two
rates: the longitudinal relaxation rate, Γ1 =
T−1

1
, and the transverse relaxation rate, Γ2 =

T−1

2
. When the noise is weak, and the con-

dition, τc ≪ T1, T2, is satisfied (where τc =

1/(2γ) is the correlation time of the noise fluc-
tuations), one can apply Bloch-Redfield (BR)
theory [17–19]. In BR theory, the transverse
relaxation rate, Γ2 = Γϕ + Γ1/2, where Γϕ is
the so-called “dephasing” rate. (For a single
dimer, Γ2 is the decoherence rate.) In terms of
the spectral density of noise, S(ω), these rates
are defined as follows [5]: Γ1 = πD2

λ,⊥S(Ω),

Γϕ = πD2

λ,zS(0). Using the spectral density

of RTP, S(ω) = 2γσ2/π(4γ2 + ω2), we obtain
the relaxation and dephasing rates provided
by BR theory: Γ1 = 2γv2 sin2 θ/(4γ2 +Ω2),
Γϕ = (v2/2γ) cos2 θ, where the renormalized
interaction constant with noise, v = λσ, is in-
troduced.

A. The generalized approach based on the

exact equations

To study the quantum decoherence and re-
laxation processes in general case, we present
the density matrix as, ρ(t) = (I + n(t) · σ)/2,
where, n(t) = Tr(ρ(t)σ), is the Bloch vector.
Instead of the Liouville-von Neumann equation
for the density matrix, i~ρ̇ = [H, ρ], it is conve-
nient to employ the equation of motion for the
Bloch vector (we set ~ = 1):

dn

dt
= Ω× n+ (ξ(t)/σ)ω × n. (2)

Here the vector, ω =
v(sin θ cosφ, sin θ sinφ, cos θ), characterizes
the interaction with noise, and Ω = (0, 0,Ω)
is the effective external field, which in the
diagonal representation is oriented in the
z-direction. It is important to note that the
introduced above density matrix, ρ(t), and the
Bloch vector in Eq. (2) depend on a concrete
realization of the random process, ξ(t).
Using the differential formula for the RTP

[20],

( d

dt
+ 2γ

)

〈ξ(t)R[t; ξ(τ)]〉 =
〈

ξ(t)
d

dt
R[t; ξ(τ)]

〉

,

(3)

where, R[t; ξ(τ)], is an arbitrary functional, we
obtain from Eq. (2) the closed system of differ-
ential equations:

d〈n〉

dt
=Ω× 〈n〉+ ω × 〈nξ〉, (4)

d〈nξ〉

dt
=Ω× 〈nξ〉+ ω × 〈n〉 − 2γ〈nξ〉, (5)

where, 〈nξ〉 = 〈ξ(t)n〉/σ. The average, 〈...〉, is
taken over the RTP. Below, when presenting
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the analytical expressions and the results of
numerical simulations, we are dealing only
with the averaged over noise Bloch vector,
〈n(t)〉, and other time-dependent expressions.

Weakly and strongly coupled dimers. To
characterize a dimer, we introduce the dimen-
sionless parameter, ǫ = | tan θ| = |V12/(E1 −
E2)|. When ǫ ≪ 1, we will call the dimer
“weakly coupled”. In the opposite case, ǫ & 1,
the dimer is called “strongly coupled”.
Scaling properties. For a weakly coupled

dimer, one can use the following approxima-
tion in Eqs. (4) and (5): ω ≈ v(0, 0, 1). Let
us assume that the external resonance field (a
pulse), ΩR = ΩR(cos(Ωt), sin(Ωt), 0), is applied
in the (xy)-plane to the TLS, where the fre-
quency of the external field is: Ωext = Ω, and
ΩR is the amplitude of the field (the Rabi fre-
quency). Then, in the reference frame rotating
with the frequency, Ω, the equations of motion
can be written as,

d〈nR〉

dt
=ΩR × 〈nR〉+ ω × 〈nξ

R〉, (6)

d〈nξ
R〉

dt
=ΩR × 〈nξ

R〉+ ω × 〈nR〉 − 2γ〈nξ
R〉.

(7)

From here it follows that the TLS has a scaling
invariance with respect to the transformation
of time: t → αt, if we rescale the parameters
of the system as follows: ΩR → α−1ΩR, v →
α−1v, and γ → α−1γ, where α is an arbitrary
constant.

III. HOMOGENEOUS BROADENING

DUE TO DYNAMICAL NOISE

It is well-known that the main contribution
to the decoherence (or dephasing) time of an in-
dividual TLS (or an ensemble of TLSs) is due
to the fluctuations of the “longitudinal effec-
tive magnetic field”, which in our case of Eq.
(1) is proportional to Dλ,z. Correspondingly,
the amplitude of fluctuations of the “trans-
verse effective magnetic field” is proportional
to Dλ,⊥. Below, we will mainly be inter-
ested in the characteristic time of the FI de-
cay, and how the Hahn spin echo pulses in-
fluence this process. Then, the main inter-
est represents the case when the ratio of the
amplitude of the transverse effective magnetic
field to the amplitude of the longitudinal ef-
fective magnetic field is a small parameter:
|Dλ,⊥/Dλ,z| = | tan θ| = ǫ ≪ 1, which also

corresponds to the case of a weakly coupled
dimer. In this case, for an approximate analyt-
ical solution of Eqs. (4) and (5) one can neglect
the effects of relaxation. Introducing the com-
plex vectors: 〈m(t)〉 = 〈nx(t)〉 + i〈ny(t)〉 and
〈mξ(t)〉 = 〈nξ

x(t)〉+ i〈nξ
y(t)〉, one can show that

the solution of Eqs. (4) and (5) can be written
as,

〈nz(t)〉 =〈nz(0)〉, 〈nξ
z(t)〉 = 0, (8)

〈m(t)〉 =eiΩtΦ(t)〈m(0)〉, (9)

〈mξ(t)〉 =−
ieiΩt

v cos θ

dΦ(t)

dt
〈m(0)〉. (10)

Here we denote by Φ(t) the generating func-
tional of the RTP [20]. For the FI decay, it is
given by [6–8],

Φf (t) = e−γt
( 1

µ
sinh(γµt) + cosh(γµt)

)

, (11)

where, µ =
√

1− (v cos θ/γ)2.
Below, we will compare the approximate an-

alytical solution (8) - (10) with the numerical
solution of the exact Eqs. (4) and (5). It will be
demonstrated that a good coincidence of both
these solutions extends even for a strongly cou-
pled dimer (ǫ ∼ 1) and, consequently, for strong
transverse noise.
We also would like to note that the results

of our numerical simulations only weakly de-
pend of the phase, φ, of the matrix element,
V12. So, in all cases presented below for indi-
vidual dimers, we have chosen, φ = 0.

A. Free induction signal decay

We call noise weak if the dimensionless pa-
rameter, η = |v cos θ/γ| ≪ 1. The main reason
for this is, that as it follows from Eq. (11), for
weak noise, the decay rate of the non-diagonal
averaged density matrix element (which char-
acterizes the decoherence) coincides with Γϕ,
provided by BR-theory. We call noise strong
if η & 1. In particular, when η > 1, the pa-
rameter, µ in Eq. (11) becomes imaginary, and
the decay of the functional, Φf (t), is accompa-
nied by oscillations with frequency, γ|µ| (or the
period: T = 2π/γ|µ|).
Below, we compare the analytical solutions

(8) – (10), when the transverse effective field
(relaxation) is neglected, with the correspond-
ing exact solutions obtained numerically from
Eqs. (4) and (5). In numerical simulations, we
put ~ = 1. All energy-dimensional parameters
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are measured in ps−1 (1ps−1 ≈ 0.66meV), and
time is measured in ps.

In Fig. 1, the strongly coupled dimer was
considered (θ ≈ 0.968, ǫ ≈ 1.45). One can
see, that in spite of the noise is strong: η ≈
1.13 (red dashed curve) and η ≈ 2.27 (orange
dashed curve), the approximate analytical so-
lutions (shown by blue curves), are in a good
agreement with the exact numerical solutions.
In the inset, the noise amplitude is relatively
large (v = 20), and the matrix element, V12,
of the Chl1 and Chl2 interaction, is also large:
ǫ ≈ 8.24 (strongly coupled dimer). At the same
time, the noise is weak: η ≈ 0.24, and the BR
approach works. However, one cannot neglect
the contribution from the transverse field to the
decoherence rate, Γ2 = Γϕ + Γ1/2. Indeed, in
this case, Γϕ ≈ 0.3 and Γ1 ≈ 0.48. That is
why the approximate solution in the inset (blue
curve) deviates significantly from the exact nu-
merical solution (red dashed curve).

FIG. 1: (Color online) Time dependence (in ps)
of m = |〈m(t)〉|, for the FI signal. Blue curves:
analytical results. Dashed curves: exact solution.
Parameters: Ω = 127, θ = 0.968, γ = 10, v = 20
(red curve), v = 40 (orange curve). Inset: θ = 1.45,
v = 20.

B. Echo signal

For simplicity, we assume in the analytical
estimates that the spin echo π-pulses act prac-
tically instantaneously. The spin echo pulse,
applied at the time τ , rotates the wave function
around the x-axis, by the angle π. The corre-
sponding analytical solution for the generating

functional can be written as,

Φe(t) =

{

Φf (t), 0 < t < τ,
Φf

g (t), t > τ,
(12)

where,

Φf
g (t) =Φf (t) + e−γt

(

1−
1

µ2

)(

cosh(γµ(t− 2τ))

− cosh(γµt)
)

. (13)

(a)

(b)

FIG. 2: (Color online) Time dependence (in ps) of
m = |〈m(t)〉|. The FI decay: blue curves. Echo
signals: red curves. Number of echo pulses, N =
20. (a) Parameters: Ω = 150, v = 40, γ = 10, θ =
0.165. The duration of each pulse is: δ = 10 fs, and
its height is: h = 100π. (b) Parameters: Ω = 150,
v = 0.4, γ = 0.1, θ = 0.165. Inset: the sequence
of π-pulses applied to the system. The duration of
each pulse is: δ = 1ps, and its height is: h = π.

Below, we demonstrate that our analytical
solutions, given by Eqs. (8) – (10) and Eqs.
(12), (13), are in a good agreement with the
exact numerical solutions, up to the value of
ǫ ≈ 1.72 (θ . π/3) and for the finite width of
the π-pulse (for example, δ = 1ps), for both
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(a)

(b)

FIG. 3: (Color online) A comparison of analytical
and numerical solutions. Time dependence (in ps)
of m = |〈m(t)〉|. Numerical solution: red curves.
Analytical solution: green dashed curves. The FI
decay: Blue curves. Parameters: (a) Ω = 150,
v = 0.4, γ = 0.1, θ = 0.165, τ = 2.5ps; (b) Ω = 127,
v = 0.2, γ = 0.1, θ = 0.968, τ = 10.5ps. The
duration of the π-pulse is: δ = 1ps, and its height
is: h = π.

weakly and strongly coupled dimers, and even
for relatively large noise.
In the numerical simulations, we use the

echo pulses of finite duration. We assume
that the circular polarized field, ΩR(t) =
ΩR(t)(cos(Ωt), sin(Ωt), 0), is applied after the
FI decay, at time, τ . Here,

ΩR(t) =







0, 0 ≤ t < τ,
h, τ ≤ t ≤ τ + δ,
0, t > τ + δ.

(14)

The duration of this pulse is δ, and its ampli-
tude, h, is found from the condition: hδ = π.
In Fig. 2, the time dependence (in ps) of

the transverse Bloch vector, m(t) = |〈m(t)〉|, is
shown. The FI decay corresponds to the blue
curves. The spin echo signals correspond to
the red curves. The number of echo pulses is,

(a)

(b)

FIG. 4: (Color online) Time dependence (in ps) of
m = |〈m(t)〉|. The FI decay: blue curve. Echo sig-
nal: red curve. The duration of each echo π-pulse
is: δ = 1ps, and its height is: h = π. Parameters:
Ω = 150, γ = 0.5, θ = 0.165. (a) Number of pulses
is: N = 20 (v = 0.25). Inset: the sequence of π-
pulses applied to the system. (b) Number of pulses
is: N = 10 (v = 1).

N = 20. Parameters in Fig. 2a were chosen:
Ω = 150, v = 40, γ = 10, θ = 0.165. At τ =
20fs, the first π-pulse, with the width, δ = 10 fs,
was applied. The distance between π-pulses
was chosen: ∆ = 30fs. This case corresponds
to a weakly coupled dimer (ǫ ≈ 0.17), and to
strong noise: η ≈ 3.9. The FI decay exhibits os-
cillations with the period: T = 2π/γ|µ| ≈ 0.16.
Note, that the results with such a short π-pulse
are presented here mainly for the purposes of
illustration of the discussed in Sec. II A scaling
effects. This kind of π-pulses require very large
Rabi frequencies, and large values of the cor-
responding electric fields, which could destroy
the system [21].

Parameters in Fig. 2b were chosen: Ω = 150,
v = 0.4, γ = 0.1, θ = 0.165, τ = 2ps, δ = 1ps,
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∆ = 3ps. This case corresponds to a weakly
coupled dimer (ǫ ≈ 0.17), and to strong noise:
η ≈ 3.9. The FI decay exhibits oscillations with
the period: T = 2π/γ|µ| ≈ 16.5. (Note, that
in Figs. 2, the modules of the transverse Bloch
vector, |〈m(t)〉|, is presented.) The inset shows
the sequence of π-pulses applied to the system,
with the duration of each pulse, δ = 1ps, and
∆ = 3ps. As one can see by comparison of
Fig. 2a and Fig. 2b, the scaling takes place,
which was discussed in Sec. II A. One can also
see from Figs. 2a and 2b that the homoge-
neous broadening of the FI signal can be sig-
nificantly improved by applying the Hahn spin
echo pulses.
In Figs. 3a and 3b, we compare our analyt-

ical solutions, given by Eqs. (8)–(10) and Eqs.
(12), (13), with the exact numerical solutions of
Eqs. (4) and (5) and Eqs. (6) and (7). In ana-
lytical solutions the π-pulse was applied at the
middle of the π-pulse of the corresponding nu-
merical solutions. In Fig. 3a, a weakly coupled
dimer is considered (ǫ ≈ 0.17), and the noise is
strong (η ≈ 3.9). Initially, the Bloch vector was
positioned in the x-direction. The red curve
demonstrates the results of the exact numeri-
cal simulations. During the time, τ = 2.5ps,
the Bloch vector experiences the FI decay. At
time, t = 2.5ps, the π-pulse was applied of the
duration, δ = 1ps. After the end of the π-pulse,
the Bloch vector experiences the FI decay. The
green dashed curve describes the correspond-
ing analytical solution. As one can see, both
solutions practically coincide. The blue curve
corresponds to the FI decay. All solutions oscil-
late, as the values of parameter, µ, in Eq. (11)
are imaginary. In Fig. 3b, a strongly coupled
dimer is considered (ǫ ≈ 1.45), and the noise
is strong (η ≈ 1.1). The π-pulse of duration,
δ = 1ps, is applied at τ = 10.5ps. Again, as in
Fig. 3a, the numerical and analytical solutions
practically coincide. In this case, the period of
oscillations is large, T = 2π/γ|µ| ≈ 126ps, and
the oscillations are not revealed.
Our results demonstrate that the analytical

solutions represent a good approximation of the
exact numerical solutions for both weakly and
strongly coupled dimers (up to the values, ǫ ≈
π/3), for finite widths of π-pulses, and for both
weak (η ≪ 1 ) and strong (η & 1) noises.
In Figs. 4a and 4b, N relatively wide π-

pulses (with δ = 1ps) were applied, with a dis-
tance between pulses, ∆ = 1ps. The dimer was
chosen weakly coupled: ǫ ≈ 0.17. In Fig. 4a,
the noise is weak (η ≈ 0.49), and N = 20. In
Fig. 4b, the noise is strong (η ≈ 1.97), and
N = 10. In this case, the value of the param-

eter, µ ≈ 1.7i, is imaginary, and one can ob-
serve the oscillations of |〈m(t)〉|, with the pe-
riod, T/2 = π/γ|µ| ≈ 3.7. Initially, the Bloch
vector was oriented along the x-axis. During
the initial time, τ = 1ps, the Block vector ex-
periences the FI decay. The first π-pulse was
applied at t = 1ps. The FI decay is represented
by the blue curves. The red curves demonstrate
the evolution of the transverse component of
the Bloch vector, under the influence of the π-
pulses. As one can see, a significant improve-
ment of the signal can be achieved.

IV. SIMULTANEOUS ACTION OF THE

HOMOGENEOUS AND

INHOMOGENEOUS DISORDER

Here, in addition to dynamical fluctuations
(noise, ξ(t)), we consider an ensemble of TLSs
(dimers) with fluctuating parameters, (Ω, θ, φ),
due to the static disorder. It is well-known that
this leads to the inhomogeneous broadening of
the FI signal decay. In our numerical simu-
lations we assumed the independent Gaussian
disorder for parameters, (Ω, θ, φ). Our numeri-
cal simulations demonstrate that the main con-
tribution from the static disorder, for a wide
range of parameters, is due to the fluctuations
of the frequency, Ω. So, below we neglect the
static fluctuations of both angles, θ and φ. We
assume a Gaussian distribution for the random
parameter Ω, denoting the dispersion by σ∗.
Note that the results can easily be extended
by including the static fluctuations of angles, θ
and ϕ, in the numerical solutions of the exact
Eqs. (4) and (5).

In Fig. 5, we compare the results for the
decay of the FI signal for three values of the
dispersion, σ∗ = 0, 10, 20, of static fluctuations
of the frequency, Ω, and for the amplitudes of
noise, v = 20, 40. The parameter, η ≈ 1.13,
so the noise is strong in this case. In the in-
set, oscillations are observed with the period,
T = 2π/γ|µ|, due to the imaginary value of the
parameter, µ.

The analytical solution, which includes the
contributions from both, the static disorder and
the dynamical noise, and corresponds to the
spin echo signal applied at the time τ , can be
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FIG. 5: (Color online) Simultaneous action of ho-
mogeneous and inhomogeneous broadening on the
FI decay. The time dependence (in ps) of the gen-
erating functional, Φ(t). Red curve: σ∗ = 0. Blue
curve: σ∗ = 10. Green curve: σ∗ = 20. Parame-
ters: Ω = 127, θ = 0.968, γ = 10, v = 20. Inset:
v = 40.

written as, 〈m(t)〉 = Φe
g(t)〈m(0)〉, where

Φe
g(t) =























e
−
σ2
∗t

2

2 Φf (t), 0 < t < τ

e
−
σ2
∗(t− 2τ)2

2 Φf
g (t), t > τ.

(15)

FIG. 6: (Color online) The decay of the FI signal
in the presence of both homogeneous and inhomo-
geneous broadening (blue curve), and the action
of the echo signal (red curve). Time dependence
(in ps) of m = |〈m(t)〉|. Parameters: Ω = 127,
θ = 0.968, γ = 10, v = 20, σ∗ = 10, τ = 0.075.

In Fig. 6, both static disorder of Ω and the
dynamical noise, ξ(t), are included. The de-

cay of the FI signal is shown by the blue curve.
For our chosen parameters, the FI signal de-
cays in approximately 200fs. The spin echo sig-
nal was applied at τ = 75fs. As one can see,
the echo pulse restores significantly the FI de-
cay (red curve). Note that for the parameters
chosen in Fig. 6, both dimensionless decay fac-
tors coincide at the characteristic time of the
FI decay, t∗ = 200fs: γt∗ = σ2

∗t
2
∗/2 = 2. So,

both homogeneous and inhomogeneous broad-
ening are partly compensated in this case by
the spin echo signal.

V. CONCLUSION

We presented the analytical and numerical
results for the Hahn spin echo pulses for the
two-level systems (TLSs) – chlorophyll-based
dimers in bio-complexes, embedded in noisy
protein environment. We have shown that even
strong dynamical broadening can be suppressed
significantly by the Hahn spin echo pulses. This
is important for many bio-applications at am-
bient conditions. We also demonstrated the
restoration of the free induction decay signal by
the Hahn spin echo pulses when both homoge-
neous and inhomogeneous broadening equally
contribute to the free induction decay. We
recognize that in real experiments with bio-
material, the application of the Hahn spin echo
pulses may not correspond to the optimal pro-
tocol. So, different modifications of the con-
sidered here protocols will be needed. At the
same time, the characteristic effects of the spin
echo pulses for both weakly and strongly couple
dimers and for weak and strong noises can be
analyzed by using considered here simple proto-
cols. Note, that the approach considered here is
not a perturbative one, and it does not require
any additional simplifications related to small
parameters and different uncontrolled approx-
imations. We also would like to mention here
that the exact and closed system of equations
which we derived for the Hahn echo protocols
is a linear one. So, this system possesses the
scaling properties, which are very useful, es-
pecially when performing the numerical simu-
lations. Indeed, one can choose, for example,
the “unreal” (short) pulses, and than easily ap-
ply the results for the “real” scaled parame-
ters. We demonstrated these scaling properties
of our approach both analytically and numeri-
cally.

The application of the spin echo technique
is especially useful for bio-systems with strong
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low-frequency dynamical noise, such as 1/f
noise [12]. Our approach can be generalized
for this case, as was done in [8], by introduc-
ing the corresponding ensemble of the fluctua-
tors. Also, many different sources of dynamical
noises can be included in the presented here ap-
proach (as was done in [22]).
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