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I. INTRODUCTION

Nonzero ground-state disorder and associated entropy,
S0 6= 0, is an important subject in statistical mechanics;
a physical realization is provided by water ice, for which,
at atmospheric pressure, S0 = 0.82± 0.05 cal/(K-mole),
i.e., S0/R = 0.41 ± 0.03 [1]-[3]. A particularly simple
model exhibiting ground-state entropy without the com-
plication of frustration is the q-state Potts antiferromag-
net (AF) on a lattice Λ for sufficiently large q [4]. This
subject also has an interesting link with mathematical
graph theory, since the partition function of the q-state
Potts antiferromagnet at zero temperature on a graph G
satisfies

Z(G, q, T = 0)PAF = P (G, q) , (1.1)

where P (G, q) is the chromatic polynomial of G, which
is equal to the number of ways of coloring the vertices
of G with q colors subject to the constraint that no two
adjacent vertices have the same color. Such a color as-
signment is called a proper vertex q-coloring of G. The
minimum number of colors required for a proper vertex
q-coloring of the graph G is called the chromatic num-
ber of the graph, denoted χ(G). We will focus here on
regular N -vertex lattice graphs ΛN and, in particular,
on the thermodynamic limit N → ∞ (with appropriate
boundary conditions), which will be denoted simply as
Λ. In this limit, the ground-state (i.e., zero-temperature)
degeneracy per vertex (site) of the q-state Potts antifer-
romagnet on Λ is given by

W (Λ, q) = lim
N→∞

P (ΛN , q)1/N , (1.2)

and the associated ground-state entropy per site is given
by S0(Λ, q) = kB lnW (Λ, q). It will be convenient to
express our bounds on the ground-state entropy per site
in terms of its exponent, eS0(Λ,q)/kB = W (Λ, q).
In [5, 6] by S.-H. Tsai and one of us (RS), lower bounds

on W (Λ, q) were derived for the triangular (tri), honey-
comb (hc), (4·82), and sqd lattices. Here an Archimedean
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lattice Λ is defined as a uniform tiling of the plane
with a set of regular polygons such that all vertices are
equivalent. Our notation for an Archimedean lattice fol-
lows the standard mathematical format [7, 11], namely
Λ = (

∏

i p
ai

i ), where the product is over the regular poly-
gons pi that are traversed in a circuit around a vertex
and ai ≥ 1 refers to possible contiguous repetitions of a
given type of polygon in such a traversal. The sqd lat-
tice is a nonplanar lattice formed from the square lattice
by adding edges (bonds) connecting the two sets of di-
agonal next-nearest-neighbor vertices in each square. In
[7], Shrock and Tsai derived corresponding lower bounds
on W (Λ, q) for all Archimedean lattices Λ and their pla-
nar duals, using a coloring compatibility matrix (CCM)
method employed earlier by Biggs for the square (sq) lat-
tice [8], in combination with the Perron-Frobenius theo-
rem [9] and a theorem giving a lower bound on the max-
imal eigenvalue of a symmetric non-negative matrix [10].

In this paper we introduce several generalizations of
the method used in [5]-[8] and apply these to derive im-
proved lower bounds on W (Λ, q) for several lattices Λ.
Refs. [8] and [5, 6] also used CCM methods to derive up-
per bounds on W (Λ, q). However, it was shown in [5, 6]
that, while the upper bounds were moderately restrictive,
the lower bounds were very close to the actual values of
W (Λ, q). Therefore, as in [7], we focus here on the lower
bounds on W (Λ, q).

This paper is organized as follows. In Section II we ex-
plain the basic coloring compatibility matrix method. In
Section III we discuss our generalizations of this method.
In Sections IV-VI we apply our generalized methods to
derive new and more restrictive lower bounds on W (Λ, q)
for the square, triangular, and honeycomb lattices. In
Sections VII and VIII we present corresponding results
for two heteropolygonal Archimedean lattices, namely,
the (4 · 82) and (3 · 6 · 3 · 6) (i.e., kagomé) lattices. In
Section IX we report results for the sqd lattice. In Sec-
tion X we compare the large-q Taylor series expansions of
our lower bounds for the various lattices with the large-
q series expansions of the actual W functions for these
respective lattices. Our conclusions are given in Section
XI. We list some results on r-partite lattices in Appendix
A, the lower bounds on W (Λ, q) for Archimedean lattices
Λ from [5]-[8] in Appendix B, and some higher-degree al-
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gebraic equations that are used in the text in Appendix
C.

II. BASIC CALCULATIONAL METHOD

In this section we explain the basic calculational
method used in [5]-[8] to derive lower bounds on W (Λ, q).
In the next section we generalize this method in several
ways. We consider a sequence of (regular) lattices of type
Λ of length Lx = n vertices in the longitudinal direction
and width Ly = m vertices in the transverse direction.
In the thermodynamic limit n → ∞, m → ∞ with the
aspect ratio m/n finite, the boundary conditions do not
affect W (Λ, q). It will be convenient to take periodic
boundary conditions (PBCs) in both directions. If a lat-
tice Λ is r-partite, then m and n are chosen so as to
maintain this property.
The construction of the coloring compatibility matrix

T begins by considering an n-vertex path Pn in the lon-
gitudinal direction on Λ. The number of proper vertex
q-colorings of Pn is the chromatic polynomial P (Pn, q).
Now focus on two adjacent parallel paths, Pn and P ′

n.
Define compatible proper q-colorings of the vertices of
these adjacent paths as proper q-colorings such that no
two adjacent vertices on Pn and P ′

n have the same color.
One can then associate with this pair of adjacent paths
an N ×N dimensional symmetric matrix T , where N =
P (Pn, q) = P (P ′

n, q), with entries TPn,P′

n
= TP′

n,Pn
= 1

or 0 if the proper q-colorings of Pn and P ′
n are or are not

compatible, respectively. This matrix is thus defined in
the space of allowed color configurations for these adja-
cent paths.
It follows that, for fixed m and n,

P (Λm×n, q) = Tr(Tm) . (2.1)

For a given n, since T is a nonnegative matrix, one can
apply the Perron-Frobenius theorem [9] to conclude that
T has a real positive maximal eigenvalue λmax. Hence,
for fixed n,

lim
m→∞

Tr(Tm)
1

mn = (λmax)
1

n . (2.2)

Therefore, taking the n → ∞ limit,

W (Λ, q) = lim
n→∞

(λmax)
1

n . (2.3)

Let us denote the column sum

κj(T ) =

N
∑

i=1

Tij , (2.4)

which is equal to the row sum

ρj(T ) =

N
∑

i=1

Tji , (2.5)

(since T T = T ) and the sum of all entries of T as

S(T ) =

N
∑

i,j=1

Tij . (2.6)

Note that S(T )/N is the average row sum (equal to the
average column sum).
For a general nonnegative N × N matrix A, [9], one

has the nested inequalities

min{κj(A)} ≤ λmax(A) ≤ max{κj(A)} (2.7)

and

min{ρj(A)} ≤ λmax(A) ≤ max{ρj(A)} (2.8)

for j = 1, ...,N . Since T T = T , these are equivalent here.
One also has the following more restrictive one-parameter
family of lower bounds depending on the parameter k, for
a symmetric nonnegative matrix T [10]:

[

S(T k)

N

]1/k

≤ λmax(T ) . (2.9)

Refs. [5]-[8] derived lower and upper bounds on
W (Λ, q) using the k = 1 special case of (2.9). We will
denote a generic lower bound on W (Λ, q) with the sub-
script ℓ, as W (Λ, q)ℓ. We will distinguish specific lower
bounds that we obtain with the additional subscripts b
and k, as explained below. The lower bounds obtained
in [5]-[8] were for b = 1 and k = 1. Refs. [5]-[7] stud-
ied how close the upper and lower bounds obtained on
W (Λ, q) were to the actual values of W (Λ, q) for a num-
ber of lattices, where the latter were determined mainly
from Monte Carlo calculations, augmented by large-q se-
ries expansions together with a few exact results. It was
found that for a given lattice Λ, as q increases beyond
the region of χ(Λ), the lower bounds rapidly approach
very close to the actual value of W (Λ, q).
We next introduce some notation that will be used be-

low for reduced functions obtained from W (Λ, q) which
will be analyzed in the large-q limit. This large-q limit
is the natural one to consider for chromatic polynomials,
since the constraint in a proper q-coloring of the vertices
of a graph, namely that no two adjacent vertices have
the same color, becomes progressively less restrictive as
the number of colors increases to large values. The chro-
matic polynomial of an arbitrary N -vertex graph G is a
polynomial of degree N , and consequently, W (Λ, q) ∼ q
as q → ∞. In order to deal with a finite quantity in
the q → ∞ limit, one therefore considers the reduced (r)
function

Wr(Λ, q) =
W (Λ, q)

q
. (2.10)

A variable equivalent to 1/q that is convenient to use for
a large-q series expansion of Wr(Λ, q) is

y =
1

q − 1
. (2.11)
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These large-q (i.e., small-y) series expansions are nor-
mally given for the function

W (Λ, y) =
Wr(Λ, q)

(1− q−1)∆Λ/2
=

W (Λ, q)

q(1− q−1)∆Λ/2
, (2.12)

where ∆Λ is the lattice coordination number of the lattice
Λ (i.e., the degree of the vertices of Λ). In terms of the
expansion variable y, these series thus have the form

W (Λ, y) = 1 +

∞
∑

k=1

wΛ,ky
k . (2.13)

Analogously, for the expansion of our lower bound, we
define the reduced lower bound function W (Λ, y)ℓ as

W (Λ, y)ℓ =
W (Λ, q)ℓ

q(1 − q−1)∆Λ/2
. (2.14)

Before proceeding, we note a subtlety in the definition
of W (Λ, q). As pointed out in [12], the formal eq. (1.2)
is not, in general, adequate to define W (Λ, q) because of
a noncommutativity of limits

lim
N→∞

lim
q→qs

P (ΛN , q)1/N 6= lim
q→qs

lim
N→∞

P (ΛN , q)1/N

(2.15)
at certain special points qs. We denote the definitions
based on the first and second orders of limits in (2.15) as
W (Λ, q)DNq

andW (Λ, q)DqN
, respectively. This noncom-

mutativity can occur for q < qc(Λ), where qc(Λ) denotes
the maximal (finite) real value of q where W (Λ, q) is non-
analytic [12]. These values include qc(sq) = 3, qc(tri) =

4, and the formal value qc(hc) = (3 +
√
5)/2 = 2.618...

[4, 12] for the square, triangular, and honeycomb lat-
tices. As explained in [12], the underlying reason for
the noncommutativity is that as q decreases from large
values, there is a change in the analytic expression for
W (Λ, q) as q decreases through the value qc(Λ). We do
not have to deal with this complication here because ele-
mentary results yield exact values of W (sq, 2), W (hc, 2),
W ((4 · 82), 2), and W (tri, 3) (see Eqs. (A1) and (A2)),
namely

W (sq, 2) = W (hc, 2) = W ((4·82), 2) = 1, W (tri, 3) = 1 .
(2.16)

Hence, our lower bounds are not needed at the respective
values q = 2 for the square, honeycomb, and (4 · 82)
lattices or for q = 3 on the triangular lattice, and we
therefore focus on their application to q ≥ 3 for Λ =
sq, hc, (4 · 82) and to q ≥ 4 for Λ = tri, and similarly
for other lattices.

III. GENERALIZED COLORING
COMPATIBILITY MATRIX METHOD

A. Coloring Compatibility Matrix Joining
Adjacent Strips of Width b

The lower bounds on W (Λ, q) derived in [5]-[8] for vari-
ous lattices Λ used Eq. (2.9) with T being a coloring com-

patibility matrix joining adjacent paths and with k = 1.
Here we generalize this method in several ways. Our first
generalization is to use a coloring compatibility matrix
that joins adjacent strips of width b ≥ 2 vertices, rather
than adjacent one-dimensional (b = 1) paths. For sim-
plicity, we explain this for the square lattice; similar dis-
cussions apply for other lattices. We define the matrix T
to enumerate compatible colorings of a strip of transverse
width b vertices and an adjacent parallel strip of width
b and arbitrary length Lx vertices, with cyclic boundary
conditions. (Here, by cyclic boundary conditions for a
given strip, we mean in the x, i.e., longitudinal, direction
along this strip). The condition that these strips are ad-
jacent is equivalent to the statement that they share a
common set of edges. Thus, this CCM is an N ×N ma-
trix, where N is the chromatic polynomial for the cyclic
strip of width b vertices and arbitrary length Lx, with
cyclic boundary conditions. For this CCM, the sum of
elements S(T ) is equal to the chromatic polynomial of a
strip of width Ly = 2b − 1 vertices and arbitrary length
Lx vertices with cyclic boundary conditions. These chro-
matic polynomials of lattice strips of a fixed width Ly

and arbitrarily great length Lx with periodic boundary
conditions in the longitudinal direction and free bound-
ary conditions in the transverse direction have the form

P (Λ, Ly × Lx, cycl., q) =

Ly
∑

d=0

c(d)
nP (Ly,d)
∑

j=1

(λsq,Ly ,d,j)
Lx

(3.1)
with

c(d) =

d
∑

j=0

(−1)j
(

2d− j

j

)

qd−j , (3.2)

where
(

a
b

)

= a!/[b!(a − b)!] is the binomial coefficient.
For a table of the nP (Ly, d), see [13]. Because of the
limits (2.2) and (2.3), only the largest λΛ,Ly,d,j enters in
the lower bound (2.9) in the thermodynamic limit. As
specific studies such as [14]-[17] showed, the dominant λ
for the values of q of relevance here is λΛ,Ly,0,1.
Applying this generalization of the coloring compati-

bility matrix in combination with the k = 1 case of (2.9),
we derive the new lower bound for b ≥ 2:

W (Λ, q) ≥ W (Λ, q)ℓ;b,1 , (3.3)

where

W (Λ, q)ℓ;b,1 =

[

λΛ,2b−1,0,1

λΛ,b,0,1

]
1

b−1

. (3.4)

The final subscript, 1, in W (Λ, q)ℓ;b,1 in (3.3) and (3.4)
is the value of k.
The corresponding lower bound for W (Λ, y) is

W (Λ, y) ≥ W (Λ, y)ℓ;b,1 , (3.5)
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where, in accordance with Eq. (2.12),

W (Λ, y)ℓ;b,1 =
W (Λ, q)ℓ;b,1

q(1− q−1)∆Λ/2
, (3.6)

with ∆Λ being the coordination number of the lattice
Λ, as before. The inequality (3.3) with (3.4) is actually
an infinite family of lower bounds depending on the strip
width b = 1, 2, ..., and similarly with (3.5) and (3.6). This
is one of our two major results, which we will proceed to
apply to a number of different lattices. The special case
b = 1 was previously used in [8] and [5]-[7] to derive
lower bounds which we denote here as W (Λ, q)ℓ;1,1 and

correspondingly W (Λ, y)ℓ;1,1. Our generalization in this
subsection is to b ≥ 2 with k = 1.

B. Coloring Compatibility Matrix Acting k Times
Joining Paths of Width b = 1

Our second generalization is to use a coloring com-
patibility matrix method that involves paths (i.e., one-
dimensional strips, with b = 1) on Λ that are separated
by k edges, where k ≥ 2, rather than the situation with
b = 1 and k = 1 considered in [5]-[7], where the paths
were adjacent. This means using the coloring compat-
ibility matrix T defined as connecting adjacent paths,
and having it operate k times, with k ≥ 2. Hence,
N = P (CLx

, q) and S(T k) is the chromatic polynomial of
a strip of width Ly = k+1 vertices and arbitrary length
Lx vertices with cyclic boundary conditions. Again, only
the dominant λΛ,Ly,d,j terms enter in (2.9) in the thermo-
dynamic limit. Using this method in combination with
(2.9), we derive the lower bound

W (Λ, q) ≥ W (Λ, q)ℓ;1,k , (3.7)

where

W (Λ, q)ℓ;1,k =

[

λΛ,k+1,0,1

λΛ,1,0,1

]
1

k

. (3.8)

In (3.7) and (3.8), the first subscript after ℓ; is b = 1.
An important theorem extending the result (2.9) is

that for a symmetric nonnegative matrix T [18],

[

S(T k)

N

]1/k

is an increasing function of k . (3.9)

It follows that, for the physical range of q of relevance for
our application to a lattice Λ,

W (Λ, q)ℓ;1,k is an increasing function of k . (3.10)

The corresponding lower bound for W (Λ, y) is

W (Λ, y) ≥ W (Λ, y)ℓ;1,k , (3.11)

where, in accordance with Eq. (2.12),

W (Λ, y)ℓ;1,k =
W (Λ, q)ℓ;1,k

q(1 − q−1)∆Λ/2
. (3.12)

Again, the inequality (3.7) with (3.8) is actually a one-
parameter family of lower bounds depending on the pa-
rameter k = 1, 2, ..., and similarly with (3.11) and (3.12).
This is the second of our major results. The special case
k = 1 (with b = 1) was previously used in [5]-[8]; the
generalization presented in this subsection is to k ≥ 2
with b = 1. We have also carried out further generaliza-
tions of lower bounds on W (Λ, q) with both b ≥ 2 and
k ≥ 2. These are more complicated and will be presented
elsewhere.

C. Measures of Improvement of Bounds

For a lattice Λ and a given q, we define the ratio of a
lower bound W (Λ, q)ℓ;b,k to the actual value of W (Λ, q)
as

RΛ,q;ℓ;b,k ≡ W (Λ, q)ℓ;b,k
W (Λ, q)

. (3.13)

This ratio is useful as a measure of how close a particular
lower bound W (Λ, q)ℓ;b,k is to the actual value of the
ground-state degeneracy per vertex, W (Λ, q). For most
lattices and values of q, the value ofW (Λ, q) is not known
exactly, but rather is determined for moderate values of
q by Monte Carlo simulations, as discussed in [5, 6] and,
for larger values of q, by large-q series expansions [20].
Special cases of Λ and q for which exact results are known
will be noted below.
An important property of our new lower bounds is

that, for a given lattice Λ, they are larger than and hence
more restrictive than the bounds W (Λ, q)ℓ;1,1 derived in
[5]-[8]. Since the lower bounds W (Λ, q)ℓ;1,1 were very
close to the actual values of W (Λ, q) for all but the lowest
values of q, our improved lower bounds are even closer to
these actual values. For the same reason, our new lower
bounds yield the greatest fractional improvement for low
to moderate values of q and are only slightly greater than
W (Λ, q)ℓ;1,1 for larger values of q. This will be evident in
our explicit results. For our present discussion, we take
T to be the matrix that acts k times mapping a strip
of width b to an adjacent strip of width b on Λ. Then
the theorem (3.9) and its corollary (3.10) imply that, for
fixed b, the ratio of our lower bound W (Λ, q)ℓ;b,k to the
actual value W (Λ, q) is an increasing function of k, i.e.,

RΛ,q;ℓ;b,k is an increasing function of k . (3.14)

That is, as k increases, the lower bound W (Λ, q)ℓ;b,k be-
comes more restrictive. From our analysis, we also find
that for fixed k = 1 and b ≥ 2,

RΛ,q;ℓ;b,1 is an increasing function of b . (3.15)

For a given Λ and q, it is also of interest to compare the
various lower bounds with each other. For this purpose,
we define the ratio

RΛ,q;(b,k)/(b′,k′) ≡
W (Λ, q)ℓ;b,k
W (Λ, q)ℓ;b′,k′

. (3.16)
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By the same argument, theorem (3.9) and its corollary
(3.10) imply that for a given lattice Λ, our new lower
bounds W (Λ, q)ℓ;1,k improve on the bound W (Λ, q)ℓ;1,1
derived in [5]-[8]: W (Λ, q)ℓ;1,k ≥ W (Λ, q)ℓ;1,1, i.e.,

RΛ,q;(1,k)/(1,1) ≥ 1 for k ≥ 2 . (3.17)

We observe also that

RΛ,q;(b,1)/(1,1) ≥ 1 for b ≥ 2 . (3.18)

As will be evident from our explicit results, for the range
of q that we consider, these inequalities are realized as
strict inequalities. As noted above, since the latter lower
bounds W (Λ, q)ℓ;1,1 are very close to the actual values
of W (Λ, q), even for q only moderately above χ(Λ), as
shown in Table I of [5] and Tables I-III of [6], our new
bounds are even closer to these actual values of W (Λ, q).
In all cases, we find that the ratios approach unity rapidly
in the limit q → ∞.
A major result of Ref. [7] was the derivation of

general formulas for the lower bound W (Λ, q)ℓ;1,1 and

W (Λ, y)ℓ;1,1 for all Archimedean lattices and their (pla-
nar) duals (Eqs. (4.11), (4.13), (5.1), and (5.2) in [7]). As
will be evident below, aside from the basic theorems, our
new lower bounds W (Λ, q)ℓ;b,k with b ≥ 2 and/or k ≥ 2
do not have such simple general formulas. However, as
noted, they do provide a useful improvement on the ear-
lier W (Λ, q)ℓ;1,1 lower bounds, especially for q values not
too much larger than χ(Λ).

IV. SQUARE LATTICE

As noted above, since the value W (sq, 2) = 1 is known
exactly by elementary methods, we focus on the applica-
tion of our new lower bounds to the range q ≥ 3. We first
recall the result for the case b = 1, k = 1. With T being
the coloring matrix connecting adjacent rows or columns
of a square lattice, and with the application of the k = 1
special case of the theorem (2.9), one has

W (sq, q) ≥ W (sq, q)ℓ;1,1 , (4.1)

where [8]

W (sq, q)ℓ;1,1 =
q2 − 3q + 3

q − 1
. (4.2)

In terms of W (sq, y), given by (2.12) with Λ = sq and
∆ = 4, the lower bound is the b = 1 case of (3.5) with
Λ = sq, namely

W (sq, y)ℓ;1,1 = 1 + y3 , (4.3)

as listed in Table III of [7].
A. CCM Method with b = 2, 3 and k = 1

We first use our generalized method with the color-
ing compatibility matrix relating the allowed colorings of
a width b = 2 cyclic ladder strip of the square lattice
to those of the adjacent b = 2 strip. For this, we need
the dominant term in the chromatic polynomial for the
square-lattice strip of width 2b − 1 = 3 for the relevant
range of q ≥ 3. This chromatic polynomial was calcu-
lated in [14], and the dominant term is λsq,3,0,1, namely

λsq,3,0,1 =
1

2

[

(q − 2)(q2 − 3q + 5)

+
[

(q2 − 5q + 7)(q4 − 5q3 + 11q2 − 12q + 8)
]1/2

]

.

(4.4)

This term is also the dominant λ in the chromatic poly-
nomial for the strip of the square lattice with transverse
width Ly = 3 vertices and arbitary length, with free lon-
gitudinal and transverse boundary conditions [19]. Our
lower bound with b = 2 (and k = 1) then reads

W (sq, q) ≥ W (sq, q)ℓ;2,1 , (4.5)

where (with λsq,2,0,1 = q2 − 3q + 3) [21]

W (sq, q)ℓ;2,1 =
λsq,3,0,1

λsq,2,0,1
=

(q − 2)(q2 − 3q + 5) +
[

(q2 − 5q + 7)(q4 − 5q3 + 11q2 − 12q + 8)
]1/2

2(q2 − 3q + 3)
. (4.6)

Using the analytic results (4.2) and (4.6), we have
proved the following inequality (for q ≥ 3):

W (sq, q)ℓ;2,1 ≥ W (sq, q)ℓ;1,1 (4.7)

In terms of the ratio Rsq,q;(2,1)/(1,1),

Rsq,q;(2,1)/(1,1) ≥ 1 (4.8)

The inequality (4.8) means that our new lower bound,
(4.5), is more stringent than the previous lower bound
(4.1) obtained with the CCM method with b = 1 and
k = 1.

Ref. [5] showed that as q increases, Rsq,q;1,1 rapidly
approaches extremely close to unity. For example, for
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q = 4, 5, 6, Rsq,q;1,1 is equal to 0.9984, 0.9997, and
0.9999 (see Table I in [5]), respectively, and it increases
monotonically with larger q. Our improved lower bound
(4.5) onW (sq, q) is therefore even closer to the respective
actual values ofW (sq, q). As will be discussed below, this
is also true of our other new lower bounds using b = 1
and k ≥ 2. We note that if one were formally to extend
the range of applicability of (4.7) down to q = 2, it would
be realized as an equality, and if one were to extend the
range of applicability of (4.8) to 2 ≤ q ≤ ∞, it would be
realized as an equality at q = 2 and in the limit q → ∞.
For the previous lower bound W (sq, q)ℓ;1,1, the largest

deviation from the actual value occurs at q = 3. It hap-
pens that for q = 3, W (sq, 3) is known exactly [22]:

W (sq, 3) =
8

33/2
= 1.5396007... (4.9)

For the old bound,

W (sq, 3)ℓ;1,1

∣

∣

∣

q=3
=

3

2
, (4.10)

so that

W (sq, 3)ℓ;1,1

∣

∣

∣

q=3

W (sq, 3)
=

35/2

16
= 0.974279 (4.11)

to the indicated floating point accuracy. As guaranteed
by the general inequality (4.8), our lower bound (4.5)
with (4.6) improves on this. For q = 3, we have

W (sq, 3)ℓ;2,1

∣

∣

∣

q=3
=

5 +
√
17

6
= 1.5205176..., (4.12)

so that

Rsq,3;ℓ;2,1 ≡
W (sq, 3)ℓ;2,1

∣

∣

∣

q=3

W (sq, 3)
=

√
3 (5 +

√
17 )

16
= 0.987605...

(4.13)
We show these ratios Rsq,3;ℓ;1,1 and Rsq,3;ℓ;2,1 in Table I.

In terms of the function W (sq, y), our lower bound
(4.5) reads

W (sq, y) ≥ W (sq, y)ℓ;2,1 , (4.14)

where

W (sq, y)ℓ;2,1 =

(1 + y)

[

(1− y)(1− y + 3y2) +
[

(1− 3y + 3y2)(1 − y + 2y2 − y3 + 3y4)
]1/2

]

2(1− y + y2)
. (4.15)

We have also calculated the lower bound W (sq, q)ℓ;b,1 for b = 3, and we list the ratio Rsq,3;ℓ;3,1 in Table I.

B. CCM Method with b = 1 and 2 ≤ k ≤ 5

Next, we apply our second generalized method to the square lattice. For k = 2, our lower bound obtained using
this method is (3.7) with (3.8), namely

W (sq, q) ≥ W (sq, q)ℓ;1,2 , (4.16)

where

W (sq, q)ℓ;1,2 =

[

λsq,3,0,1

λC,0,1

]1/2

=

[

(q − 2)(q2 − 3q + 5) +
[

(q2 − 5q + 7)(q4 − 5q3 + 11q2 − 12q + 8)
]1/2

2(q − 1)

]1/2

. (4.17)

The corresponding lower bound on W (sq, y) is

W (sq, y) ≥ W (sq, y)ℓ;1,2 , (4.18)

where

W (sq, y)ℓ;1,2 =
1√
2
(1 + y)

[

(1− y)(1− y + 3y2) +
[

(1− 3y + 3y2)(1 − y + 2y2 − y3 + 3y4)
]1/2

]1/2

. (4.19)

For b = 1 and k = 3, we need the dominant λ in the
chromatic polynomial for the cyclic square-lattice strip of

width Ly = 4 vertices and arbitrary length Lx, namely
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λsq,4,0,1, which was calculated in [23] (and is the same
as the dominant λ in the chromatic polynomial of the
free square-lattice strip of width Ly = 4 [19]). This term
λsq,4,0,1 is the largest (real) root of the cubic equation
(C1) in Appendix C. Our bound is then W (sq, q) ≥
W (sq, q)ℓ;1,3, where

W (sq, q)ℓ;1,3 =

[

λsq,4,0,1

q − 1

]1/3

. (4.20)

In a similar manner, for b = 1 and k = 4, we have ob-
tained the bound W (sq, q) ≥ W (sq, q)ℓ;1,4, where

W (sq, q)ℓ;1,4 =

[

λsq,5,0,1

q − 1

]1/4

. (4.21)

and λsq,5,0,1 is the largest (real) root of an algebraic equa-
tion of degree 7.
As a special case of our general result (3.10), we have

Rsq,q;(1,4)/(1,1) ≥ Rsq,q;(1,3)/(1,1) ≥ Rsq,q;(1,2)/(1,1) ≥ 1 .
(4.22)

In the range q ≥ 3 under consideration here, we find that
each ≥ is realized as >, i.e., a strict inequality.
It is also of interest to compare our various lower

bounds W (sq, q)ℓ;b,1 and W (sq, q)ℓ;1,k with each other.
For the first two above the old case b = 1, k = 1, we find

Rsq,q;(2,1)/(1,2) > 1 . (4.23)

That is, our lower bound with (b, k) = (2, 1) is larger,
and hence more restrictive, than our lower bound with
(b, k) = (1, 2). In the limit q → ∞, the ratio (4.23)
approaches 1.

C. Plots

In Fig. 1 we plot the ratiosRsq,q;(b,1)/(1,1) for b = 2 and
b = 3 as functions of q in the range 3 ≤ q ≤ 6, and in Fig.
2 we plot the ratios Rsq,q;(1,k)/(1,1) for k = 2 up to k = 5,
as functions of q in the same range. (Here and below,
such plots entail a continuation of the relevant expres-
sions from integral q to real q.) These plots illustrate the
result that we have proved in general, that, for a given q,
RΛ,q;(1,k)/(1,1) is an increasing function of k, and also our
result that Rsq,q;(3,1)/(1,1) ≥ Rsq,q;(2,1)/(1,1). (If formally
continued below q = 3 to q = 2, the curves reach maxima
and then decrease; for example, Rsq,q;(2,1)/(1,1) reaches a
maximum of 1.06 at q ≃ 2.29 and then decreases to 1 as
q ց 2, while Rsq,q;(1,2)/(1,1) reaches a maximum of 1.03
at q ≃ 2.29 and then decreases to 1 as q ց 2.) As the re-
sults in these figures show, our new lower bounds improve
most on the earlier W (sq, q)ℓ;1,1 in the region of q >∼ 3; as
q increases beyond this region, the new bounds approach
the earlier one. This feature will be evident from the
large-q (small-y) expansions, since the new bound and
the earlier one coincide in the terms of the small-y ex-
pansion up to O(y6). We also find this type of behavior

1
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1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

ratios

3 3.5 4 4.5 5 5.5 6
q

FIG. 1: Plot of the ratios Rsq,q;(2,1)/(1,1) (lower curve) and
Rsq,q;(3,1)/(1,1) (upper curve) as functions of q for 3 ≤ q ≤ 6.
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1.008
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1.012
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1.016

ratios
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q

FIG. 2: Plot of the ratios Rsq,q;(1,k)/(1,1) for k = 2 to k = 5 as
functions of q for 3 ≤ q ≤ 6. From bottom to top, the curves refer
to k = 2, k = 3, k = 4, and k = 5, respectively.

for the new lower bounds that we have derived for other
lattices; that is, the degree of improvement is greatest
for the region of moderate q slightly above χ(Λ). On a
given lattice Λ, for larger q, our new bounds rapidly ap-
proach the earlier one with k = 1 and b = 1; i.e., the
ratio RΛ,q;(b,k)/(1,1) rapidly approaches unity.

Combining these results with the results in Table I in
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[5] and Table I in [6], it follows that as q increases above
the interval of q = 3 and q = 4, these lower bounds
approach extremely close to the actual respective values
of W (sq, q). As was evident from these tables in [5, 6], in
the range q ≥ 3, the greatest deviation of the lower bound
W (sq, q)ℓ;1,1 from the actual value of W (sq, q) occurs at
q = 3. It is thus of interest to determine how much
closer our improved lower bounds are to W (sq, 3). From
our general expression for W (sq, q)ℓ;1,2, we calculate the
q = 3 value

W (sq, 3)ℓ;1,2

∣

∣

∣

q=3
=

√

5 +
√
17

2
= 1.510223959... (4.24)

so that

Rsq,3;ℓ;1,2 ≡
W (sq, 3)ℓ;1,2

∣

∣

∣

q=3

W (sq, 3)

=
3
√

3(5 +
√
17)

16
= 0.9809192... (4.25)

This ratio and the other ones discussed here are listed in
Table I.

V. TRIANGULAR LATTICE

A. b = 1, k = 1

Since W (tri, 3) = 1 is exactly known, we will restrict
our consideration of lower bounds to the range q ≥ 4.
We recall that for b = 1 and k = 1, one has the lower
bound [5]-[7] W (tri, q) ≥ W (tri, q)ℓ;1,1, where

W (tri, q)ℓ;1,1 =
(q − 2)2

q − 1
. (5.1)

As was discussed in [5], q increases beyond the lowest
values above χ(tri) = 3, this lower bound rapidly ap-
proaches the known value of W (tri, q) (see Table I in

[5]), where the latter was determined by a numerical eval-
uation of an integral representation and infinite product
expression [26]. For example, for q = 5, 6, 7, Rtri,q;1,1

is equal to 0.9938, 0.9988, and 0.9996, respectively, and
it increases monotonically with larger q. Since our new
lower bounds onW (tri, q) are more restrictive than (5.1),
they are therefore even closer to the respective actual val-
ues of W (tri, q).

The corresponding lower bound on W (tri, y) is
W (tri, y) ≥ W (tri, y)ℓ;1,1, where

W (tri, y)ℓ;1,1 = (1 − y2)2 (5.2)

(see Table III in [7]).

B. b = 2, 3, k = 1

Here we derive a new lower bound on W (tri, q) using
our first generalization of the CCM method with b = 2,
k = 1. For this purpose, we need the chromatic polyno-
mial of the cyclic strip of the triangular lattice of width
Ly = 3 vertices and arbitrary length, Lx. This was cal-
culated in [25]. The dominant λ in (3.1) is

λtri,3,0,1 =
1

2

[

q3 − 7q2 + 18q − 17

+
[

q6 − 14q5 + 81q4 − 250q3 + 442q2 − 436q + 193
]1/2

]

.

(5.3)

Combining this with λtri,2,0,1 = (q − 2)2, we derive the
lower bound

W (tri, q) ≥ W (tri, q)ℓ;2,1 , (5.4)

where

W (tri, q)ℓ;2,1 =
λtri,3,0,1

λtri,2,0,1
=

[

q3 − 7q2 + 18q − 17 +
[

q6 − 14q5 + 81q4 − 250q3 + 442q2 − 436q + 193
]1/2

]

2(q − 2)2
. (5.5)

The reduced function W (tri, y) is given by Eq. (2.12) with Λ = tri and ∆ = 6. The corresponding lower bound is

W (tri, y) ≥ W (tri, y)ℓ;2,1 , (5.6)

where

W (tri, y)ℓ;2,1 =

(1 + y)2
[

1− 4y + 7y2 − 5y3 +
[

1− 8y + 26y2 − 46y3 + 53y4 − 42y5 + 17y6
]1/2

]

2(1− y)2
. (5.7)
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Our new lower bound W (tri, q)ℓ;2,1 is larger than, and
hence more restrictive than the previous lower bound,
W (tri, q)ℓ;1,1. That is, from the analytic forms (5.2) and
(5.7), we have proved that (for q ≥ 4)

Rtri,q;(2,1)/(1,1) > 1 . (5.8)

This ratio approaches 1 as q → ∞.
As was evident in Table I in [5], the deviation of

W (tri, q)ℓ;1,1 from the actual value of W (tri, q) was
greatest for q = 4. Hence, it is of interest to determine
how much closer our new lower bound W (tri, q)ℓ;2,1 is to
the W (tri, q) for this value, q = 4. A closed-form inte-
gral representation has been given for W (tri, q) [26]; in
particular, an explicit result is the value for q = 4:

W (tri, 4) =
3Γ(1/3)3

4π2
=

2π√
3Γ(2/3)3

= 1.460998486...

(5.9)
where the equivalence follows from the relation
Γ(z)Γ(1−z) = π/ sin(πz) for the Euler Gamma function.
We recall that

W (tri, 4)ℓ;1,1 =
4

3
(5.10)

so

Rtri,4;ℓ;1,1 =
2Γ(2/3)3√

3π
= 0.9126178746... (5.11)

(see Table I of [5]). The value of our new lower bound at
q = 4 is

W (tri, 4)ℓ;2,1 =
7 +

√
17

8
= 1.3903882... (5.12)

so

Rtri,4;ℓ;2,1 =
(7 +

√
17 )

√
3Γ(2/3)3

16π
= 0.951669845...

(5.13)

We have also calculated the lower bound W (tri, q)ℓ;b,1
for b = 3 and evaluated this for q = 4. For reference, we
list the various ratios Rtri,4;ℓ;b,k in Table II. We see that
W (tri, 4)ℓ;2,1 and W (tri, 4)ℓ;3,1 are closer to the exact
value of W (tri, 4) than W (tri, 4)ℓ;1,1.

C. b = 1, 2 ≤ k ≤ 5

By the same means as above, we derive

W (tri, q) ≥ W (tri, q)ℓ;1,2 , (5.14)

with

W (tri, q)ℓ;1,2 =

[

λtri,3,0,1

q − 1

]1/2

, (5.15)

where λtri,3,0,1 was given in Eq. (5.3). Equivalently,

W (tri, y) ≥ W (tri, y)ℓ;1,2 , (5.16)

where

W (tri, y)ℓ;1,2 =
1√
2
(1 + y)2

[

1− 4y + 7y2 − 5y3 +
[

1− 8y + 26y2 − 46y3 + 53y4 − 42y5 + 17y6
]1/2

]1/2

. (5.17)

For b = 1, k = 3, we need the dominant λ in the
chromatic polynomial for the cyclic strip of the triangu-
lar lattice of width Ly = k + 1 = 4, namely, λtri,4,0,1.
This chromatic polynomial was calculated in [25], and
the dominant λ is given as the largest root of the quartic
equation (C2) in Appendix C. This is also the dominant
λ in the chromatic polynomial of the free strip of the tri-
angular lattice with width Ly = 4 and arbitrary length
[19]. We have also calculated W (tri, q)ℓ;1,k for k = 4, 5.
For reference, we list the various ratios Rtri,4;ℓ;1,k in Ta-
ble II.

D. Plots

In Fig. 3 we plot the ratios Rtri,q;(b,1)/(1,1) for b = 2
and b = 3 as functions of q in the range 4 ≤ q ≤ 6, and
in Fig. 4 we plot the ratios Rtri,q;(1,k)/(1,1) for k = 2 up
to k = 5, as functions of q in same range. As with the
square lattice, these plots illustrate the result that we
have proved in general, that, for a given q, RΛ,q;(1,k)/(1,1)

is an increasing function of k, and also our result that
Rtri,q;(3,1)/(1,1) ≥ Rtri,q;(2,1)/(1,1).
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FIG. 3: Plot of the ratios Rtri,q;(2,1)/(1,1) (lower curve) and
Rtri,q;(3,1)/(1,1) (upper curve) as functions of q for 4 ≤ q ≤ 6.
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FIG. 4: Plot of the ratios Rtri,q;(1,k)/(1,1) for k = 2 to k = 5 as
functions of q for 4 ≤ q ≤ 6. From bottom to top, the curves refer
to k = 2, k = 3, k = 4, and k = 5, respectively.

VI. HONEYCOMB LATTICE

Since W (hc, 2) = 1 is exactly known, we restrict our
consideration of lower bounds for the honeycomb lattice
to the range q ≥ 3. We recall that for b = 1 and k = 1,
one has the lower bound W (hc, q) ≥ W (hc, q)ℓ;1,1, where

[6]

W (hc, q)ℓ;1,1 =
(D6)

1/2

q − 1
=

(q4 − 5q3 + 10q2 − 10q + 5)1/2

q − 1
,

(6.1)
where the general expression for Dn is given in Eq. (B6).
Ref. [6] noted that as q increases beyond the lowest values
above χ(hc) = 2, this lower bound rapidly approaches
the actual value of W (hc, q) (see Table I in [6]), where
the latter was determined by a Monte-Carlo simulation
checked for larger q with a large-q series approximation.
For example, for example, for q = 3, 4, 5, Rhc,q;1,1 is
equal to 0.99898, 0.99985, and 0.99996, respectively, and
it increases monotonically with larger q. Since our new
lower bounds on W (hc, q) are more restrictive than (6.1),
they are therefore even closer to the respective actual
values of W (hc, q).
The corresponding lower bound on W (hc, y) is

W (hc, y) ≥ W (hc, y)ℓ;1,1, where [7]

W (hc, y)ℓ;1,1 = (1 + y5)1/2 (6.2)

(see Table III in [7]).
For the calculation of W (hc, q)ℓ;2,1, we need the chro-

matic polynomial of the cyclic strip of the honeycomb
lattice of width Ly = 2b − 1 = 3 vertices and arbitrary
length, Lx, in particular, the dominant λ. This λhc,3,0,1

is the largest (real) root of the cubic equation (C3) in
Appendix C [27]. This dominant λ is also the input that
we need for the calculation of W (hc, q)ℓ;1,2, since the lat-
ter requires the same chromatic polynomial of the cyclic
strip of the honeycomb lattice of width Ly = k + 1 = 3
vertices and arbitrary length, Lx, in particular, the dom-
inant term. This λ is also the dominant term in the
chromatic polynomial of the strip of the honeycomb lat-
tice of width Ly = 3 vertices and arbitrary length, with
free boundary conditions [19].

VII. 4 · 82 LATTICE

Using the CCM method with b = 1 and k = 1, Ref. [6]
derived the lower boundW ((4·82), q) ≥ W ((4·82), q)ℓ;1,1,
where

W ((4 · 82)), q)ℓ;1,1 =
(D4D8)

1/4

q − 1
. (7.1)

Equivalently, W ((4 · 82), y) > W ((4 · 82), y)ℓ;1,1, where
W ((4 · 82), y)ℓ;1,1 = [(1 + y3)(1 + y7)]1/4 . (7.2)

We have obtained the slightly more restrictive lower
bound W ((4 · 82), q) ≥ W ((4 · 82), q)ℓ;1,2, where

W ((4 · 82), q)ℓ;1,2 =

[

λ(4·82),3,0,1

q − 1

]1/3

, (7.3)

where λ(4·82),3,0,1 is the largest (real) root of the cu-
bic equation (C4) in Appendix C. Correspondingly,
W ((4·82), y) ≥ W ((4·82), y)ℓ;1,2. We analyze the small-y

expansion of W ((4 · 82), y)ℓ;1,2 below.
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FIG. 5: Section of the (3 · 6 · 3 · 6) (kagomé) lattice.

VIII. 3 · 6 · 3 · 6 (KAGOMÉ) LATTICE

In this section we consider the (3 · 6 · 3 · 6) lattice,
commonly called the kagomé lattice (which we shall ab-

breviate as kag). Using the CCM method with b = 1
and k = 1, Ref. [7] derived the lower bound W (kag, q) ≥
W (kag, q)ℓ;1,1, where

W (kag, q)ℓ;1,1 =
D

2/3
3 D

1/3
6

q − 1
. (8.1)

Equivalently, W (kag, y) > W (kag, y)ℓ;1,1, where [7]

W (kag, y)ℓ;1,1 = (1− y2)2/3(1 + y5)1/3 . (8.2)

The zigzag path used in the derivation of this lower
bound was described in detail in Ref. [7]. Here, we again
take b = 1 and k = 1 but use a different type of path. A
section of the kagomé lattice is shown in Fig. 5. Rather
than the zigzag path used in [7], we choose the path to be
given horizontal line in Fig. 5. The matrix T then links
the proper q-coloring of the vertices on this line, the ver-
tices between this line and, say, the line above it, and the
vertices on this higher-lying horizontal line. It turns out
that the use of this different path yields a slightly more
restrictive lower bound, which we shall indicate with a
prime, namely W (kag, q) ≥ W (kag, q)′ℓ;1,1, where

W (kag, q)′ℓ;1,1 =

[(q − 2)

[

q4 − 6q3 + 14q2 − 16q + 10 +
[

q8 − 12q7 + 64q6 − 200q5 + 404q4 − 548q3 + 500q2 − 292q + 92
]1/2

]

2(q − 1)2

]1/3

.

(8.3)

Equivalently, we have W (kag, y) ≥ W (kag, y)′ℓ;1,1, where

W (kag, y)′ℓ;1,1 =

2−1/3(1 + y)

[

(1− y)

[

1− 2y + 2y2 − 2y3 + 3y4 +
[

1− 4y + 8y2 − 12y3 + 14y4 − 16y5 + 16y6 − 12y7 + 9y8
]1/2

]

]1/3

.

(8.4)

We find that

W (kag, q)′ℓ;1,1 ≥ W (kag, q)ℓ;1,1 (8.5)

The fact that the use of a different path can yield a
more restrictive bound with the same value of b and k was
already shown for the honeycomb lattice in [5, 6]. Thus,
both Ref. [6] and Ref. [5] used the CCM method with

b = 1 and k = 1, but Ref. [6] obtained a more restrictive
lower bound for the honeycomb lattice by using a differ-
ent path. The bounds W (kag, q)ℓ;1,1 and W (kag, q)′ℓ;1,1
both rapidly approach the actual value of W (kag, q) as
q increases beyond the chromatic number, χ(kag) = 3.
Below we shall show how the slight improvement with
the new bound is manifested in the respective small-y
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expansions of W (kag, q)ℓ;1,1 and W (kag, q)′ℓ;1,1. In pass-
ing, we note that we have also studied generalizations of
the CCM method for some other Archimedean lattices.

IX. sqd LATTICE

So far, we have considered planar lattices. The coloring
compatibility matrix method and our generalizations of
it, also apply to a subclass of nonplanar lattices, namely
the subclass that can be constructed starting from a pla-
nar lattice and adding edges between vertices on the orig-
inal planar lattice. An example of this is the sqd lattice.
As noted above, the sqd lattice is formed from the square
lattice by adding edges (bonds) connecting the two sets
of diagonal next-nearest-neighbor vertices in each square.
Thus, the vertices and edges in each square form a K4

graph. (Here, the KN graph is the graph with N ver-
tices such that each vertex is connected to every other
vertex by one edge.) Although an individual K4 graph
is planar, the sqd lattice is nonplanar. This lattice has
coordination number ∆sqd = 8 and chromatic number
χ(sqd) = 4. Although it is not 4-partite, an analysis of
the way in which the number of proper 4-colorings of the
vertices of a section of the sqd lattice grows with its area
shows that W (sqd, 4) = 1.
Using the b = 1, k = 1 CCM, Ref. [6] derived the lower

bound W (sqd, q) ≥ W (sqd, q)ℓ;1,1, where

W (sqd, q)ℓ;1,1 =
λsqd ,2,0,1

λC,0,1
=

(q − 2)(q − 3)

q − 1
. (9.1)

A. b = 2, k = 1

For our first generalization, namely b = 2 and k = 1,
we need the dominant λ for a cyclic strip of the sqd lattice

of width Ly = 3, which is [17]

λsqd,3,0,1 =
(q − 3)

2

[

q2 − 6q + 11

+
[

q4 − 12q3 + 54q2 − 112q + 97
]1/2

]

. (9.2)

We thus derive the new lower bound W (sqd, q) ≥
W (sqd, q)ℓ;2,1, where W (sqd, q)ℓ;2,1 = λsqd,3,0,1/λsqs,2,0,1,
i.e.,

W (sqd, q)ℓ;2,1 =

q2 − 6q + 11 +
[

q4 − 12q3 + 54q2 − 112q + 97
]1/2

2(q − 2)
.

(9.3)

From these explicit analytic results, we find

Rsqd,q;(2,1)/(1,1) > 1 . (9.4)
That is, our new lower bound W (sqd, q)ℓ,2,1 is larger and
hence more restrictive than the one obtained in [6].

The corresponding lower bounds for the reduced W
functions are W (sqd, y) ≥ W (sqd, y)ℓ;1,1, where

W (sqd, y)ℓ;1,1 = (1− y)(1− 2y)(1 + y)3

= 1− 4y2 − 2y3 + 3y4 + 2y5

(9.5)

and W (sqd, y) ≥ W (sqd, y)ℓ;2,1, where

W (sqd, y)ℓ;2,1 =

(1 + y)3
[

1− 4y + 6y2 +
[

1− 8y + 24y2 − 36y3 + 28y4
]1/2

]

2(1− y)
. (9.6)

B. b = 1, k = 2

For b = 1 and k = 2, we derive the lower bound W (sqd, q) ≥ W (sqd, q)ℓ;1,2, where

W (sqd, q)ℓ;1,2 =
[λsqd,3,0,1

λC,0,1

]1/2

=

[

(q − 3)
[

q2 − 6q + 11 +
(

q4 − 12q3 + 54q2 − 112q + 97
)1/2]

2(q − 1)

]1/2

. (9.7)

Equivalently, W (sqd, y) ≥ W (sqd, y)ℓ;1,2, where

W (sqd, y)ℓ;1,2 =
1√
2
(1 + y)3

[

(1 − 2y)
[

1− 4y + 6y2 +
(

1− 8y + 24y2 − 36y3 + 28y4
)1/2]

]1/2

. (9.8)
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X. SMALL-y EXPANSIONS OF NEW LOWER
BOUNDS

A. General

A lower bound on a function such as W (Λ, q) or
W (Λ, y) plays a role that is different from, and comple-
mentary to, that of a Taylor series expansion, in this
case, a small-y expansion. The lower bound is valid for
any value of q that is physical, but need not, a priori,
be an accurate approximation to the actual function. In
contrast, the large-q (equivalently, small-y) Taylor series
expansion is an approximation to the function itself and,
within its radius of convergence, it satisfies the usual Tay-
lor series convergence properties. Thus, if one truncates
this series to a fixed order of expansion, then it becomes
a progressively more accurate approximate as the expan-
sion variable becomes smaller, and for a fixed value of
the expansion variable, it becomes a more accurate ex-
pansion as one includes more terms.
A lower bound on a function W (Λ, y) need not, a pri-

ori, agree with the terms in the small-y Taylor series
expansion of this function. Some explicit examples of
this are given in Appendix A. Interestingly, as discussed
in [5]-[7], the lower bounds derived there do agree with
these small-y series to a number of orders in y (listed for
Archimedean lattices in Table III and for the duals of
Archimedean lattices in Table IV of Ref. [7]).
It is thus clearly of interest to carry out a similar com-

parison to determine the extent to which our new lower
bounds, which we have shown improve upon those in [8]
and [5]-[7], agree with the respective small-y expansions
to higher order. We do this in the present section, show-
ing that our new lower bounds are not only more strin-
gent than the earlier ones, but also agree with the small-
y expansions of W (Λ, y) to higher order in y than these
earlier lower bounds.
Because W (Λ, y)ℓ;b,k is a lower bound on W (Λ, y), one

can draw one immediate inference concerning the com-
parison of the small-y Taylor series for these two func-
tions, namely that for a given lattice Λ, if the small-y
Taylor series of W (Λ, y)ℓ;b,k coincides with the small-y

series for W (Λ, y) to order O(yic), inclusive, then the
difference

W (Λ, y)−W (Λ, y)ℓ;b,k = κic+1y
ic+1, with κic+1 > 0 .

(10.1)
Thus, for example, with the O(yic+1) term in W (Λ, y)
denoted wΛ,ic+1 as in Eq. (2.13) and with the O(yic+1)

term in W (Λ, y)ℓ;b,k denoted wΛ;b,k;ic+1, we have

wΛ;ic+1 ≥ wΛ;b,k;ic+1 . (10.2)

We discuss a subtlety in this comparison. One should
first show that the small-y expansion is, in fact, a Taylor
series expansion, i.e., that W (Λ, y) is an analytic func-
tion at y = 0 in the complex y plane, or equivalently, that
Wr(Λ, q) is an analytic function at 1/q = 0 in the com-
plex plane of the variable 1/q. In fact, there are families

of N -vertex graphs GN such that Wr({G}, q) is not ana-
lytic at 1/q = 0 [28], where here {G} denotes the formal
limit limN→∞ GN . This is a consequence of the property
that the accumulation set of zeros of the chromatic poly-
nomial P (GN , q), denoted B, extends to infinite |q| in the
q plane, or equivalently, to the point 1/q = 0 in the 1/q
plane. (The zeros of P (G, q) are denoted as the chromatic
zeros of G.) Refs. [28] constructed and analyzed various
families of graphs for which this is the case. For regular
(vertex-transitive) N -vertex graphs GΛ,N of a lattice Λ
with either free or periodic (or twisted periodic) bound-
ary conditions, the resultant Wr(Λ, q) functions obtained
in the N → ∞ limit are analytic at 1/q = 0. This fol-
lows because a necessary condition that B extends to
infinitely large |q| as N → ∞ is that the chromatic zeros
of GΛ,N have magnitudes |q| → ∞ in this limit. How-
ever, a vertex-transitive graph G has the property that
all vertices have the same degree, ∆ and a chromatic
zero of G has a magnitude bounded above as |q| < 8.4∆
[29]. So for the N → ∞ limit of a regular lattice graph Λ,
Wr(Λ, q) is analytic at 1/q = 0 and equivalently, W (Λ, y)
is analytic at y = 0, and the corresponding series expan-
sions in powers of 1/q and powers of y are Taylor series
expansions.

B. Square Lattice

The small-y expansion of W (sq, y) is [20]

W (sq, y) = 1 + y3 + y7 + 3y8 + 4y9 + 3y10

+ 3y11 +O(y12) . (10.3)

This series and several others for regular lattices are
known to higher order than we list; we only display the
various series up to the respective orders that are rel-
evant for the comparison with our lower bounds. As
is evident from Eq. (4.3), the previous lower bound
W (sq, y)ℓ;1,1 = 1+y3 [8] coincides with the small-y series
to O(y6), inclusive.
We list below the small-y expansions of the various new

lower bound functions W (sq, y)ℓ;b,k that we have derived
with b ≥ 2 and k = 1 and with b = 1, k ≥ 2:

W (sq, y)ℓ;2,1 = 1 + y3 + y7 + 3y8 + 3y9 +O(y10)

(10.4)

W (sq, y)ℓ;1,2 = 1 + y3 +
1

2
y7 +

3

2
y8 +

3

2
y9 +O(y10)

(10.5)

and

W (sq, y)ℓ;1,3 = 1 + y3 +
2

3
y7 + 2y8 +

7

3
y9 +O(y10) .

(10.6)
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Comparing the small-y expansion of our new lower
bound function W (sq, y)ℓ;b,1 with b = 2, as well as

the old lower bound function W (sq, y)ℓ;1,1, with the ac-

tual small-y series for W (sq, y) in Eq. (10.3), we can
make several observations. First, the small-y expansions
for W (sq, y)ℓ;2,1 coincides with the small-y expansion of

W (sq, y) to O(y8), inclusive, which is an improvement by
two orders in powers of y as compared with W (sq, y)ℓ;1,1
(see Eq. (4.3)). Since increasing b (with k fixed) im-
proves the accuracy of the lower bound, it follows that
W (sq, y)ℓ;b,1 will also coincide with the series forW (sq, y)
to at least O(y8) for b ≥ 3 as well as for b = 2. Moreover,
although the respective coefficients of y9 in the series for
W (sq, y)ℓ;1,1 and W (sq, y)ℓ;2,1, namely 0 and 3, do not
match the coefficient of y9 in the actual small-y expansion
of W (sq, y), which is 4, one can see that as b increases
from 1 to 2, this coefficient of the y9 term increases to-
ward the exact coefficient.
Regarding the matching of terms in the small-y expan-

sions of the W (sq, y)ℓ;b,1, as compared with W (sq, y)ℓ;1,k,
that we have calculated, we find that this matching is bet-
ter by two orders for the W (sq, y)ℓ;b,1 than W (sq, y)ℓ;1,k.
That is, for the k values that we have calculated, namely
k = 2, 3, the lower bounds W (sq, y)ℓ;1,k match the small-

y expansion of W (sq, y) to order O(y6), the same order
as W (sq, y)ℓ;1,1.
A related property of our lower bounds for a general

lattice Λ and, in particular, for the square lattice, follows
as a consequence of the theorem (3.9) and (3.10): with
b = 1, since the lower bound W (Λ, y)ℓ;1,k is a monoton-
ically increasing function of k, the degree of matching
of coefficients in the small-y expansion for W (Λ, y) must
improve monotonically as k is increased. A priori, this
improvement could be manifested in two ways (or a com-
bination of the two): (i) as k is increased, coefficients of
terms of higher order in y are exactly matched, or (ii)
the coefficient of a given term of a certain order in y ap-
proaches monotonically toward the exact value. For the
present lattice Λ = sq, we see that, for the W (sq, q)ℓ;1,k
that we have calculated, the latter type of behavior, (ii),
occurs. That is, as we increase k from 1 to 2 to 3, the coef-
ficient of the y7 term in the small-y series forW (sq, y)ℓ;1,k
increases from 0 to 1/2 to 2/3, moving toward the exact
value of 1. This is similar to the behavior that we ob-
served with the respective coefficients of the y9 term in
the small-y expansions of W (sq, y)ℓ;b,1 as compared with
the exact value. This type of behavior is in accord with
the inequality (10.2).
Regarding the relative ordering of the various lower

bounds that we have obtained, from the small-y expan-
sion, we find, for large q, the ordering

W (sq, y) > W (sq, y)ℓ;3,1 > W (sq, y)ℓ;2,1

> W (sq, y)ℓ;1,3 > W (sq, y)ℓ;1,2 > W (sq, y)ℓ;1,1 .

(10.7)

In fact, we find that this ordering also extends down

to the lowest value where we apply our lower bounds,
namely q = 3. For bounds on W (sq, 4) and W (sq, 5), see
[30].

C. Triangular Lattice

The small-y expansion of W (tri, y) is [20]

W (tri, y) = 1− 2y2 + y4 + y5 + 5y6 + 16y7 + 47y8

+ 134y9 +O(y10) . (10.8)

As is evident from Eq. (5.2), the previous lower bound
W (tri, y)ℓ;1,1 = (1−y2)2 [5, 7], matches the small-y series
to O(y4), inclusive.
We list below the small-y expansions of the various new

lower bounds W (tri, y)ℓ;b,k that we have derived with
b ≥ 2 and k = 1, and with b = 1, k ≥ 2:

W (tri, y)ℓ;2,1 = 1− 2y2 + y4 + y5 + 5y6 + 14y7 +O(y8)

(10.9)

W (tri, y)ℓ;1,2 = 1− 2y2 + y4 +
1

2
y5 +

5

2
y6 +O(y7)

(10.10)

and

W (tri, y)ℓ;1,3 = 1− 2y2 + y4 +
2

3
y5 +

10

3
y6 +O(y7) .

(10.11)

Comparing these with the small-y series forW (tri, y)ℓ;1,1,
we find that, among (10.9)-(10.11), the greatest match-
ing of terms is achieved with (10.9), i.e., by increasing
b. Specifically, the small-y expansion for W (tri, y)ℓ;2,1
matches the small-y expansion of W (tri, y) to O(y6) in-
clusive, which is an improvement by two orders in y as
compared withW (tri, y)ℓ;1,1. This increase by two orders
in y is the same amount of improvement that we found
for our lower bound for the square lattice, W (sq, y)ℓ;2,1
as compared with W (sq, y)ℓ;1,1.
As was true of the lower bounds for the square lat-

tice, the lower bounds W (tri, y)ℓ;1,k with k = 2 and

k = 3 coincide with the small-y series for W (tri, y) to
the same order, namely O(y4), as W (tri, y)ℓ;1,1. How-
ever, as k increases from 1 to 2 to 3, the coefficient of
the first unmatched term in the respective small-y se-
ries for W (tri, y)ℓ;1,k, viz., the y5 term, increases from 0
to 1/2 to 2/3, moving toward the exact value of 1. An
inequality that follows from the theorem (3.9) and gen-
eral result (3.10), is that with b = 1, W (tri, y)ℓ;1,k is a
monotonically increasing function of k.
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Concerning the relative ordering of the various lower
bounds that we have obtained, from the small-y expan-
sion, we find, for large q, the ordering

W (tri, y) > W (tri, y)ℓ;2,1 > W (tri, y)ℓ;1,3 >

> W (tri, y)ℓ;1,2 > W (tri, y)ℓ;1,1 . (10.12)

Indeed, we find that this ordering also extends down to
the lowest value where we apply our bounds, namely q =
4.

D. Honeycomb Lattice

The small-y expansion of W (hc, y) is [20]

W (hc, y) = 1 +
1

2
y5 − 1

23
y10 + y11 + 2y12 +

3

2
y13

+ y14 − 15

24
y15 +O(y16) . (10.13)

The previous lower bound W (hc, y)ℓ;1,1 = (1 + y5)1/2

[5]-[7] has the small-y expansion

W (hc, y)ℓ;1,1 = 1 +
1

2
y5 − 1

23
y10 +

1

24
y15 +O(y20) .

(10.14)

Thus, as was noted in [5]-[7], this small-y expansion coin-
cides with the small-y expansion of W (hc, y) to the quite
high order O(y10).
We list below the small-y expansions of the various new

lower bound functions W (hc, y)ℓ;b,k that we have derived
with b ≥ 2 and k = 1 and with b = 1, k ≥ 2:

W (hc, y)ℓ;2,1 = 1+
1

2
y5− 1

23
y10+y11+2y12+y13+O(y15)

(10.15)
and

W (hc, y)ℓ;1,2 = 1+
1

2
y5 − 1

23
y10 +

1

2
y11 + y12 +O(y13) .

(10.16)
As with the square and triangular lattices, we find that
among (10.15)-(10.16), the greatest matching of terms
is achieved with (10.15), i.e., by increasing b. Specifi-
cally, the small-y expansion for W (hc, y)ℓ;2,1 matches the

small-y expansion of W (hc, y) to O(y12) inclusive, which
is an improvement by two orders in y as compared with
W (hc, y)ℓ;1,1.
The theorem (3.9) and corollary (3.10) imply that

W (hc, q)ℓ;1,2 > W (hc, q)ℓ;1,1, and this inequality is re-
flected in the degree of matching of the small-y expan-
sions for the corresponding functions W (hc, y)ℓ;1,2 and

W (hc, y)ℓ;1,1. Although W (hc, y)ℓ;1,2 does not increase

the order of matching, as compared with W (hc, y)ℓ;1,1,
it begins the process of building up a nonzero coeffi-
cient for a y11 term, which was zero in the expansion
of W (hc, y)ℓ;1,1. Specifically, the small-y expansion of

W (hc, y)ℓ;1,2 contains a y11 term with coefficient 1/2,
building toward the exact coefficient, 1, of y11 in (10.13).

E. 4 · 82 Lattice

We next consider a (bipartite) heteropolygonal
Archimedean lattice, namely the (4 · 82) lattice. The
small-y expansion of W ((4 · 82), y) is [6, 7]

W ((4 · 82), y) = 1 +
1

4
y3 − 3

25
y6 +

1

4
y7 +

7

27
y9

+
1

24
y10 − 77

211
y12 +O(y13) . (10.17)

The small-y expansion of the lower bound obtained in
[5, 7], W ((4 · 82), y)ℓ;1,1, is

W ((4 · 82), y)ℓ;1,1 = 1 +
1

4
y3 − 3

25
y6 +

1

4
y7 +

7

27
y9

+
1

24
y10 − 77

211
y12 − 3

27
y13 − 3

25
y14 +

231

213
y15 +O(y16) .

(10.18)

As was noted in [6, 7], this coincides with the small-y
expansion ofW ((4 ·82), y) to the quite high order O(y12).
We list below the small-y expansions of the various

new lower bound functions W ((4·82), y)ℓ;b,k that we have
derived with b ≥ 2 and k = 1 and with b = 1, k ≥ 2:

W ((4 · 82), y)ℓ;2,1 = 1 +
1

4
y3 − 3

25
y6 +

1

4
y7

+
7

27
y9 +

1

24
y10 − 77

211
y12 +

189

27
y13 +O(y14)

(10.19)

and

W ((4 · 82), y)ℓ;1,2 = 1 +
1

4
y3 − 3

25
y6 +

1

4
y7

+
7

27
y9 +

1

24
y10 − 77

211
y12 +

93

27
y13 +

45

32
y14 +O(y15) .

(10.20)

Evidently, the small-y series expansions of W ((4 ·
82), y)ℓ;2,1 and W ((4 · 82), y)ℓ;1,2 match the small-y ex-

pansion of W ((4 · 82), y) to at least the same order as
W ((4 · 82), y)ℓ;1,1. Further, we observe that for small-y,

W ((4 · 82), y)ℓ;2,1 > W ((4 · 82), y)ℓ;1,2 > W ((4 · 82), y)ℓ;1,1
(10.21)

F. 3 · 6 · 3 · 6 (kagomé) Lattice

The small-y expansion of W (kag, y) is [7]

W (kag, y) = 1− 2

3
y2 − 1

32
y4 +

1

3
y5

− 4

34
y6 − 2

32
y7 − 7

35
y8 +O(y9) . (10.22)
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As was discussed in [7], the small-y expansion of the b =
1, k = 1 lower bound W (kag, y)ℓ;1,1 derived there (listed
above as Eq. (8.1)) coincides to O(y8) with the small-y
series for the actual quantity W (kag, y). Explicitly,

W (kag, y)ℓ;1,1 = 1− 2

3
y2 − 1

32
y4 +

1

3
y5

− 4

34
y6 − 2

32
y7 − 7

35
y8 − 1

33
y9 − 95

36
y10

+O(y11) . (10.23)

Our new bound has the small-y expansion

W (kag, y)′ℓ;1,1 = 1− 2

3
y2 − 1

32
y4 +

1

3
y5

− 4

34
y6 − 2

32
y7 − 7

35
y8 +

8

33
y9 +

634

36
y10

+O(y11) . (10.24)

Thus,

W (kag, y)′ℓ;1,1 −W (kag, y)ℓ;1,1 =
1

32
y9 +O(y10) .

(10.25)
One could derive similar lower bounds for other
Archimedean lattices not considered here, e.g., the 3 ·
12 · 12 lattice [7, 31].

G. sqd Lattice

Since the lower bound W (sqd, y)ℓ;1,1 derived in [6] and
given above in Eq. (9.5) is a polynomial, it is identical
to its small-y Taylor series expansion.
Expanding W (sqd, y)ℓ;2,1, we find

W (sqd, y)ℓ;2,1 = 1− 4y2 − y3 + 6y4 + 5y5 +O(y6) .

(10.26)

Similarly,

W (sqd, y)ℓ;1,2 = 1− 4y2 − 3

2
y3 +

9

2
y4 +

7

2
y5 +O(y6)

(10.27)

W (sqd, y)ℓ;1,3 = 1− 4y2 − 4

3
y3 + 5y4 +

13

3
y5 +O(y6) .

(10.28)

From these expansions we find, for large q, the ordering

W (sqd, y) > W (sqd, y)ℓ;2,1 > W (sqd, y)ℓ;1,2 > W (sqd, y)ℓ;1,1
(10.29)

This is the same ordering that we found for the other
lattices.

XI. CONCLUSIONS

Nonzero ground-state entropy per site, S0, and the as-
sociated ground-state degeneracy per site, W = eS0/kB ,
are of fundamental importance in statistical mechanics.
In this paper we have presented generalized methods for
deriving lower bounds on the ground-state degeneracy
per site, W (Λ, q), of the q-state Potts antiferromagnet
on several different lattices Λ. Our first generalization is
to consider a coloring compatibility matrix that relates a
strip of width b ≥ 2 vertices to an adjacent strip of the
same width. Our second generalization is to consider a
coloring compatibility matrix that acts k ≥ 2 times in re-
lating a path on Λ to an adjacent parallel path. We have
applied these generalizations to obtain new lower bounds
on W (Λ, q), denoted W (Λ, q)ℓ;b,k. In this notation, the
lower bounds previously derived in [5]-[8] have b = 1 and
k = 1. One of the interesting properties of these bounds
W (Λ, q)ℓ;1,1 obtained in [5]-[8] was that as q increases be-
yond χ(Λ) they rapidly approach quite close to the actual
respective values of W (Λ, q). We have shown that our
new lower bounds are slightly more restrictive than these
previous lower bounds, and consequently are even closer
to the actual values W (Λ, q). We have demonstrated how
this is manifested in the matching to higher-order terms
with the large-q (small-y) Taylor series expansions for the
corresponding functions W (Λ, y) for the various lattices
that we have considered.
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Appendix A: W (Λrp., q) at q = χ(Λ)

We mention here a subtlety that results from the non-
commutativity in the limits (2.15). An r-partite rp.
graph with N vertices, Grp.,N has chromatic number
χ(Grp.,N ) = r. One equivalent definition of an r-partite
graph is that its chromatic polynomial, evaluated at
q = r, satisfies

P (Grp.,N , r) = r! (A1)

The square and honeycomb lattices are bipartite (as are
the (4 · 6 · 12), and (4 · 8 · 8) lattices, among Archimedean
lattices), while the triangular lattice is tripartite (for oth-
ers Archimedean lattices and their planar duals, see, e.g.,
Tables I and II in [7]). It follows that, with the DNq defi-
nition for W (Λ, q), namely setting q = r and then taking
the N → ∞ limit in Eq. (1.2), one has

W (Λrp., r) = 1 . (A2)
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As discussed in [12], because of the noncommutativity
(2.15), if instead of setting q = r, evaluating P (Grp., r),
and then taking the N → ∞, one first takes N → ∞ with
q in the vicinity of r, and then performs the limit q → r,
one can, in general, get a different result for W (Λ, q).
Indeed, this is the case for many lattice strips of regular
lattices of a fixed width Ly, an arbitrary length, Lx, and
various transverse and longitudinal boundary conditions
[12, 14, 23, 25]. The coloring problem on a given lattice
Λ is of interest for q ≥ χ(Λ), since this is the minimum
(integer) value of q for which one can carry out a proper
q-coloring of the vertices of Λ. In a number of cases,
χ(Λ) < qc(Λ). If one considers W (Λ, q) for q < qc(Λ),
then one must deal with the generic noncommutativity
in the limits (2.15) [12]. Here we always use the order
DNq, i.e., we fix q to a given value and then take N → ∞.
Actually, in view of the results (A1) and (A2), for the
square and honeycomb lattices, W (sq, 2) = W (hc, 2) =
1, and for the triangular lattice, W (tri, 3) = 1. Since
our new lower bounds are intended for practical use and
since one already knows (with the DNq definition) the
values of W (sq, 2), W (hc, 2), and W (tri, 3) exactly, we
may restrict our analysis to the application of our new
bounds in the range q ≥ 3 for the square and honeycomb
lattices and to the range q ≥ 4 for the triangular lattice.
For reference, we recall an elementary lower bound on

P (G, q) and hence on limN→∞ P (G, q)1/N , where G is an
N -vertex graph. IfG is bipartite (bp.) then one can assign
a color to all of the vertices of the even subgraph in any
of q ways and then one can assign one of the remaining
q − 1 colors to each of the vertices on the odd subgraph
independently, so P (Gbp., q) ≥ q(q − 1)N/2. Hence, for
a bipartite lattice, denoting Λbp. as the N → ∞ limit

of Gbp., one has W (Λbp., q) ≥ (q − 1)1/2. Both of these
lower bounds are realized as equalities only in the case
q = 2. More generally, if Grp. is an r-partite graph and
Λrp. = limN→∞ Λrp.,N , then

P (Grp., q) ≥
[

r−2
∏

s=0

(q − s)
]

[q − (r − 1)]N/r (A3)

and hence

W (Λrp., q) ≥ [q − (r − 1)]1/r . (A4)

Thus, for example, one has the elementary lower bounds
W (sq, q) ≥ (q − 1)1/2 and W (tri, q) ≥ (q − 2)1/3, etc.
For q > r on Λrp., the lower bound (A4) is less strin-

gent than the ones derived in [7]-[8] and here via coloring
matrix methods. Indeed, these lower bounds illustrate
the fact noted in the text, namely that, a priori, a lower
bound need not agree with terms in the large-q expan-
sion of Wr(Λ, q) or the equivalent small-y expansion of
W (Λ, y). For example, for the square and honeycomb
lattices, the r = 2 special cases of (A4) read, for q ≥ 2,

W (sq, q) ≥ (q − 1)1/2 (A5)

and

W (hc, q) ≥ (q − 1)1/2 . (A6)

Since W (Λ, q) ∼ q for large q, these lower bounds be-
comes progressively worse (i.e., farther from the actual
value) as q increases above 2. The corresponding lower
bounds in terms of W (sq, y) and W (hc, y) are

W (sq, y) ≥ (1 + y)
√
y (A7)

and

W (hc, y) ≥
√

y(1 + y) . (A8)

Rather than matching any terms in the respective small-
y expansions (10.3) and (10.13), the right-hand sides of
these lower bounds vanish for small y. Similarly, since
the triangular lattice is tripartite, the r = 3 special case
of (A4) yields the lower bound, for q ≥ 3,

W (tri, q) ≥ (q − 2)1/3 . (A9)

In terms of W (tri, y), this is

W (tri, y) ≥ y2/3(1− y)1/3(1 + y)2 . (A10)

Again, for small y, this vanishes rather than matching
any of the terms of the small-y expansion (10.8). Thus, as
noted, a lower bound need not match any of the terms in
the small-y expansion. This emphasizes how impressive
the new lower bounds are in their matching of these terms
in the small-y expansions for the various lattices to high
order.

Appendix B: Lower Bounds W (Λ, q)ℓ;1,1 and
W (Λ, y)ℓ;1,1 for Archimedean Lattices

We list here some general results that were proved
in Ref. [7] for the lower bounds W (Λ, q)ℓ;1,1 and the

corresponding lower bounds W (Λ, y)ℓ;1,1 for the eleven
Archimedean lattices. These are useful here because we
compare our new lower bounds W (Λ, q)ℓ;b,k and the cor-

responding lower bounds W (Λ, y)ℓ;b,k with b ≥ 2 and/or
k ≥ 2 to these earlier ones with b = k = 1. (Ref.
[7] also gave lower bounds for the planar duals of the
Archimedean lattices; we do not list these here but in-
stead refer the reader to [7].)
We begin with some basic definitions and properties

of Archimedean lattices. As stated in the text, an
Archimedean lattice is defined as a uniform tiling of the
plane by one or more types of regular polygons in which
all vertices are equivalent (see, e.g., [11]). Such a lattice
is specified by the ordered sequence of polygons that one
traverses in making a complete circuit around a vertex
in a given (say counterclockwise) direction. This defini-
tion is incorporated in the mathematical notation for an
Archimedean lattice, Λ = (

∏

i p
ai

i ), where in the above
circuit, the notation pai

i indicates that the regular poly-
gon pi occurs contiguously ai times; it can also occur
noncontiguously. Because the starting point is irrelevant,
the symbol is invariant under cyclic permutations. For
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later purposes, when a polygon pi occurs several times in
a non-contiguous manner in the product, we shall denote
ai,s as the sum of the ai’s over all of the occurrences of the
given pi in the product. There are eleven Archimedean
lattices, including (36), (44), (63), (34 · 6), (3 · 6 · 3 · 6),
(3 · 122), and (4 · 82). Of these lattices, three are ho-
mopolygonal, i.e., they only involve one type of regular
polygon: (36) = tri, (44) = sq, and (63) = hc. The other
eight are heteropolygonal, i.e., involve tilings with more
than one type of regular polygon. The (3 · 6 · 3 · 6) lat-
tice is commonly called the kagomé lattice in the physics
literature.
The degree ∆ of a vertex of a graph G is the number

of edges (bonds) that connect to this vertex. For a regu-
lar (infinite) lattice, this is the same as the coordination
number. For an Archimedean lattice Λ as given above,
the coordination number is

∆ =
∑

i

ai,s . (B1)

Of course, for a finite lattice with free boundary condi-
tions, the vertices on the boundary have lower values of
∆ than those in the interior; this will not be important
for our rigorous bounds, which pertain to the thermody-
namic limit on an infinite lattice. For a homopolygonal
lattice Λ = (pa), there is a constraint relating the coor-
dination number to p, namely

∆ = a =
2p

p− 2
, for Λ = (pa) . (B2)

This can be written in the symmetric form ∆−1 + p−1 =
1/2. The number of polygons of type pi per site is given
by

νpi
=

Npi per v

Nv per pi

=
ai,s
pi

. (B3)

The set of homopolygonal Archimedean lattices is invari-
ant under the (planar) duality transformation, which in-
terchanges 0-cells (vertices) and 2-cells (faces) and thus
maps (pa) → (ap). When one applies the (planar) duality
transformation to the other eight Archimedean lattices,
the resultant lattices are not Archimedean.
As noted, the chromatic polynomial of a circuit graph

is

P (Cn, q) = (q − 1)n + (q − 1)(−1)n . (B4)

Since this chromatic polynomial has q(q− 1) as a factor,
we can write it as

P (Cn, q) = q(q − 1)Dn(q) , (B5)

where

Dn(q) =
P (Cn, q)

q(q − 1)
=

n−2
∑

s=0

(−1)s
(

n− 1

s

)

qn−2−s . (B6)

Ref. [7] proved the following general lower bounds for
an Archimedean lattice, Λ = (

∏

i p
ai

i ) (where we add the
subscripts 1, 1 to indicate b = 1 and k = 1 to match our
current notation for W (Λ, q)ℓ;b,k):

W
(

(
∏

i

pai

i ), q
)

≥ W
(

(
∏

i

pai

i ), q
)

ℓ;1,1
, (B7)

where

W
(

(
∏

i

pai

i ), q
)

ℓ;1,1
=

∏

iDpi
(q)νpi

q − 1
, (B8)

Here, the {i} in the product label the set of pi-gons in-
volved in Λ and νpi

was defined in eq. (B3).
This lower bound takes a somewhat simpler form in

terms of the related function W (Λ, y)ℓ, namely,

W
(

(
∏

i

pai

i ), y
)

≥ W
(

(
∏

i

pai

i ), y
)

ℓ;1,1
, (B9)

where

W
(

(
∏

i

pai

i ), y
)

ℓ,1,1
=

∏

i

[

1 + (−1)piypi−1
]νpi

(B10)

These are summarized in Table III.

Appendix C: Higher-Degree Algebraic Equations for
Certain λΛ,Ly ,0,1

In this appendix we list some algebraic equations of
degree higher than 2 that are used in the text. The cubic
equation whose largest (real) root is λsq,4,0,1, used for our
lower bound W (sq, q)ℓ;1,3, is

λ3 − (q4 − 7q3 + 23q2 − 41q + 33)λ2 + (2q6 − 23q5 + 116q4 − 329q3 + 553q2 − 517q + 207)λ

− q8 + 16q7 − 112q6 + 449q5 − 1130q4 + 1829q3 − 1858q2 + 1084q − 279 = 0 . (C1)

The quartic equation whose largest (real) root is λtri,4,0,1, used for our lower bound W (tri, q)ℓ;1,3, is

λ4 − (q4 − 10q3 + 42q2 − 88q + 76)λ3 + (q − 2)(q − 3)2(3q3 − 22q2 + 60q − 60)λ2
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− (q − 2)2(q − 3)3(3q3 − 21q2 + 51q − 43)λ+ (q − 2)6(q − 3)4 = 0 . (C2)

The cubic equation whose largest (real) root is λhc,3,0,1 used in our lower bound W (hc, q)ℓ;2,1 is

λ3 − (q6 − 8q5 + 28q4 − 56q3 + 71q2 − 58q + 26)λ2

+ (q − 1)2(q6 − 10q5 + 43q4 − 102q3 + 144q2 − 120q + 49)λ− (q − 1)4(q − 2)2 = 0 . (C3)

The cubic equation whose largest (real) root is λ(4·82),3,0,1, used in our bound W ((4 · 82), q)ℓ;1,2 is

λ3 − (q12 − 16q11 + 120q10 − 558q9 + 1794q8 − 4212q7 + 7437q6 − 10018q5 + 10324q4

−8064q3 + 4648q2 − 1854q + 414)λ2

+(q − 1)4(q12 − 20q11 + 188q10 − 1094q9 + 4375q8 − 12640q7 + 27033q6 − 43164q5

+51235q4 − 44380q3 + 26931q2 − 10462q+ 2017)λ

−(q − 1)8(q − 2)2(q − 3)2(q2 − 3q + 3)2 = 0 . (C4)
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TABLE I: Values of Rsq,q;ℓ;b,k for q = 3 and some illustrative
values of b and k.

b k W (sq, 3)ℓ;b,k Rsq,3;ℓ;b,k

1 1 1.500000 0.974279

2 1 1.520518 0.987605

3 1 1.530340 0.993985

1 2 1.510224 0.980919

1 3 1.5162645 0.984843

1 4 1.520249 0.987430

1 5 1.523073 0.989265

TABLE II: Values of Rtri,q;ℓ;b,k for q = 4 and some illustrative
values of b and k.

b k W (tri, 4)ℓ;b,k Rtri,4;ℓ;b,k

1 1 1.333333 0.912618

2 1 1.390388 0.951670

3 1 1.427052 0.976765

1 2 1.361562 0.931939

1 3 1.380569 0.944949

1 4 1.393923 0.954089

1 5 1.403672 0.960762

TABLE III: Lower bounds W (Λ, y)ℓ,1,1 for Archimedean lattices
Λ = (

∏
i p

ai
i ), from [7]. The number ic denotes the maximum order,

O(yic), to which the small-y Taylor series expansion of W (Λ, y)ℓ,1,1
coincides with the Taylor series expansion of W (Λ, y).

Λ W (Λ, y)ℓ;1,1 ic

(36) (1− y2)2 4

(44) 1 + y3 6

(63) (1 + y5)1/2 10

(34 · 6) (1− y2)4/3(1 + y5)1/6 4

(33 · 42) (1− y2)(1 + y3)1/2 4

(32 · 4 · 3 · 4) (1− y2)(1 + y3)1/2 4

(3 · 6 · 3 · 6) (1− y2)2/3(1 + y5)1/3 8

(3 · 4 · 6 · 4) (1− y2)1/3(1 + y3)1/2(1 + y5)1/6 5

(3 · 122) (1− y2)1/3(1 + y11)1/6 13

(4 · 6 · 12) (1 + y3)1/4(1 + y5)1/6(1 + y11)1/12 11

(4 · 82) (1 + y3)1/4(1 + y7)1/4 12


