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When many independent users try to route traffic through a network, the flow can easily become
suboptimal as a consequence of congestion of the most efficient paths. The degree of this subopti-
mality is quantified by the so-called “price of anarchy” (POA), but so far there are no general rules
for when to expect a large POA in a random network. Here I address this question by introducing
a simple model of flow through a network with randomly-placed “congestible” and “incongestible”
links. I show that the POA is maximized precisely when the fraction of congestible links matches the
percolation threshold of the lattice. Both the POA and the total cost demonstrate critical scaling
near the percolation threshold.

I. INTRODUCTION

Optimizing the flow through a large network is no easy
task. This fact is readily apparent to anyone who has
lost their internet connection or been stuck in a traf-
fic jam. The problem in such cases, and in a myriad
of others, is that network links become congested when
a large demand is placed on them, and this congestion
lowers the network efficiency for all users. It is thus com-
mon for situations to arise where the self-interest of in-
dividual users, who would prefer to route their traffic
through the most convenient links, is not aligned with
the globally optimum behavior for all users, which gen-
erally requires that traffic be distributed more evenly
to avoid congestion. Understanding this self-interest-
driven inefficiency is critical for a large number of prob-
lems across an array of fields, including the planning of
computer networks[1], transportation networks[2–5], and
power grids[6], the allocation of public services[7], and
even sports strategy[8, 9].

Unfortunately, at present there are no general rules
for predicting which conditions give rise to large inef-
ficiency in a random network. Indeed, previous works
have largely studied congestible networks either at the
level of proving general theorems[10–12] or by trying
to model specific real-world systems as accurately as
possible[4, 13]. In this paper, I seek a middle ground
approach by introducing and analyzing a simple lattice
model of randomly-placed congestible and incongestible
links. The model takes inspiration from the spectacular
history of similarly idealized lattice models in theoretical
physics, which have provided important and generic in-
sights for fields as diverse as electrical conduction in dis-
ordered materials[14–16], the spread of epidemics[17, 18],
the mechanics of biopolymer networks[19], and the quan-
tum Hall effect[20]. Crucially, in each of these examples
the lattice percolation threshold plays a key role in de-
termining the behavior of the system. As I show below,
the same is true for the model proposed here.

For the sake of concreteness, the remainder of this pa-
per discusses the network using the language of cars on a
road network[21], but one can think of the words “roads,”
“traffic,” and “commute time,” as equivalent to the more

generic concepts of “links,” “current,” and “cost.”

II. PROPOSED MODEL

The canonical example of network suboptimality
arising from user self-interest was introduced by the
economist Arthur Pigou[22], who in 1920 imagined the
simple network of two parallel roads shown in Fig. 1(a).
In Pigou’s example, one of the two roads offers a con-
stant commute time c1 = 1 (in some units). The sec-
ond road offers a potentially much faster commute but
is highly congestible. This road is described by a usage-
dependent commute time c2 = x2 (in the same units),
where x2 ∈ [0, 1] denotes the proportion of the total
traffic on this second road. It is straightforward to
show that the average commute time per driver, C =
x1c1 + x2c2(x2) = x1 + x22, where x1 = 1− x2 is the pro-
portion of the traffic taking the first road, is optimized
when the two roads are used equally: x1 = x2 = 1/2.
This optimum arrangement has an average commute time
Copt = 3/4.

The optimum configuration, however, is unstable in
a social sense: any driver on the first road experiences a
commute time of c1 = 1, while drivers on the second road
experience a twice-shorter commute c2 = 1/2. Thus,
in the absence of any regulation, all drivers on the first
road have an incentive to switch to the second road, and
the resulting “equilibrium” has x1 = 0, x2 = 1, and
C = Ceq = 1. This equilibrium is equivalent to the Nash
equilibrium from game theory, which is generally defined
as the state in which no user can improve his commute
time by changing his commute path [3].

The inefficiency of the equilibrium is quantified by the
so-called “price of anarchy” (POA), P = Ceq/Copt ≥ 1;
one can think that the POA reflects the increase in global
cost that results from allowing users to choose their own
paths rather than having the optimum arrangement dic-
tated to them.

While Pigou’s example provides an illustration of self-
interest-driven inefficiency, there is no general rule for
when to expect a significant POA in a large network.
Motivated by this lack of qualitative understanding, I
introduce a generalization of Pigou’s example in which
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FIG. 1. (Color online) (a) Pigou’s example of flow through a
network with two “roads,” one of which has constant commute
time and the other of which is congestible. (b) The model
introduced here, where constant roads (thin red lines) and
congestible roads (thick blue lines) are randomly mixed. A
unit amount of traffic is passed through the network, and all
roads are unidirectional and proceed to the right.

slow “constant roads,” having c(x) = 1, are combined
with faster “congestible roads,” having c(x) = x, to form
a large network. The majority of this paper focuses on
the case where roads are arranged into a two-dimensional
square lattice, as shown in Fig. 1(b). All roads in the lat-
tice are taken to be uni-directional, and a unit amount of
traffic is passed through the network, such that all traffic
enters through the L vertices on the left boundary and
exits through the L vertices on the right boundary. The
lattice is taken to be periodic in the vertical direction,
and in this configuration each of the 22L possible paths
through the network involves traversing exactly 2L roads.
Each road type is assigned randomly, with a probability
p of being of the congestible type.

The main focus of this paper is on calculating the
global average commute time,

C =
∑

all roads i

xici(xi), (1)

for both the optimum and equilibrium configurations as
a function of p and the system size L. As outlined above,
the traffic xi on a given road i satisfies 0 ≤ xi ≤ 1 and
the commute time across the road is described by either
ci(xi) = 1 or ci(xi) = xi.

A nontrivial dependence of the POA as a function of
p can be anticipated by looking at the extreme cases of
p = 0 and p = 1. At p = 0, all roads have constant
cost c = 1 regardless of the arrangement of traffic, and
so Ceq = Copt = 2L and P (0) = 1. On the other hand, at
p = 1 all roads have c = x. In this case the symmetry of
the lattice demands that all roads have equal usage x =
1/2L in both the equilibrium and optimum conditions,
and as a consequence Ceq = Copt = 1 and P (1) = 1.
For the case 0 < p < 1 however, where the network is
non-uniform, one can expect P − 1 to be finite, as fast

but congestible roads get overused in the equilibrium.

III. NUMERICAL MODELING AND
ELECTRICAL CIRCUIT ANALOGY

In order to find the total average commute time C in
either the equilibrium or optimum situation, one should
first solve for the traffic xi along each road i. For the
optimum case, this solution amounts to finding the min-
imum of the quadratic function C with respect to all
variables xi [see Eq. (1)], subject to the constraints that
xi ≥ 0 for all i, that the current is conserved at each
node, and that the total current passed through the net-
work is equal to unity. Similarly, the equilibrium can be
thought of as the minimum of the modified cost func-
tion

∑
i

∫ xi

0
ci(x

′)dx′, subject to the same constraints.
This equilibrium is equivalent to the state where all pos-
sible commute paths across the network have either the
same commute time or have zero usage. Since finding the
equilibrium or optimum therefore represents a minimiza-
tion of a convex second-degree polynomial over a convex
domain, the solution can be found using standard algo-
rithms from convex optimization.[23] Details about the
algorithm used here are given below.

Some insight into the problem of solving for the net-
work flow can be gained by recasting it in the more fa-
miliar language of a linear electrical circuit. In this anal-
ogy, the traffic x along a given road is equated with a
“current”, and the commute time c(x) is equated with a
“voltage drop”. Thus, the constant roads with c(x) = 1
are equivalent to links with unit voltage sources, which
produce a current-independent voltage drop across the
link. The congestible roads with c(x) = x are analo-
gous to links with unit resistors, which produce a voltage
drop that increases linearly with the current. Impor-
tantly, each link also includes an (ideal) diode [as de-
picted in Fig. 2(c)], which enforces the unidirectionality
of the current. Such diodes ensure that the voltage drop
across each link is strictly positive, or, equivalently, that
all roads require a positive amount of time to traverse.

Once this analogy is made, the current on each link
can be solved for using the corresponding Kirchoff laws.
In particular, the Kirchoff loop law states that for any
two paths A and B connecting the same two points in
the network, the total voltage drops cA and cB along the
paths are equal. This is equivalent to the Nash equi-
librium condition, which states that any two paths with
finite usage must have the same commute time; other-
wise commuters will switch from the slower path to the
faster one.

On the other hand, the optimum currents xA and xB
along the two paths are not those which equalize cA
and cB , but are instead those which minimize the av-
erage commute time, xAcA + xBcB , subject to the con-
straint that xA + xB is fixed. For nontrivial solutions
having xA, xB > 0, this corresponds to the condition
∂xA

(xAcA) = ∂xB
(xBcB). Consider, for example, that
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FIG. 2. (Color online) Electrical circuit analog of the lattice
shown in Fig. 1(b). (a) Traffic splits between two paths, which
generically have commute times cA and cB , respectively, that
are linear functions of the traffic along each road. (b) The
equilbrium traffic, for which cA = cB , is analogous to the
current through a resistor network with resistances matching
the value of ∂c/∂x along each branch. The optimum traffic,
on the other hand, is analogous to the current resulting from
a circuit with doubled values of the resistance. Currents are
assumed to proceed to the right. (c) The network model being
considered [as in Fig. 1(b)] can generically be mapped onto
an electrical circuit by representing constant roads as unit
voltage sources and congestible roads as either unit resistors,
for the equilibrium case, or as resistors with resistance 2, for
the optimum case. The diodes ensure that current proceeds
to the right, and that all commute times are positive.

the commute time along path A is described by the lin-
ear function cA(xA) = VA+RAxA, where VA and RA are
coefficients that represent the number of constant or con-
gestible roads, respectively, along path A. Let the com-
mute time along path B be similarly written cB(xB) =
VB+RBxB . In this case it is easy to show that a nontriv-
ial optimum satisfies VA + 2RAxA = VB + 2RBxB . But
this relation is precisely the Kirchoff loop law for the
case where the “resistances” RA/B are doubled. Thus,
one can solve for the optimum currents simply by mod-
eling each congestible road as a resistor with resistance
2 rather than as a unit resistor, as depicted in Fig. 2(b).
[Note, for example, that such a substitution gives the
optimum currents xA = xB = 1/2 in Pigou’s example,
Fig. 1(a).] This result, while elementary, already has im-
portant implications for network routing: it implies that
traffic through a linear, congestible network is optimized
when users respond to a cost that rises twice as fast with
increased usage as does the bare transit time cost. The
possibility of achieving such a cost rate doubling in real

networks is already being studied; for example, on ma-
jor roadways it might be achievable through through dy-
namic tolling.[13]

Of course, for the problem considered here, the process
of solving for the circuit currents is complicated by the
presence of diodes on each link (or, equivalently, by the
constraint that all commute times be strictly positive).
This condition necessitates the use of a more careful pro-
cedure than a simple solution of Kirchoff’s equations,
since solving for the current in all circuit elements re-
quires one to simultaneously ascertain the correct state of
all (2L)2 diodes. To find this solution, I use here a simple
adaptation of the “greedy” algorithm that is commonly
used to search for the ground state of spin or Coulomb
glasses[24].

In particular, in this algorithm the initial state of each
diode (“on” or “off”) is first guessed randomly, and the
corresponding system of Kirchoff equations is solved nu-
merically. The resulting currents and voltages coming
from this initial solution have, in general, a number of
violations of the assumed states of the diodes. That is,
some diodes assumed to be “on” have negative currents
in the (erroneous) solution, and some diodes assumed to
be “off” have positive voltage drops across them. In the
greedy algorithm, the “on” diode with the largest nega-
tive current and the “off” diode with the largest positive
voltage both have their states switched, and the Kirchoff
laws are re-solved. This process is continued until a so-
lution is reached that has complete consistency between
the currents and the diode states. A uniqueness theorem
for linear circuits with diodes[25] guarantees that any
such solution is unique in terms of its dissipated power,
which is the analogue of the total commute time C. If no
such solution is reached after a large number of numeri-
cal iterations (which happens rarely), then the process is
re-initialized using a different initial guess for the diode
states.

This procedure is implemented numerically for each
random realization of the network in order to calculate
values of the traffic {xi} on all of the system’s roads
in both the optimum and equilibrium situations. The
resulting total commute times, Copt and Ceq, are then
calculated using Eq. (1). Results presented below corre-
spond to averages over many random networks for each
value of p and each system size L.

IV. RESULTS

The results for the POA are shown in Fig. 3 as a func-
tion of p for a range of system sizes. Notably, the POA
acquires its maximum value very close to the point where
p matches the percolation threshold for directed percola-
tion through the lattice, pc ≈ 0.6447.[26] As the system
size is increased, the maximum of P becomes increas-
ingly sharp and moves closer to p = pc. As shown below,
scaling of the curves P (p, L) suggests that in the limit of
infinite system size, the POA peak is infinitely sharp and
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is located precisely at p = pc.
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FIG. 3. (Color online) POA as a function of the fraction p
of congestible roads in the lattice, plotted for different values
of the system size L. The vertical dotted line indicates the
lattice percolation threshold, pc ≈ 0.6447.

While the focus of this paper is on the square lattice
shown in Fig. 1(c), I briefly note that one can verify the
generality of the main result of this paper, that the POA
is maximized at the percolation threshold, by examin-
ing other lattice types with different values of pc. Such
lattices can be expected to produce qualitatively similar
curves P (p) as in Fig. 3, but with the maximum shifted
to the percolation threshold of the lattice being consid-
ered. This is demonstrated explicitly in Appendix A for
one specific case.

That the POA achieves a maximum at the percolation
threshold can be rationalized using the following qual-
itative argument. At p < pc, there are no continuous
paths in a large system that connect opposite faces of
the system while traversing only congestible roads, as
illustrated in Fig. 4(a). Thus, all traffic across the net-
work must use a combination of congestible roads and
the slower constant roads. In this situation the equilib-
rium traffic is naturally distributed over many paths with
relatively low susceptibility to congestion, and the POA
is not too large. Exactly at the percolation threshold,
p = pc, there appears a single macroscopic pathway (the
“infinite cluster,” in percolation language[24]) connecting
opposite sides of the system that uses only congestible
roads. This single pathway becomes heavily over-used in
the equilibrium, and the POA is relatively large.

Finally, when p > pc there are many pathways con-
necting opposite faces that use only congestible roads, as
shown in Fig. 4(b), and as p is increased the number of
such pathways increases. At such large p the constant
roads are abandoned in the equilibrium, and the POA
is a reflection only of the degree of congestion on those
pathways that have finite equilibrium usage. Increasing
p eases that congestion, and the POA falls abruptly. Fig.
5 shows a visualization of the traffic through the network
at p ≈ pc in both the equilibrium and optimum config-

(a) 
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FIG. 4. (Color online) Schematic illustration of large clusters
and percolating pathways of congestible roads. (a) At p < pc
and |p − pc| � 1, the system contains large, disconnected
clusters of congestible roads, with typical size ξ‖ in the down-
stream direction and ξ⊥ in the perpendicular direction. One
such cluster is highlighted in orange. (b) At p slightly larger
than pc, on the other hand, there are many parallel pathways
for traversing the lattice using only congestible roads. The
correlation lengths ξ‖ and ξ⊥ describe the typical horizontal
and vertical separation between these paths. Small, isolated
clusters and “dead ends” are not shown.

urations. As one can see, the traffic is distributed over
more paths in the optimum than in the equilibrium. Ad-
ditional visualizations of the traffic density are given in
Appendix B.

FIG. 5. (Color online) Spatial map of the traffic flow in a
typical realization of a random network at p ≈ pc. Roads
that carry finite traffic in the equilibrium are shown as black
points, and light blue points indicate additional roads that are
used in the optimum. The image has been cropped vertically,
but shows the full width (L = 75) of the system.

In order to understand the scaling behavior of the equi-
librium and optimum commute times, let us first consider
the case where the system size L → ∞, while p − pc re-
mains finite. At p < pc and |p−pc| � 1, the network con-
tains large but disconnected clusters of fast, congestible
roads with maximum size ξ‖ ∝ |p − pc|−ν‖ in the down-
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stream direction and ξ⊥ ∝ |p− pc|−ν⊥ in the perpendic-
ular direction[27, 28], as illustrated in Fig. 4(a). Here,
ν‖ ≈ 1.733 and ν⊥ ≈ 1.097 are critical exponents[26],
with ν‖ > ν⊥ indicating larger correlation length in the
downstream direction. (This behavior can also be seen
qualitatively in Fig. 5, which shows that near the per-
colation threshold large, asymmetric holes appear in the
current paths.)

As traffic passes from the left to the right side of the
network, it generally seeks to avoid the slow constant
roads, and therefore it preferrentially follows the “back-
bone” of large percolation clusters. However, since these
clusters are not connected macroscopically, the traffic
must pass through at least one constant road each time
it moves from one cluster to another. Therefore, the traf-
fic generally passes through ∼ 1 such road for each path
length ξ‖ travelled. Since only a unit amount of current
is passed through the entire system, the amount of traf-
fic through any given percolation cluster is vanishingly
small in the limit L→∞, and the commute time across
the congestible roads within the cluster is also vanish-
ingly small. Consequently, the total commute time C is
dominated by passage through the constant roads con-
necting adjacent clusters. Since commuting across the
entire lattice requires drivers to pass from one large clus-
ter to another ∼ L/ξ‖ times, one can expect C to scale
as

C ∼ L

ξ‖
∼ L|p− pc|ν‖ (2)

at p < pc.
On the other hand, at p > pc, there are many par-

allel pathways for traversing the lattice that use only
congestible roads, as depicted in Fig. 4(b). Each such
pathway takes only a small fraction x′ ∼ ξ⊥/L of the to-
tal current, while paths that traverse constant roads are
completely abandoned. Since the total commute time
along any given percolating pathway is proportional to
the commute time c(x′) = x′ on a given congestible road
multiplied by the total path length ∼ L, one can say that
the typical average time C ∼ x′L. In other words,

C ∼ ξ⊥ ∼ |p− pc|−ν⊥ (3)

at p > pc. Equations (2) and (3) are shown together with
numerical results for C in Fig. 6.

One can notice that Eqs. (2) and (3) represent very
different behavior: at p < pc the commute time scales
extensively with the system size, C ∝ L1, while at p > pc
the commute time becomes independent of system size,
C ∝ L0. Exactly at the threshold, p = pc, one can expect
the commute time to scale as some nontrivial power of the
system size: C ∝ Lm. An estimate for this exponent m
can be obtained by equating Eqs. (2) and (3) and solving
for the corresponding value of |p − pc| at which the two
relations cross over to each other. This procedure gives

C(p = pc) ∼ Lν⊥/(ν‖+ν⊥), (4)
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FIG. 6. (Color online) Dependence of the commute time on
the fraction p of congestible roads, plotted for L = 50. The
solid (blue) line shows Copt, and the (red) dots are Ceq. The
dashed lines show the analytical results of Eqs. (2) and (3),
respectively, for L → ∞. The dotted vertical line indicates
p = pc.

or m = ν⊥/(ν‖ + ν⊥) ≈ 0.388. This analytical estimate
for m is consistent with numerical results, as shown in
Fig. 7. An independent fitting of the data in Fig. 7 gives
m ≈ 0.31. This same scaling relation C ∝ Lm describes
both the equilibrium and optimum. (Indeed, general the-
orems have shown that Ceq and Copt cannot differ by
more than a constant numeric factor [11]. For networks
with linear cost functions, Ceq/copt ≤ 4/3.)
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system size, L

C

p = 0.3 C ∝  L1

p = p
c

p = 0.8 C ∝  L0

C ∝  Lm

FIG. 7. (Color online) Scaling of the average commute time
C with the system size L. Different curves are labelled by
their corresponding value of p. At p < pc, the commute time
scales as C ∝ L1, and at p > pc the commute time scales
as C ∝ L0. Precisely at p = pc, the commute time follows
C ∝ Lm, with m ≈ 0.388. Filled dots denote Ceq, and open
circles are Copt.

For finite values of the system size, and for p close to
the percolation threshold, it should be possible to write
the scaled commute time C/Lm using a critical scaling
form. Such scaling usually takes the form F = f(L/ξ),



6

where F is some system property and ξ ∝ |p − pc|−ν is
the correlation length, so that F is a function only of
L/ξ, or equilvalently of (L/ξ)1/ν = (p − pc)L1/ν . Such
scaling is indeed possible here, as demonstrated explicitly
in Fig. 8(a). In this figure the scaled cost C/Lm is shown
to be a function only of the combination (p − pc)L1/ν ,
with ν ≈ 2.62 ± 0.2 determined by best fit of the data
collapse[29]. Fig. 8(b) demonstrates that this same value
of ν produces good gollapse of the curves from Fig. 3 for
the POA. As mentioned above, such scaling suggests that
for L→∞ the POA peak converges precisely to p = pc.

−2 −1 0 1
0

5

10

15

(p − p
c
)L1/ν

C
eq

/L
m

 

 

0.55 0.6 0.65 0.7

1

2

3

p

C
eq

/L
m

−2 −1.5 −1 −0.5 0 0.5 1

1

1.01

1.02

1.03

1.04

1.05

1.06

(p − p
c
)L1/ν

PO
A

, P

 

 

L = 10
L = 20
L = 30
L = 50

(a)

(b)

FIG. 8. (Color online) Critical scaling. (a) Inset: The
scaled equilibrium commute time Ceq/L

m near the percola-
tion threshold (vertical dotted line). Main figure: Ceq/L

m

can be parameterized for all system sizes by (p − pc)L
1/ν ,

with ν ≈ 2.6. Copt (not shown) can be similarly scaled. (b)
Near the percolation threshold, different curves for the POA
also collapse when plotted as a function of (p− pc)L1/ν .

Of course, the problem being considered here has two
separate correlation lengths, so that the fitted exponent
ν should in fact be a linear combination of the two criti-
cal exponents ν‖ and ν⊥. One reasonable expectation is
that the relevant scaling form is C/Lm = f(L/Lc), where
Lc ∼ ξ⊥ξ‖ is the system size for which Eqs. (2) and (3)
become equal. In other words, Lc represents the system
size below which the system cannot be unambiguously
described as percolating or non-percolating, in terms of
its average commute time. This hypothesis leads to the

conclusion that ν = ν‖ + ν⊥ ≈ 2.83, which is consistent
with the result presented above. Future works can vali-
date this hypothesis explicitly by studying systems with
varying aspect ratio.

V. CONCLUSION

In summary, this paper has introduced a simple model
of random congestible networks and demonstrated a clear
and previously unnoticed connection between percola-
tion and self-interest-driven inefficiency. A number of
generalizations and extensions of the model deserve fur-
ther exploration, including an extension to other network
topologies [10, 30], and to the case of nonlinear cost func-
tions. For highly nonlinear cost functions one can, in
general, expect a significantly larger value of the POA
at the percolation threshold[31]. Cost functions that in-
clude a critical “jamming” density, as are realistic for
actual highways [32], may give rise to a diverging POA.

More generally, this work hints at the possibility of
a deeper connection between POA and percolation that
may go well beyond simple Pigou-type models. Such a
connection seems to provide a novel and interesting play-
ground for statistical mechanics, and has the potential to
provide invaluable understanding for efforts to mitigate
network congestion effects across a wide set of disciplines.
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Appendix A: POA in a different lattice type

As mentioned in the main text, one natural test of the generality of the claim that the POA is maximized at p = pc
is to analyze flow through a different type of lattice. Here I show results for the three-dimensional (3D) body-centered
cubic (BCC) lattice, which can be thought of as the 3D generalization of the lattice in Fig. 1(b). The BCC lattice
has a significantly smaller percolation threshold pc ≈ 0.2873 due to its twice-larger coordination number. The POA
as a function of p for this lattice is plotted in Fig. 9. As one can see, the behavior of P (p) is qualitatively similar to
that of Fig. 3, but with the maximum shifted to the new percolation threshold.
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FIG. 9. (Color online) POA for flow through a 3D BCC lattice with randomly-placed congestible and constant roads, plotted
for different system sizes. The vertical dotted line shows the lattice percolation threshold, pc ≈ 0.2873.

Appendix B: Traffic density maps

Figure 5 of the main text provides a visualization of the traffic through a particular realization of the network by
showing which roads are used in the equilibrium and optimum situations. Here I provide an additional visualization
of the traffic density.

In Fig. 10 are shown the equilibrium and optimum traffic densities x for each road of the same random network
depicted in Fig. 5. In addition to having smaller “holes” in the traffic pattern (as illustrated in Fig. 5), the optimum
also has a more even distribution of the traffic flow as compared to the equilibrium.
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FIG. 10. (Color online) Traffic density in a network close to the percolation threshold, p ≈ pc. The color indicates the traffic
on a particular road, normalized to the system-averaged traffic per road, xavg = 1/(2L). The equilibrium configuration (left)
generally has its traffic concentrated on fewer roads, while the optimum (right) has a more even distribution.
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