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Abstract

We present a composite generalized Langevin equation (GLE) as a unified framework for bridg-

ing the hydrodynamic, Brownian, and adhesive spring forces associated with a nanoparticle at

different positions from a wall, namely a bulk-like regime, a near-wall regime, and a lubrication

regime. The particle velocity autocorrelation function dictates the dynamical interplay between

the aforementioned forces, and our proposed methodology successfully captures the well known

hydrodynamic long-time tail with context-dependent scaling exponents and oscillatory behavior

due to the binding interaction. Employing the reactive flux formalism, we analyze the effect of hy-

drodynamic variables on the particle trajectory and characterize the transient kinetics of a particle

crossing a predefined milestone. The results suggest that both wall-hydrodynamic interactions and

adhesion strength impact the particle kinetics.

PACS numbers: 47.63.-b, 87.85.gf, 47.11.-j, 74.40.Gh

∗ rradhak@seas.upenn.edu
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I. INTRODUCTION

Describing the motion of nanoparticles is an essential topic in many applications of col-

loidal hydrodynamics such as targeted drug delivery [1–3], pathogen detection [4, 5], quan-

tification of expressed protein expression [6, 7], microfluidics-based sorting [8–11], and mi-

crorheology of soft matter [12–14]. In such applications, nanoparticles have tailored affinities

with the target, and the interplay between hydrodynamic interactions, adhesive interactions,

Brownian motion, and other external forces impact the motion of the nanoparticle across

different regimes (see Fig. 1). Direct numerical simulations (DNS) of fluctuating hydro-

dynamics equations can resolve the correct hydrodynamic and thermal correlations of the

particle over the fluid viscous relaxation time τν = a2/ν (a being the particle radius and ν,

the fluid kinematic viscosity) [15–18], but due to computational overhead, can not access

pharmacodynamic timescales (ms–hours). Implicit-solvent simulation methods (e.g. Brow-

nian or Stokesian dynamics [19, 20]) explore dynamics efficiently over longer diffusive time

scales (O(a2/D) with D being the particle diffusivity). However, they do not naturally en-

code the correct temporal correlations over the timescale of τν . To address these limitations,

in this Article we present a composite generalized Langevin equation (GLE) formalism as a

unified framework for resolving the nanoparticle dynamics in the presence of hydrodynamic

correlations, thermal motion, and an external potential mimicking binding forces in different

hydrodynamic regimes (e.g., bulk, near-wall, and lubrication, as shown in Fig. 1).

GLE is a mathematical construct for the particle equation of motion that incorporates a

memory function denoting a systematic resistance and a complementary random fluctuating

force. Rigorously, GLE for a Brownian particle near a boundary can be formulated from

the Zwanzig–Mori projection formalism [21] with all the hydrodynamic modes accurately

included. However, the main difficulty originates from the fact that different hydrodynamic

modes correlate at different time scales, especially when boundaries are introduced. In

such circumstances, inevitably, relevant approximations for the projection operator and the

memory function would be necessary. On the other hand, in the analytical treatment of

Felderhof [22], the motion of a Brownian particle near a planar wall is addressed from the

perspective of frequency-dependent admittance in the point-particle limit. Although the

velocity autocorrelation function may be obtained with a hydrodynamic spectrum in the

frequency domain, the time-domain equation of motion for the particle is tractable only in

3



the case without a bounding wall; in the presence of a planar wall, only an approximation

to the long-time asymptotic limit can be recovered. Consequently, in this Article we apply

a physically-motivated approach by incorporating the generic hydrodynamic correlations at

the relevant time scales into a single composite GLE. For bulk and near-wall regimes, we

employ the analytical form of the memory function resulting from the solution of the lin-

earized Navier–Stokes equation and construct a suitable GLE to incorporate the stochastic

effects. For the lubrication regime, we construct a GLE based on transverse lubrication

flows within the particle–wall gap. In each case, the transition in the temporal correlations

is handled within the composite structure, where for early times a “bulk-like” interaction is

considered, and for long times the hydrodynamic-wall effect is included. We validate our ap-

proach by comparing the computed particle velocity autocorrelation function (VACF) with

available analytical solutions for the bulk [23] and near-wall regimes [22, 24], and provide

new predictions for the lubrication regime. Through analyzing the nanoparticle VACF and

position autocorrelation function (PACF) (Cv = 〈U(t)U(0)〉 and Cx = 〈δx(t)δx(0)〉), we

demonstrate how one may simultaneously characterize nanoparticle dynamics subject to ad-

hesive interactions and other external forces while incorporating hydrodynamic correlations

and maintaining thermal equilibrium in multiple regimes. In order to elucidate the effect of

hydrodynamics on activated processes, we analyze particle trajectories to estimate kinetic

rates for nanoparticle crossing a predefined milestone using the reactive flux formalism [25].

The remainder of the Article is structured as follows: We present our theoretical descrip-

tion of the GLE framework in Section II and numerical method in Section III followed by

results and discussions in Section IV. In Section IV, we validate thermal equilibrium of our

stochastic simulations (Section IV A), delineate our autocorrelation functions in different

hydrodynamic and adhesion regimes (Section IV B), and discuss milestoning rates based on

dynamical trajectories (Section IV C). Finally, conclusions are given in Section V.

II. THEORY: THE GLE FRAMEWORK

The translational equation of motion (mdU
dt

=
∑

i Fi) for a Brownian particle with mass m

and velocity U at position x subject to an external harmonic potential force, Fext(x) = −kx,
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FIG. 1. Schematics of a Brownian particle: (a) model of a particle with radius a bound by a spring

with the spring constant k at a position h separated from a wall; (b) trapping a particle using optical

tweezers (weak harmonic potential with k ≈ 10−6–10−5 N/m [24, 26]); (c) ligand-functionalized

particle interacting with a polymer tether or polymer-grafted particle binding to receptors on the

substrate or cell (near-wall or lubrication regime depending on the ratio of (h − a)/a under a

moderately strong harmonic potential with k ≈ 10−4–10−2 N/m [27, 28]); (d) nanoparticle of

radius a = 50 − 250 nm bound to the cell via antibody–antigen interactions coinciding with the

lubrication regime (for molecules of size O(10 nm), (h−a)/a� 1), and a strong harmonic potential

with k = 0.1–1 N/m.

can be cast into a GLE that in one dimension reads,

M
dU

dt
= −

∫ t

−∞
ζ(t− t′)U(x, t′)dt′ − kx(t) +R(t), (1)

where M is the particle effective mass (described below), ζ(t) is the frictional memory kernel

capturing the hydrodynamic interactions, andR(t) with 〈R(t)〉 = 0 is the thermal fluctuating

force on the particle. ζ(t) and R(t) are linked via the second fluctuation-dissipation theorem

[29], 〈R(t)R(t′)〉 = kBTζ (|t− t′|) with Boltzmann constant kB and temperature T .

The frictional force Fdrag acting on a Brownian spherical particle in an unbounded, in-

compressible fluid (“bulk-regime”) is obtained by solving the time-dependent Stokes equa-

tion of an incompressible fluid of density ρ surrounding a no-slip solid particle surface,

and integrating the resulting hydrodynamic stress on the surface. In the frequency do-

main, Fdrag(ω) = −ζ∗(ω)U(ω) with the time-dependent drag coefficient ζ∗(ω) = 6πηa +

6πa2
√
iωρη + (2/3) πa3iωρ [30–32]. The first term represents the Stokes’s friction, the sec-

ond term arises from the diffusion of fluid momentum around the particle surface, and the

third term represents the fluid inertia added to the particle inertia. The resulting equation

of motion in the time domain is written as,

M
dU

dt
= −6πηaU(x, t) + 3a2

√
πρη

∫ t

−∞
|t− t′|−

3
2U(x, t′)dt′ − kx(t) +R(t) (2)
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with M = m + (2/3) πa3ρ = 3m/2 and (2/3)πa3ρ being the added mass. Comparing

Eqs. (1) and (2) yields ζ(t) = 12πηaδ(t)− 3a2
√
πρηt−

3
2 , also suggesting that we may write

R(t) = Rw(t) +Rc(t) with a white noise correlation 〈Rw(t)Rw(t′)〉 = 12πηakBTδ(t− t′) and

a colored noise correlation 〈Rc(t)Rc(t
′)〉 = −3a2

√
πρηkBT |t − t′|− 3

2 , and 〈Rw(t)Rc(t
′)〉 =

〈Rw(t)〉 〈Rc(t
′)〉 = 0.

In scenarios depicted in Fig. 1(c), the planar wall causes the hydrodynamic response of

the fluid to be altered, which leads to a more complex relaxation spectrum of the particle

velocity. Linear hydrodynamics suggests that the particle velocity can be written as a

perturbation about the bulk case: U(x, t) = U0(x, t) + U ′(x, t). When the particle is not

very close to the wall (“near-wall” regime, h/a� 1), prior studies for motion perpendicular

to the wall [33–35] predicted the correct transient scaling of Cv,⊥ ∼ t−
7
2 over intermediate

times (τν < t ≤ τw = h2/ν) before the true long-time scaling is observed. Recently, it

was indicated by analytical theories [22, 24] and optical trap experiments [24, 26] that Cv,⊥

shows a U0(x, t)-dominant t−
3
2 power-law decay for τν . t � τw, and a U ′⊥(x, t)-dominant

anticorrelation t−
5
2 power-law decay for t � τw, where the diffusion of fluid momentum is

highly impacted by the wall. Although Cv,⊥ can be obtained through a time-Fourier analysis

of the particle equation of motion in the absence of thermal fluctuations [22, 24], for purposes

of particle tracking, it is desirable to obtain the particle trajectory and directly calculate

the correlation functions. In order to bridge the aforementioned hydrodynamic correlations

due to U0(x, t) and U ′⊥(x, t) into a particle equation of motion, at the phenomenological

level, we propose a “composite GLE” that explicitly encodes the pertinent time scales using

a bridging function. If one solves a Langevin equation with a white noise alone over the

characteristic time scale of τw, the average velocity would behave as ∼ U(0)e−
t
τw . Therefore,

a natural choice of the bridging function woud be e−
t
τw and we arrive at:

M
dU⊥
dt

= −6πηaβU⊥(x, t)− A1(t)

∫ t

−∞
|t− t′|−

3
2U⊥(x, t′)dt′

− A2(t)

∫ t

−∞
|t− t′|−

5
2U⊥(x, t′)dt′ − kx(t) +R(t), (3)

where β =
(
1− 9a

8h

)−1
corrects the O(a/h) enhanced resistivity to the particle motion and

denotes Lorentz’s steady-state friction coefficient [36], M = (3m/2)
(

1− a3

8h3

)−1
is obtained

from the high-frequency admittance [22, 24] and shows how the wall affects the particle

effective mass, A1(t) = −3a2
√
πρη

(
e−

t
τw

)
gives the amplitude of the intermediate-time
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t−
3
2 correlation, and A2(t) = 9

8
am
√

ρ
πη
β2
(

1− e−
t
τw

)
complements A1(t) and yields the

amplitude of the long-time t−
5
2 decay. R(t) = Rw(t) + e−

t
τwRc1(t) +

(
1− e−

t
τw

)
Rc2(t)

with 〈Rw(t)Rw(t′)〉 = 12πηaβkBTδ(t − t′), 〈Rc1(t)Rc1(t
′)〉 = −3a2

√
πρηkBT |t − t′|− 3

2 ,

〈Rc2(t)Rc2(t
′)〉 = 9

8
am
√

ρ
πη
β2kBT |t−t′|−

5
2 , and 〈Rw(t)Rc1(t

′)〉 = 〈Rw(t)Rc2(t
′)〉 = 〈Rc1(t)Rc2(t

′)〉 =

0. This composite GLE essentially captures the relaxations corresponding to U0(x, t) for

all time scales and U ′⊥(x, t) for long times; we also note that in the limit of A2 → 0 and

β → 1 for particle far from a wall, we recover Eq. (2). We note that this approximation of

time-dependent bridging functions makes one use a non-stationary mathematical equation

to predict a stationary physical process. Consequently, as will be shown in Section III when

calculating all the time correlation functions associated with Eq. (3) we shall not invoke

time shifting and reversibility but carefully ensemble-average the trajectories to produce the

expected physical results.

As shown in Fig. 1(d), when adhesion is mediated directly via receptor–ligand inter-

actions without tethers as the case where nanocarriers functionalized with antibodies are

bound to the antigens on the surface of biological cells [37], the Brownian particle is ex-

tremely close (10–40 nm) to the wall (“lubrication-regime”) such that (h − a)/a � 1 with

strong viscous resistance to particle motion. Moreover, as τν ∼ τw, the fluid momentum

diffusion is curtailed by confinement, which would result in a faster (exponential) decay in

Cv than the algebraic correlation for the near-wall case, making the fluid memory effect

negligible over a wide span of t. While theoretical investigations of the VACF in the lu-

brication regime has not been reported, it has been shown that Cv decays exponentially

when particle is placed between parallel plates where the strong confinement influences the

fluid momentum diffusion [38, 39]. Therefore, we assume quasi-steady state and apply clas-

sical lubrication theory which yields Fdrag = − [6πηa2/(h− a)] dh/dt [40], and arrive at the

following approximate equation of motion for the particle:

M
dU⊥
dt

= −
[

6πηa2

h(t)− a

]
U⊥(x, t)− kx(t) +R(t), (4)

where M = 3m/2 accounts for the added mass and 〈R(t)R(t′)〉 = 12πηa2kBT
h(t)−a δ(t− t′).
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III. NUMERICAL METHOD

The numerical schemes for integrating Eqs. (2)–(4) and random force generation are

delineated in Appendix. In all three cases, we follow the Ito calculus for integrating stochastic

differential equations without including the “drift” term due to the spatially-dependent

ζ. We have confirmed that including the drift term does not lead to a difference in the

results. We consider a Brownian particle of a = 250 nm initially at x(0) = 0 with an

initial velocity U(0) released into a quiescent fluid (η = 10−3 kg/ms, ρ = 1 kg/m3, and

τν = 6.25 × 10−8 s) at T = 310 K, and numerically integrate Eqs. (2)–(4) by writing

U = dx/dt and expressing time derivatives by a finite difference method. The white noise

term of the random force R(t) is obtained by choosing the Gaussian random variable, while

the colored noise term is calculated by introducing the desired power-law correlation from the

frequency domain [41, 42]. The stochastic simulations require a large number of realizations

to reach satisfactory statistics of the dynamical properties. Since ζ(t) is hydrodynamic in

origin, the scaled relaxation of U(t) can be obtained in the presence or absence of the random

force R(t). Therefore, we also perform deterministic simulations in which the particle is

driven initially by a weak impulse giving U(0) in the absence of the random force. Based

on Onsager’s regression hypothesis [43], the correlation between a macroscopically-driven

U(0) and the subsequent U(t) would be equivalent to the calculated Cv(t) obtained from

the stochastic simulations.

For Eqs. (2) and (4), since the mathematical equations are stationary, the resulting time

correlation function 〈A(t1)A(t2)〉 equals 〈A(t)A(0)〉 as long as t = t1− t2. In such a case, we

follow the standard ensemble averaging procedure outlined in Ref. [44] with time shifting

and reversibility to obtain all the time correlation functions. In our stochastic simulations,

100 to 200 realizations with time steps N = 105 or 217 and step size ∆t = 10−10 s can yield

satisfactory averaging up to t ∼ 5τν compared with deterministic simulations. However, for

Eq. (3), the bridging functions e−
t
τw and 1 − e−

t
τw make the mathematical equation non-

stationary. Therefore, when calculating the autocorrelation functions in this case, for a given

initial configuration (separation from the wall and position within the harmonic potential)

of the particle, we need to take the ensemble average over enough realizations. In each

simulation, we allow the initial Ninit steps for equilibration before analyzing the statistics

of particle trajectories. In the results for a particle initially placed at the minimum of
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FIG. 2. Equilibrium probability density of the translational velocity, lnP (U), of the neutrally

buoyant nanoparticle (radius a = 250 nm) trapped in different harmonic potentials for (a) bulk,

(b) near-wall (h/a = 2), and (c) lubrication (h/a = 1.14) regimes. The solid curves denote the

Maxwell–Boltzmann distribution and the dashed curves show 10 % error about the Maxwell–

Boltzmann distribution.

the harmonic potential in the near-wall regime, at least 2000 realizations with N = 214,

∆t = 10−9 s, and Ninit = 10 are required to reach satisfactory averaging up to t ∼ τν . The

corresponding Cx(t) therefore yields an average trajectory of the particle initially placed at

the minimum of the harmonic potential. Consequently, as will be seen in our results, Cx(t)

shows an initial increase and then decreases as the particle velocity changes sign.

IV. RESULTS & DISCUSSION

A. Equilibrium Statistics

In our stochastic simulations, the particle temperature agrees satisfactorily with the preset

temperature (i.e., within 7 % error for Eq. (3) and 0.1 % for Eq. (4)). Figures 2 and 3

present the equilibrium distribution of particle velocity and potential of mean force obtained

from the distribution of particle center-of-mass position for various conditions considered in

this work. Clearly, the stochastic GLE simulations yield satisfactory equilibrium statistics

and reproduce the correct particle configuration. Moreover, the distributions of particle

velocity and center of mass are within 10 % of the Boltzmann distribution.

Figure 4 shows the nanoparticle mean squared displacement (MSD) for different hydro-
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FIG. 3. Equilibrium potential of mean force (PMF), − lnP (x), of the neutrally buoyant nanoparti-

cle (a = 250 nm) trapped in different harmonic potentials for (a,b) bulk, (c,d) near-wall (h/a = 2),

and (e,f) lubrication (h/a = 1.14) regimes. P (x) is the equilibrium probability of the nanoparticle

center-of-mass position. The dots are GLE results and the solid curves denote − kx2

2kBT
.

dynamic and adhesion regimes. For all cases, MSD exhibits a quadratic trend denoting the

ballistic motion of a nanoparticle at very short times. For k = 0 N/m and k = 10−6 N/m,

MSD transitions to a purely diffusive behavior within our simulation time, with the slope

of MSD being equivalent to the diffusivity, D = kBT
6πηaβ

. As the harmonic potential is more

substantial, MSD gradually plateaus suggesting the particle is trapped by the potential.

B. Autocorrelation Functions

As shown in Fig. 5, for an unbound, neutrally-buoyant Brownian particle in a bulk fluid

(Eq. (2)), both the normalized Cv(t) from stochastic GLE (100 realizations, ∆t = 10−10

s) and U(t)/U(0) from deterministic GLE (∆t = 10−10 s) agree remarkably well with the

analytical solution of the normalized Cv(t) for particle in a linearized Navier–Stokes fluid

[23]. Specifically, Cv(t) shows an initial exponential decay at short times (t � τν) due to

the instantaneous fluid resistance (6πηa). This is followed by a t−3/2 algebraic decay at
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FIG. 4. Mean squared displacement with error bars of the neutrally buoyant nanoparticle (a = 250

nm) in different hydrodynamic regimes subject to the harmonic potential of (a) k = 0 N/m, (b)

k = 10−6 N/m, (c) k = 10−3 N/m, (d) k = 10−2 N/m, (e) k = 0.1 N/m, and (f) k = 1 N/m as will

be shown in Fig. 7.

times longer than the viscous relaxation time—that is, for t ≥ τν , Cv(t) merges with a t−3/2

algebraic decay characterizing the long-time tail resulted from the fluid vortex diffusion.

In Fig. 6, we validate our composite GLE (Eq. (3)) by comparing Cv(t) (or U(t)/U(0))

from the deterministic GLE (∆t = 10−9 s) with the normalized Cv(t) from Ref. [24] which

includes the full velocity correlation spectrum for a slightly denser particle at different dis-

tances from the wall. Following the initial exponential decay, Cv first shows a t−3/2 scaling

over t ∼ τν and dictates a faster decay (approximately t−7/2) that deviates from t−3/2 scal-

ing as t ∼ τw. This faster intermediate decay denotes the appearance of wall reflection for

the vortex diffusion, which eventually yields the anticorrelation (oscillation) followed by a

final long-time t−5/2 scaling as t � τw. Remarkably, the result predicted by the composite

GLE for h/a = 2 agrees closely with the literature result. Consistent with Ref. [24], the

anticorrelation in Cv occurs at an earlier time for smaller h/a, and the long-time t−5/2 decay

is nearly independent of h/a, as the coefficient A2 in Eq. (3) also suggests.

In Fig. 7, the normalized Cv(t) and Cx(t) from both stochastic and deterministic sim-
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FIG. 5. Normalized VACF of a neutrally-buoyant Brownian particle in an incompressible, quies-

cent, unbounded fluid medium obtained from the stochastic and deterministic GLE (Eq. (2)). The

short-time exponential correlation, the long-time algebraic decay, and the full analytical solution

of linearized Navier–Stokes equations [23] are shown for comparison.

ulations are compared in the presence of a harmonic spring for different particle positions

relative to the wall. For a particle in the bulk (Figs. 7(a) and 7(b); 100 stochastic sim-

ulations with ∆t = 10−10 s) and near the wall with h/a = 2 (Figs. 7(c) and 7(d); 2000

stochastic simulations with ∆t = 10−9 s), the chosen spring constant is consistent with an

optical trap or adhesion with polymer tethers (Figs. 1(b) and 1(c)); for a particle in the lu-

brication layer (Figs. 7(e) and 7(f); 200 realizations with ∆t = 10−10 s) the spring constant

is chosen for an optical trap or ligand-receptor binding (Figs. 1(b) and 1(d). Similar to Fig.

5, our stochastic and deterministic solutions in Cv(t) agree for different h/a and k, justifying

the self-consistency of our method. When the particle is bound by a spring, a second time

scale, τk = 2π
√

m
k

, characterizing the spring vibration frequency comes into play. As is

noticeable in Fig. 7, oscillations in Cv(t) occur due to the spring mechanical force, with the

minimum of the oscillation being observed at t ∼ τk. It is expected that at much longer

times when the spring force −kx balances the drag force 6πηaU , Cv(t) would exhibit the

t−7/2 scaling for a particle in the bulk and t−9/2 scaling for a particle near a wall at t & 6πηa
k

[24]. We note that the cases of k = 10−2 N/m in Figs. 7(a) and 7(c) already exhibit the

expected final t−7/2 and t−9/2 correlations at t/τν > 102. In order to resolve this correlation

for weaker springs, longer simulations are necessary. The comparison of τk to τν for different
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FIG. 6. Normalized VACF of a non-neutrally-buoyant Brownian particle near an infinite plane wall

in an incompressible, quiescent fluid medium for different separations from the wall. The symbols

are the corresponding results from Ref. [24]. ρp/ρ = 2.25 with ρp being the density of the particle.

TABLE I. Comparison of the spring time scale to the viscous relaxation time

k (N/m) τk (s) τk/τν

1 5.08× 10−8 0.813

0.1 1.61× 10−7 2.572

10−2 5.08× 10−7 8.133

10−3 1.61× 10−6 25.719

10−6 5.08× 10−5 813.306

k values is summarized in Table I. The corresponding correlation of particle displacement

Cx(t) decays at the time scale where the particle velocity starts to decorrelate with its initial

value. Therefore, in the presence of the spring, the decrease of Cx(t) is prominent at t ∼ τk.

As indicated in Section III, due to the mathematical non-stationarity of the composite GLE

for h/a = 2, in Fig. 7(d) the ensemble average of 〈δx(t)δx(0)〉 is essentially equivalent to

〈δx(t)〉. Consequently, for a particle initially placed at the harmonic potential minimum, Cx

first increases and then decreases as U⊥(t) changes sign.

In order to further validate our GLE results for a bound nanoparticle in the lubrication

regime, which is pertinent to nanocarrier adhesion encountered in targeted drug delivery,
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FIG. 7. Normalized VACF and PACF of a neutrally-buoyant Brownian particle at different lo-

cations subject to harmonic potentials of different strengths: (a) VACF in an unbounded (bulk)

fluid, (b) PACF in an unbounded fluid, (c) VACF for h/a = 2, (d) PACF for h/a = 2, (e) VACF

for h/a = 1.14, and (f) PACF for h/a = 1.14. For the VACF, both stochastic and deterministic

solutions are shown for comparison.

we compare the GLE results with the DNS results [18, 45] for h/a = 1.14 and k = 1 in

Fig. 8(a). The stochastic solutions for DNS (25 realizations, ∆t = 10−10 s) are obtained

using the fluctuating hydrodynamics approach [15, 18] with the finite element method where

the particle is immersed in a fluctuating Navier–Stokes fluid within a cylindrical channel of

radius R = 10a. Meanwhile, we calculate the non-fluctuating counterpart of the particle

motion using DNS and obtain the deterministic solutions for a particle initially driven by

a weak force. Strikingly, our GLE results for k = 1 N/m in Figs. 7(e) and 8(a) agree well

with the corresponding DNS results, which validates the general applicability of our quasi-

steady-state lubrication assumption in Eq. (4) when a strong adhesion is present. The

slightly earlier spring oscillation and the absence of a second oscillation due to the wall for

the GLE results are caused by the absence of wall curvature and the neglect of fluid transient

diffusion in Eq. (4). In the absence of adhesion or when the particle is only trapped by a

weak force (Fig. 8(b); k = 0 or 10−6 N/m), the deviation between GLE and DNS becomes
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FIG. 8. Normalized VACF of a neutrally-buoyant Brownian particle in the lubrication regime with

h/a = 1.14 in the presence of (a) a strong adhesion with k = 1 N/m and)(b) a weak trapping force

obtained from GLE and DNS.

more apparent due to the lack of an appropriate memory kernel. In such a case, one may

invoke a composite GLE that incorporates the suitable power-law correlations obtained from

DNS.

C. Milestoning Rate from the Reactive Flux Formalism

Invoking the reactive flux formalism [25], the effect of hydrodynamics on the kinetics of

a particle originating from x < xm crossing a predefined milestone xm can be character-

ized through the correlation for characteristic state functions: kcorr(t) ≡
〈hA(x(0))ḣB(x(t))〉

〈hA(x(0))〉 =

d
dt
〈hA(x(0))hB(x(t))〉
〈hA(x(0))〉 , where hA = 1 if |x| ≤ xm and hA = 0 if |x| > xm; hB = 0 if |x| ≤ xm

and hB = 1 if |x| > xm. A typical milestoning correlation function shows an initial value
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FIG. 9. Milestoning correlation function kcorr(t) for h/a = 1.14, k = 1 N/m, and xm = 2Å

(corresponding to the energy of 4.68 kBT within the harmonic potential). The dashed lines indicate

dropping of km from 100 % to 5 %, and the arrow indicates the determination of τm.

of k followed by a relaxation process characterized by a time scale of τm (Fig. 9). Here,

km (s−1) = kcorr(t = 0) is the rate of a particle passing the milestone, and τm(s) is the time

scale when the net flux of a particle passing the milestone goes to zero. We choose τm to be

the time at which kcorr(t) decays to less than 5 % of km. Figure 10(a) compares the mile-

stoning rate for various particle positions, spring constants, and milestones of the harmonic

potential. If the milestoning process is dominated by particle diffusion (black histograms),

km ∝ D. Distinct from the expected trend for the scaled diffusivity for a particle at different

positions from the wall (inset), the result indicates that the lubrication force enhances km

as the upward force pushes the particle away from the equilibrium position and facilitates

the rate of milestone crossing. The reconstructed graph for the scaled km with different

spring constants (Fig. 10(b)) shows that km roughly scales as k1/2, the intuitive result de-

termined by the vibration rate of a particle within a harmonic potential (dashed line). The

spreading of the data (i.e. the deviations from the dashed line) across different milestones

and hydrodynamic regimes emphasizes the effect of fluid viscous dissipation. Because the

hydrodynamic time scale for the lubrication force is smaller than that in the bulk, the more

distinct separation of hydrodynamic and spring time scales makes the spring effect decou-

pled from the hydrodynamics. It is, therefore, not surprising that when the particle is in

the lubrication regime, km conforms more with the k1/2 scaling. The similar scaling for the

equilibration frequency τ−1m shown in Fig. 10(c) suggests that km ∝ τ−1m , and our determi-
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FIG. 10. (a) Milestoning rate km(1/s) for different particle separations from the wall, spring

constants, and milestones. h/a = 100 corresponds to a particle in an unbounded fluid. Black

(control): purely diffusive expectation where the histogram for the bulk is obtained by averaging

all the km values for the bulk, and the histogram for h/a = 1.14 is obtained by multiplying the

bulk result by β−1 = (h − a)/a. Other histograms from left to right: Fm = 4.68kBT and k = 1

N/m (red), k = 0.1 N/m (light green), k = 0.01 N/m (yellow); Fm = 3.79kBT and k = 1 N/m

(dark blue), k = 0.1 N/m (pink), and k = 0.01 N/m (cyan); Fm = 2.68kBT and k = 1 N/m

(grey), k = 0.1 N/m (dark red), k = 0.01 N/m (dark green). The inset shows the scaled diffusivity

β−1 for a purely diffusive Brownian particle at different h/a. (b) The scaled milestoning rate

km/km(k = 1 N/m) as a function of spring constant for different configurations. The dashed line

corresponds to the scaling for purely mechanical motion of a particle without any viscous damping.

(c) Scaled equilibration frequency τm(k = 1 N/m)/τm as a function of spring constant for different

configurations. The symbol and line descriptions are the same as (b).

nation of these two characteristic parameters for milestoning without a reaction coordinate

is self-consistent.

V. CONCLUSION

In conclusion, we introduced a composite GLE as a feasible unified framework for predict-

ing the particle dynamics in the presence of thermal fluctuations across different hydrody-

namic and adhesion regimes. Analyzing particle trajectories generated from the stochastic

simulations of the composite GLE allows us to extract the particle autocorrelation functions
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of velocity and position, which dictate how the particle responds to instantaneous hydrody-

namic resistance, Brownian force, and the thermodynamic driving force originated from the

adhesive energy landscape. In the spirit of the reactive flux formalism, we characterize the

milestoning correlation function and find that both wall-hydrodynamics and adhesive forces

have significant impact on the kinetics of a particle crossing a specific milestone. Specifically,

weaker hydrodynamic resistance or softer binding potential yield a smaller milestoning rate.

This effect is critical when simultaneous binding/rolling of nanoparticles/cells occur such

as in targeted drug delivery or during the mounting of an immune response. Generalizing

the methodology, we envision that when the particle is subject to a complex energy land-

scape with the milestone being chosen to be a true transition state, the proposed formalism

can characterize the effect of hydrodynamic interactions on attachment–detachment kinetics

involved in mono/multivalent binding.
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Appendix A: Numerical Integration of Generalized Langevin Equations

Equations (2)–(4) can be cast in the form of

d2x

dt2
= −Θ1(t)

dx

dt
−Θ2(t)

∫ t

0

|t− t′|−λ dx
dt′
dt′ −Θ3(t)x+ Θ4(t) (A1)

with the initial conditions x(0) = 0, dx
dt

∣∣
t=0

= U(0) =
√

kBT
M

, and d2x
dt2

∣∣∣
t=0

= U ′(0) = 0.

If we express the derivatives using finite differences, the corresponding explicit discretized

equation reads

xi+1 − 2xi + xi−1
(∆t)2

= −Θ1,i
xi+1 − xi−1

2∆t
−Θ2,i

i−1∑
j=1

[
|(i− j)∆t|−λ

(
xj+1 − xj−1

2∆t

)
∆t

]
−Θ3,ixi+Θ4,i,

(A2)

where ∆t is the time step size and we have changed the lower limit of integration from −∞

to 0 as the numerical integration would be counted from time zero. The initial conditions
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are x1 = 0 and x0 = −U(0)∆t, x−1 = −2U(0)∆t . . . for times earlier than the initial time of

numerical integration. This explicit scheme with a fixed ∆t allows us to directly make use

of xj and Uj for j ≤ i efficiently. In the following subsections, we delineate the numerical

schemes for Eqs. (2)–(3) with a memory kernel and Eq. (4) separately.

In all three cases, we follow the Ito calculus for integrating stochastic differential equations

and neglect the “drift” due to the spatially-dependent drag ζ(x) (or the corresponding

spatially-dependent particle diffusivity D(x) = kBT
ζ(x)

). We have also modified the equation

of motion for the lubrication case by including an additional drift (= ζ(x)dD(x)
dx

= −kBT
ζ(x)

dζ
dx

)

[46], the results are nearly identical to those without the drift considered.

1. Brownian Particle in an Unbounded Fluid Domain: Equation (2)

Comparing terms on the right hand side of Eq. (A1), clearly the scheme may be unstable

when λ > 1 and ∆t� 1 as Θ’s and (dx/dt) are finite. To avoid this issue in integrating Eq.

(2) with λ = 3/2, the memory kernel term in Eq. (A1) is integrated by parts to yield

d2x

dt2
= −Θ1(t)

dx

dt
− Θ2(t)

1− λ
t1−λ

dx

dt′

∣∣∣∣
t′=0

− Θ2(t)

1− λ

∫ t

0

|t− t′|1−λd
2x

dt′2
dt′ −Θ3(t)x+ Θ4(t) (A3)

with |t− t′|1−λ (dx/dt′)
∣∣
t′=t
→ 0. In its discretized form, we have[

1 +
Θ1,i

2
∆t

]
xi+1 =

[
2−Θ3,i(∆t)

2
]
xi −

[
1− Θ1,i

2
∆t

]
xi−1 −

Θ2,i

1− λ
|i∆t|1−λU(0)(∆t)2

− Θ2,i

1− λ

i−1∑
j=1

[
|(i− j)∆t|1−λ (xj+1 − 2xj + xj−1) ∆t

]
+ Θ4,i(∆t)

2. (A4)

2. Brownian Particle Near a Planar Bounding Wall: Equation (3)

When 2 < λ < 3 as seen in Eq. (3), a second integration by parts for the memory kernel

is required. Thus we obtain the form of

d2x

dt2
= −Θ1(t)

dx

dt
− Θ2(t)

1− λ
t1−λ

dx

dt′

∣∣∣∣
t′=0

− Θ2(t)

(1− λ)(2− λ)
t2−λ

d2x

dt′2

∣∣∣∣
t′=0

− Θ2(t)

(1− λ)(2− λ)

∫ t

0

|t− t′|2−λd
3x

dt′3
dt′ −Θ3(t)x+ Θ4(t), (A5)

where both |t− t′|1−λ (dx/dt′)
∣∣
t′=t

and |t− t′|2−λ (d2x/dt′2)
∣∣
t′=t

go to zero. To further ensure

the numerical stability for Eq. (3) as the integral-differential equation has a more complex
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structure, in the spirit of Crank-Nicholson method we break the memory kernel integration

into ti+1 and ti terms along with Finite Difference discretization, and arrive at

xi+1 − 2xi + xi−1
(∆t)2

= −Θ1,i
xi+1 − xi−1

2∆t
− Θ2,i

1− λ
|i∆t|1−λU(0)− Θ2,i

(1− λ)(2− λ)
|i∆t|2−λU ′(0)

− Θ2,i

(1− λ)(2− λ)

{
i∑

j=1

|(i+ 1− j)∆t|2−λ
[
xj+1 − 3xj + 3xj−1 − xj−2

∆t2

]

+
i−1∑
j=0

|(i− j)∆t|2−λ
[
xj+1 − 3xj + 3xj−1 − xj−2

∆t2

]}
−Θ3,ixi + Θ4,i

(A6)

or

xi+1 =

[
1 +

Θ1,i∆t

2
+

Θ2,i(∆t)
2−λ

2(1− λ)(2− λ)

]−1
×
{[

2 +
3Θ2,i(∆t)

2−λ

2(1− λ)(2− λ)
−Θ3,i(∆t)

2

]
xi −

[
1− Θ1,i

2
∆t+

3Θ2,i(∆t)
2−λ

2(1− λ)(2− λ)

]
xi−1

+
Θ2,i(∆t)

2−λ

2(1− λ)(2− λ)
xi−2 −

Θ2,i

1− λ
|i∆t|1−λU(0)(∆t)2

− Θ2,i

(1− λ)(2− λ)

i−1∑
j=1

[
|(i+ 1− j)∆t|2−λ (xj+1 − 3xj + 3xj−1 − xj−2)

]
− Θ2,i

(1− λ)(2− λ)

i−1∑
j=0

[
|(i− j)∆t|2−λ (xj+1 − 3xj + 3xj−1 − xj−2)

]
+ Θ4,i(∆t)

2

}
(A7)

as U ′(0) = 0.

3. Brownian Particle Extremely Close to a Planar Bounding Wall: Equation (4)

In the absence of the memory kernel, Θ2 = 0, and Eq. (A1) can be numerically integrated

using Finite Difference alone:[
1 +

Θ1,i

2
∆t

]
xi+1 =

[
2−Θ3,i(∆t)

2
]
xi −

[
1− Θ1,i

2
∆t

]
xi−1 + Θ4,i(∆t)

2. (A8)

Appendix B: Noise Generation for R(t)

The fluctuations in Eqs. (2)–(4) are determined through random number generation.

For fluctuations with a δ-function correlation, we first generate Gaussian white noise ξi
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FIG. 11. Noise autocorrelation function for λ = 1.5 and 2.5. Symbols are simulated results and

lines are the prescribed scalings.

that has zero mean and unit variance. Ri is then obtained by Ri = ξi
√
ζ0/∆t to preserve

〈R2
i 〉 = ζ0/∆t and 〈Ri〉 = 0 for a desired prefactor ζ0. For fluctuations with a power-law

correlation of index λ, we apply an approximate method delineated in Refs. [41] and [42]

to generate series of colored random numbers. Briefly, the prescribed noise spectrum is

introduced in the frequency f (inverse-time) domain by taking the following procedures:

1. Generate Gaussian white noise ξi for i = 1 ∼ N if the total number of time steps is

N .

2. Fourier transform ξi to obtain ξ̂i = F{ξi}.

3. Introduce the colored correlation by multiplying ξ̂i by f
(λ−1)/2
i .

4. Inverse Fourier transform to obtain ξλ,i = F−1{ξ̂if (λ−1)/2
i } with 〈ξλ,iξλ,j〉 ∝ |i− j|λ.

5. First normalize ξλ,i and rescale it to obtain 〈RiRj〉 = ζ0|(i− j)∆t|−λ and 〈Ri〉 = 0.

As seen from Fig. 11, the normalized noise autocorrelation function CR, 〈R1Ri〉 / 〈R1R1〉,

for 20 realizations satisfies the prescribed scaling, |i∆t|−λ.
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