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Abstract

We explore fluctuation relations in a periodically driven micromechanical torsional oscillator. In

the linear regime where the modulation is weak, we verify that the ratio of the work variance to the

mean work is constant, consistent with conventional fluctuation theorems. We then increase the

amplitude of the periodic drive so that the response becomes nonlinear and two non-equilibrium

oscillation states coexist. Due to interstate transitions, the work variance exhibits a peak at

the driving frequency at which the occupation of the two states are equal. Moreover, the work

fluctuations depend exponentially on the inverse noise intensity. Our data is consistent with recent

theories on systems driven into bistability that predict generic behaviors different from conventional

fluctuation theorems.
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Fluctuation theorems characterize the energy exchange between a system and a reservoir

under nonequilibrium conditions [1, 2]. They are of fundamental interest as fluctuations

play an increasing role in small physical and biological systems that are out of thermal

equilibrium [3]. In the linear response regime, the probability P of observing the work done

Wτ over a time interval τ by an external force is given by:

P (Wτ )/P (−Wτ) = exp(Wτ/kBT ) (1)

where kB is the Boltzmann’s constant and T is the temperature. In accordance with the sec-

ond law of thermodynamics, the total entropy tends to increase and the mean value of work

done by the external force remains positive. Nonetheless, for individual measurement events

there exists a small but finite probability of observing negative work due to fluctuations.

Experiments on fluctuation theorems have been performed on Brownian particles in op-

tical traps [4–8], electrical circuits with an injected current [9], defect centers in diamond

[10], quantum dots [11, 12] and mechanical oscillators [7, 13, 14]. Regardless of the form of

the external force and the integration time, the probability distribution of the work done is

found to be Gaussian:

P (Wτ ) = (2πσ2
τ )

−1/2 exp[−(Wτ − 〈Wτ 〉)
2/2σ2

τ ], (2)

which is characterized by the mean work 〈Wτ 〉 and the work variance σ2
τ = 〈(Wτ − 〈Wτ 〉)

2〉.

The symmetry function S(Wτ ) is commonly used to quantify the fluctuation theorem [13]:

S(Wτ ) = ln[P (Wτ )/P (−Wτ )]. (3)

Since the work distribution is Gaussian, it follows that S(Wτ ) =
∑

(τ)Wτ , where
∑

(τ) =

2〈Wτ 〉/σ
2
τ . For a linear system modulated by a periodic force, it has been experimentally

verified that the ratio of the work variance to the mean work (σ2
τ/〈Wτ〉) equals 2kBT in the

steady state, independent of the modulation frequency [13]. The above relations are a direct

consequence of the linear response theory and the fluctuation dissipation theorem.

Recently, there has been much interest in fluctuation phenomena in nonlinear systems

that are strongly modulated so that multiple nonequilibrium steady states coexist. Exam-

ples include Josephson junctions [15, 16], particles in magneto-optical [17] and Penning traps

[18] and micro- and nano-mechanical oscillators [19–22]. Fluctuations enable the systems to

occasionally overcome the activation barrier and switch between the coexisting states [23].
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In these systems, the relation between work variance and mean work generally cannot be

obtained from the linear response theory and the fluctuation dissipation theorem. Theo-

retical analysis has identified generic features in the work fluctuations of these modulated

nonlinear systems that differ from their linear counterparts [24]. To our knowledge, fluc-

tuations in nonlinear systems that are periodically driven into multistability have not been

experimentally studied in the context of fluctuation theorems.

In this paper, we explore the validity of fluctuation theorems in a periodically driven

nonlinear system with two coexisting nonequilibrium steady states. Work fluctuations are

measured in a micromechanical torsional oscillator. First, we verify that in the linear regime

of small oscillation amplitude, the work fluctuations are consistent with standard fluctuation

theorems. Next, we drive the oscillator into bistability. The work distribution remains

Gaussian so that ln[P (W )/P (−W )] ∝ W . However, the proportionality constant is no

longer equal to 1/kBT . Near the kinetic phase transition, where the occupation of the

two states are comparable, σ2/〈W 〉 is found to increase by a factor of more than 600 due

to fluctuation-induced switching between the two states. Moreover, instead of a linear

dependence, σ2/〈W 〉 varies exponentially with the inverse fluctuation intensity due to the

activated nature of switching. These observations are shown to be consistent with predicted

generic behaviors for work fluctuations in periodically modulated nonlinear systems [24].

We measure nonequilibrium fluctuations in a periodically driven micromechanical tor-

sional oscillator. The device consists of a 200 µm by 200 µm by 3.5 µm heavily doped

polysilicon plate suspended by two torsional springs (Fig. 1a) [20, 21]. Two fixed electrodes

are located underneath the top plate, enabling us to apply a number of dc, ac and noise

voltages to excite and detect rotations of the top plate. Measurement was performed at

room temperature and < 10−6 Torr. The equation of motion of the plate is given by:

θ̈ + 2λθ̇ + ω2
0θ + βθ3 = E/I cos (ωdt) + n(t)/I (4)

where 〈n(t)n(t′)〉 = 2Dδ(t− t′). θ is the angular displacement from the equilibrium position,

λ (2.44 rad s−1) is the damping constant, ω0 (125972.876 rad s−1) is the resonant frequency, β

(−6.0×1011s−2) is the cubic nonlinear coefficient, E is the amplitude of the periodic driving

torque, I (1.09×10−18 kg m2) is the moment of inertia, n(t) is the noise torque and D is the

noise intensity. For small θ, the nonlinear term βθ3 can be neglected and Eq. (4) reduces to

the second order Langevin equation [25]. In Eq. (4), the periodic torque is produced by a
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FIG. 1. (Color online). (a) Scanning electron micrograph of the micromechanical torsional os-

cillator. (b) Cross-sectional schematic of the device (not to scale) and electrical connections. (c)

Oscillation amplitude in phase (X, hollow circles) and out of phase (Y , solid squares) with the

excitation in the linear regime. (d) Hollow circles represent oscillation amplitude A (left axis).

Solid squares represent C = (σ2/〈W 〉)/D (right axis).

small ac voltage Vd = V0 cos(ωdt) on top of a much larger dc voltage Vdc1 (−1.0V ) applied to

the left electrode, where the driving frequency ωd is close to ω0. The noise torque consists

of two components: the torque associated with thermal fluctuations of the top plate and

the electrostatic torque due to a noise voltage VN(t) applied to the left electrode. VN (t) is

Gaussian, with a bandwidth of 1290 Hz centered at ω0. Since the bandwidth is much larger

than the width of the resonance (∼ 1 Hz), n(t) can be regarded as a white noise torque that

increases the effective temperature of the oscillator.

Motion of the top plate is detected capacitively through induced modulations on a carrier

voltage signal. Two ac voltages, Vc1 and Vc2, with the same frequency (fc = 2 MHz≫ ω0/2π)

and amplitude (168 mV) but opposite phase are applied to the two electrodes respectively.

Rotation of the top plate leads to changes in the capacitances between the top plate and

the two fixed electrodes. As a result, the amplitude of the carrier signal on the top plate

is modulated by the plate motion. The voltage on the top plate is measured with a lockin

amplifier referenced to fc, yielding an output that is proportional to the rotation angle θ(t).

In contrast with periodically driven systems in other experiments that studied fluctuation
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relations [13], our torsional oscillator is strongly underdamped, with a quality factor Q of ∼

30000. The long relaxation time allows us to measure θ(t) by recording the slowly changing

amplitude of the two oscillation quadratures X(t) and Y (t) using a second lockin referenced

to ωd:

θ(t) = B[X(t) cos(ωdt)− Y (t) sin(ωdt)]. (5)

The proportionality constant B is calculated to be 0.02547 rad V−1 based on the device

dimensions. With a time constant of 16 ms (≪ 1/λ), the measurement uncertainty in X

and Y are ∼ 0.094 µrad, about 1/3 smaller than the thermal fluctuations of ∼ 0.14 µrad

with no applied VN(t). Figure 1c shows X and Y measured at a small excitation voltage of

0.0718 mV as a function of ωd, in the absence of applied VN(t). Thermal fluctuations in the

motion of the plate are less than 0.1% of the full scale of the plot and the device is well-

described by a harmonic oscillator. The hollow circles in Fig. 1d represent the amplitude of

oscillation A =
√

(X2 + Y 2).

The work done on the oscillator by the periodic torque E cos (ωdt) over time τ is given

by:

Wi(τ) =

∫ ti+τ

ti

dtE cos(ωdt)θ̇(t) (6)

where τ is chosen to be an integer multiple of the period. At the start of observation t = ti,

the device has reached the steady state of oscillations. For τ ≫ 1/ωd, Wi(τ) can be rewritten

in terms of X(t) and Y (t) as:

Wi(τ) =
EB

2

∫ ti+τ

ti

dt[Ẋ(t)− ωdY (t)] (7)

where terms that oscillate at frequency 2ωd average to zero for slowly varying X(t) and Y (t).

In our experiment, the first term in the integrand in Eq. (7) is negligible. Figure 2a shows

a typical series of Y measured in the presence of noise voltage VN , sampled at a rate of 450

Hz.

We verify that the work fluctuations in our oscillator in the linear regime are consistent

with the fluctuation theorem. Figure 2b shows the probability distribution function P (Wτ)

for different τ ’s. All distributions are well-fitted by Gaussians regardless of τ . In other words,

ln[P (Wτ )/P (−Wτ )] ∝ Wτ , with proportionality constant 2〈Wτ 〉/σ
2
τ . For small τ of 0.1 s, a

number of events with negative work on the oscillator were recorded. As τ increases, 〈W 〉

is found to increase linearly. In addition, the distribution narrows and negative work occurs
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FIG. 2. (a) Y (t) as a function of time. (b) Probability density function for different τ ’s (τ = 0.1 s

(⋄), 1 s (�), 15.0 s (◦)) at a fixed ωd of 125972.876 rad s−1. The lines are Gaussian fits. (c) σ2/〈W 〉

vs τ at a fixed D of 0.172 fJ. (d) σ2/〈W 〉 vs D at a fixed τ of 15 s. The line is a linear fit.

too infrequently to be observed. For each τ , the ratio of the work variance to the mean work

σ2
τ/〈Wτ〉 is extracted. As shown in Fig. 2c at a fixed D of 0.172 fJ, σ2/〈W 〉 increases with

τ up to τ ∼ 8 s (∼ 3/λ) and then approaches a constant value. In the remaining analysis,

we choose τ = 15 s to ensure that σ2/〈W 〉 has approached the saturation value. We also

note that for the noise voltages VN chosen, the noise intensity D is much larger than kBT

(∼ 4× 10−21 J).

As we described earlier, the conventional fluctuation theorem can be written as σ2/〈W 〉 =

CD. For a periodically driven linear system, C is equal to one for all driving frequencies.

Figure 2d plots σ2/〈W 〉 vs D as the noise VN injected into the electrostatic torque is in-

creased. σ2/〈W 〉 is found to be proportional to D, with the slope of the linear fit yielding

C. The measurement of C is repeated for different driving frequencies and plotted as the

solid squares in Fig. 1d. Our data show that the conventional fluctuation theorem is valid

in our device in the linear regime when the oscillation amplitude is small.

Next, we explore work fluctuations in the same oscillator in the nonlinear regime when

the cubic term βθ3 in Eq. (4) can no longer be neglected. As the amplitude of the periodic

drive is increased, the resonance peak in the frequency response becomes asymmetric and

eventually tips over [25]. Figure 3a shows the frequency response of the oscillator, in the
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FIG. 3. (a) Oscillation amplitude versus ωd. The line is a fit to a damped oscillator with cubic

nonlinearity. The arrows indicate jumps in the oscillation amplitude as ωd is increased (up arrow)

and decreased (down arrow). For frequencies between the two arrows, there are two coexisting

stable oscillation states (solid lines) and one unstable state (dotted line). (b) Occupation of the

two states vs ωd. At the kinetic phase transition (ωkpt = 125961.232 rad s−1), w1 (inverted solid

triangle) and w2 (upright hollow triangle) are almost equal. Inset: Y (t) switches back and forth

between two mean values as a function of time. (c) Measured (σ2/〈W 〉)/D vs ωd (circles) at a

fixed D of 9.19 fJ. Inset: P (W ) at ωkpt.

absence of the noise voltage VN(t), for a periodic driving amplitude of 0.95 mV. For a range of

driving frequencies, two non-equilibrium oscillation states with different amplitudes coexist.

We denote the oscillation quadratures by Xj and Yj, where j = 1 or 2 refers to the two

oscillation states. When the noise is weak, the system remains in one of the oscillation states

j, with X(t) and Y (t) fluctuating randomly about Xj and Yj respectively. Occasionally a

large fluctuation occurs, inducing the oscillator to switch from one oscillation state into

the other by overcoming an activation barrier R (inset of Fig. 3b) [23]. We refer to the

former as “intrastate fluctuations” and the latter as “interstate fluctuations”. Since both the

amplitude and phase of the two oscillation states differ from each other, the power that they

absorb from the periodic driving torque is also significantly different [24]. During interstate

transitions, the power switches back and forth between the two mean values, producing
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FIG. 4. Dependence of σ2/〈W 〉 on noise intensity for (a) interstate fluctuations and (b) intrastate

fluctuations. The line in (a) is calculated using Eq. (9). The line in (b) is a linear fit.

large fluctuations in work. Similar to systems in thermal equilibrium, σ2 is proportional to

〈W 〉 and P (W ) remains Gaussian (inset of Fig. 3c). However, due to the activated nature

of switching, it has been predicted that the dependence of the work fluctuations on the

noise intensity and driving frequency differs considerably from the conventional fluctuation

theorem [24].

For a bistable oscillator, the rate of noise-activated switching out of state j is given by

[23]

νj ∝ exp(−Rj/D) (8)

where j = 1 or 2. It follows that the occupation of the two states can be written as

w1,2 = ν2,1/(ν1 + ν2). w1,2 are strongly dependent on the driving frequency. In the bistable

region, R1 (R2) monotonically increases (decreases) as the frequency increases. On the

low frequency side of the bistable region, R2 exceeds R1 and the oscillator predominantly

resides in the low-amplitude state, and vice versa for the high frequency end. There exists

a narrow range of intermediate frequencies (around ωkpt ∼ 125961.232 rad s−1 in Fig. 3b)

where R1 ∼ R2 and the occupation of the two states are comparable. In this “kinetic phase

transition”, the system switches back and forth between the two oscillation states, leading

to a variety of fluctuation phenomenon [20, 26, 27].

Figure 3c plots the ratio σ2/〈W 〉D as a function of ωd, at a fixed noise intensity D of

9.19 fJ. The observation time τ of 100 s is chosen to be longer than the mean residence time

in the oscillation states. At the kinetic phase transition, the ratio attains a maximum. This

strong dependence of σ2/〈W 〉D on frequency is distinct from the frequency independent

behavior of the linear regime shown in Fig. 1d. The peak value of σ2/〈W 〉D at the kinetic

phase transition exceeds the constant C in the linear regime by a factor of about 90.
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Apart from the strong frequency dependence, the work fluctuations in a nonlinear oscil-

lator vary with the noise intensity D in a manner that is different from ordinary equilibrium

and modulated linear systems. Figure 4a plots σ2/〈W 〉 vs D at the kinetic phase transi-

tion of the nonlinear oscillator. Instead of a linear dependence on D as in a linear system

(Fig. 2d), σ2/〈W 〉 decreases as D increases. Such behavior can be understood in terms of

fluctuation induced switching between coexisting oscillation states. According to Eq. (8),

larger noise leads to an exponential increase in the switching rate. For a fixed observation

time τ , frequent interstate transitions enable more effective averaging of the two distinct

values of work of the two states, resulting in a reduction in the work variance.

The work fluctuations near the kinetic phase transition are dominated by interstate tran-

sitions. Intrastate fluctuations, although much smaller, can also be measured. By reducing

the noise intensity and choosing sufficiently short τ ’s, the system has negligible probability

of switching out of the state. Figure 4b shows the dependence of σ2
2/〈W2〉 on the noise

intensity for intrastate fluctuations in the low amplitude state. Similar to the linear regime

in Fig. 2d, σ2
2/〈W2〉 is proportional to D, with the proportionality constant measured to be

1.08.

We compare our experimental results on work fluctuations with theoretical predictions

[24]. For τ ≫ 1/ν in a bistable system, the work variance is given by:

σ2 = w1σ
2
1 + w2σ

2
2 +

2w1w2

(ν1 + ν2)τ
(W1 −W2)

2. (9)

The first two terms represent the intrastate fluctuations weighted by the state occupations.

The third term involves interstate fluctuations that dominate the work fluctuations at the

kinetic phase transition. In Fig. 3c, the solid line represents the calculated value of the ratio

σ2/〈W 〉D using Eq. (9) with the measured values of w1,2,W1,2, ν1,2, 〈W 〉 and D. The values

of σ1,2 are linearly extrapolated from measurements at much lower D to avoid interstate tran-

sitions. There is good agreement between theory and experiment at all driving frequencies

with no fitting parameters. In Fig. 4a the solid line is the calculated σ2/〈W 〉 as a function of

D at the kinetic phase transition. As explained earlier, the sharp rise of σ2/〈W 〉 at decreas-

ing D occurs due to the activated nature of transitions. Using ν1 = ν2 ∝ exp(−R/D) in

Eq. (9) yields the fitted value R of 2.86× 10−14 J. The good agreement between theory and

measurement confirms that interstate switching is responsible for the large work fluctuations

near the kinetic phase transition.
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Besides the work fluctuations due to interstate transitions at the kinetic phase transition,

recent theoretical analysis indicates that intrastate fluctuations in nonlinear modulated sys-

tems also leads to deviations of work fluctuations from conventional fluctuation theorems.

Specifically, the work variance is expected to diverge near the bifurcation points at the

boundary of the bistable frequency range with characteristic scaling exponents [24]. Further

experiments are warranted to test such predictions and reveal other phenomena of work

fluctuations in nonlinear systems where fluctuation-dissipation theorem is not applicable.
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