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We develop a theoretical framework for analyzing ecological models with a multi-dimensional
niche space. The novelty of our approach relies on the fact that ecological niches are described by
sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such
as competitive exclusion, are modeled by introducing the Hamming distance between two sequences.
We show that a suitable transform diagonalizes the community interaction matrix of these models,
making it possible to predict the conditions for niche differentiation and, close to the instability
onset, the asymptotically long time population distributions of niches. We exemplify our method
using the Lotka-Volterra equations with an exponential competition kernel.
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I. INTRODUCTION

Since before “ecology” had a name it had been recog-
nized that the manner in which species occupying a given
ecosystem exploit that system’s resources is distributed
in a markedly structured, non-uniform manner. More-or-
less distinct ecological niches are occupied to the exclu-
sion of apparently available intermediate strategies [1].
This observation has led to a long history of observa-
tional and modeling studies in the effort to understand,
and hopefully be able to predict, the structure, complex-
ity, and stability of niche occupation [1].

Although it is clear that resource competition is an es-
sential driver of ecological structure [2], thus leading to
niche differentiation and specialization, it is equally clear
that this idea by itself cannot be the whole story. In par-
ticular it leaves many unanswered questions about the
detailed structure, reproducibility, and dynamic proper-
ties of niche occupation. Are there, for example, limits to
the number of different niches a given environment can
support? [3] Are niches stochastic and emergent phenom-
ena [4], are they environmentally dictated, or is a variable
interplay of both factors involved? [5]

A particularly interesting set of such questions arise
from the common observation that very closely related
species often co-exist in the same environment apparently
occupying very nearly the same, if not identical, niches.
It is clear from field studies and theoretical investigations
that multiple factors are involved in this aspect of niche
evolution. For example, the niche space is highly dimen-
sional, allowing the individuals to minimize competition
by moving into the various directions of the niche space.
A classic example is that of the various types of Anolis
lizards found in tropical rainforests, which share a com-
mon prey – insects – but avoid competition by living in
different parts of the rainforest [6]. Various species of
finches look similar to each other except for such traits
as beak design, which have specialized the finches to dif-

ferent food needs [7]. Analogous observations have been
made in (e.g.) plants [8] and animals [9] and soil micro-
bial communities [10].

Modeling these systems has a history that dates back
to the work of MacArthur and Levins who showed, in
Lotka-Volterra equations, the existence of an upper limit
of niche overlap that allows continued coexistence of ex-
tant species [11]. This concept is called limiting singu-
larity [3]. In their classical model, infinite resources (i.e.
seeds) are described by a single continuous axis, although
progress have been made by introducing the so-called re-
source utilization functions (see for example [11–14], or
the books [15, 16]) which allows for analyses of parti-
tioning of multiple discrete resources. Using this formal-
ism, a more realistic, multi-dimensional representation of
the niche space can be incorporated, yet, the field lacks
a tangible example of an analytically tractable model.
An exception is given by a class of trait-based models,
recently proposed to explain plant biodiversity (see [17–
19]), which are able to incorporate multiple traits, but
do not contain any dynamical element, so that it is not
possible to infer which ecological driver is responsible for
niche diversification.

The purpose of this paper is develop and solve a
framework for analyzing ecological models in which the
niche space is multi-dimensional. We represent ecolog-
ical niches by sequences, and model competition using
the Hamming distance between two sequences. We re-
port analytical progress by introducing a novel transform
that diagonalizes the interaction community matrix (i.e.
the linear stability operator), and allows us to compute
the conditions for niche differentiation and, in proxim-
ity of the instability onset, the final individual distribu-
tions. Our approach generalizes a previous study [20]
where competing binary genomes have been analyzed in
a similar fashion. Unlike [20], our analysis is not re-
stricted to binary sequences, as we consider alphabets of
arbitrary size, the size being different for different sym-
bols in the sequence. Our calculations are presented in
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the framework of the competitive Lotka-Volterra model,
following previous studies where the emergence of clus-
ters of similar species [21] was reduced to an underlying
pattern instability [22–24]. The method described in the
present manuscript is applicable to any pattern forming
system in sequence space.

This paper is organized as follows. In Sec. II, we de-
fine the multi-dimensional niche space using sequences,
and introduce the Lotka-Volterra dynamics on this space.
The mathematical tools for analyzing the model are in-
troduced in Sec. III, with the technical proofs given in
Appendix A and Appendix B. In Sec. IV we present
specific results for the model under study. Two cases
are discussed: (A) when there is only one unstable pat-
tern forming mode (non-degenerate case), and (B) when
there are many competing, equally unstable, modes (de-
generate case). The non-degenerate case has been re-
ported previously in simpler niche space models [25–27].
In Sec. V, we explain how our theory can be used to test
ecological hypothesis against experimental data.

The C code we have used is available as online Supple-
mental Material [28], where we also provide a Mathemat-
ica notebook file with the details of the calculations [29].

II. FORMULATION OF TRAIT-BASED
ECOLOGICAL MODELS

A. The definition of the niche space

In our framework, ecological niches are represented by
sequences of L symbols, each symbol corresponding to
a phenotypical trait that can either denote an aspect of
the morphology, the behavior, or resource consumption,
of a species. The niche space is static, that is, it is not
affected by the dynamics of the populations. Moreover,
each individual can occupy only a single niche.

To be concrete, we assume that in a hypothetical
ecosystem, individuals are characterized by L = 3 traits,
for example: (i) the source from which water is collected,
(ii) the preferred nesting place, and (iii) the preferred
prey. Each trait i admits a certain number of options
∆i. In our example, let us assume that there are ∆1 = 3
water sources (labeled by W1, W2 or W3), ∆2 = 9 types
of preferred prey (P1, . . . , P9), and ∆3 = 2 nesting places
(N1 or N2). More generally, the niche space consists of
L phenotypic traits with ∆ = (∆1, . . . ,∆L) possibilities.
Each individual lives in an ecological niche which is de-
noted by the letters I or J . A niche is obtained by making
a choice for each trait, so that niches are represented by
sequences: for instance, a niche can be I = W1P5N1. In
niche I, there live nI individuals, although we shall use
more often the concentrations XI , related to the number
of individuals by nI = V XI . The system size is identi-
fied in this well-mixed system as the patch size V , and
is best thought of as a non-dimensional parameter con-
trolling the amount of intrinsic noise in the system. Note
that in principle XI can be greater than one. The set of

all XI (or nI) gives the state of the system.

This way of modeling niches requires a discretization of
traits (and their corresponding options) so that it is natu-
ral to question whether this is ecologically sound. In fact,
some traits, like body size, humidity, altitude or tem-
perature, are better described by continuous variables.
However, since the traits are used to distinguish between
ecological niches, even the continuous traits need to be
binned in order to avoid placing two individuals in differ-
ent niches due to a negligible difference. For instance, if
we introduce the body size in our model, then we classify
individuals into various categories such as small, medium,
or large body size. If instead we considered the variable
continuous, we would treat two individuals of comparable
sizes as living in different niches, which is undesirable.

Competition between two individuals depends on the
Hamming distance between the niches in which they live,
d(I, J), that is, the number of positions at which the cor-
responding symbols are different in the corresponding se-
quences [20]. For example, the niches I = W1P5N1 and
J = W2P5N2 have Hamming distance d(I, J) = 2. Thus,
the smaller the Hamming distance, the more two individ-
uals compete. This means, for example, that if several
water sources are present, we expect the individuals to
spread among all sources but compete only if they collect
water from the same source. Also competition may occur
at multiple positions in the sequence, so that individu-
als may compete both for a shared water source and a
shared prey. This way of measuring competition depends
on how different two sequences are but it does not matter
which trait is different: two identical niches but with dif-
ferent water sources have the same Hamming distance of
two identical niches but with a different preferred prey.
This issue can be solved by adopting a more general dis-
tance, in which traits are weighted according to a weight
vector, W = (w1, . . . , wL). This distance reads:

d(I, J) =

L∑
l=1

wl δIl,Jl , (1)

where Il denotes the l-th symbol of niche I (Jl is anal-
ogous). If wl = 1 for every l, this distance reduces to
the Hamming distance. The method presented in Sec III
can be used with both the Hamming distance and dis-
tance (1), but the former has been chosen for simplicity.

B. Introducing the dynamics: the Lotka-Volterra
equations

Having defined a niche space, we now need to spec-
ify how the number of individuals per niche evolve in
time. For simplicity, we follow previous studies [22–24]
and adopt the Lotka-Volterra equations with an expo-
nential competition kernel, as defined below.
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We consider the following equations:

ẊI = XI

(
1− 1

C

∑
J

GIJXJ

)
, (2)

which model birth and death of organisms via competi-
tion. The sum

∑
J is over all possible niches. In this

way, we account for competition between different niches
(when I 6= J) and competition within the same niche (for
I = J). Equations (2) also assume that each individual
reproduces with the same rate regardless of their niche.
We cannot, at the present time, use our method to inves-
tigate the case with different growth rates for reason that
will be clear in the following. We consider the family of
competition kernels [22]

GIJ = exp

[
−
(
d(I, J)

R

)σ]
. (3)

The competition length, R, and the exponent, σ, are pos-
itive integers and allow us to consider different choices of
the competition kernel. However, in all of them compe-
tition is more fierce as the Hamming distance decreases
since GIJ is always decreasing in d. Increasing σ stretches
the shape of the competition kernel and as σ → ∞, the
kernel G tends to a stepwise function. We define the car-
rying capacity

C =
∑
J

GIJ , (4)

so that the system admits the fixed point X∗ = 1 in ad-
dition to the fixed point, X0 = 0, corresponding to mass
extinction. The choice of a constant carrying capacity
is consistent, since

∑
J GIJ is independent of I; to see

this, note that every row in G must be a permutation of
another row and thus has the same sum.

In order to take into account the effects of intrinsic
noise [30], we define a stochastic model corresponding to
Eq. (2), using the following transition rates, T , which
define the probability per unit of time that birth and
death occur for an individual living in niche I:

T (nI + 1|nI) = XI , (birth)

T (nI − 1|nI) = C−1
∑
J

GIJXIXJ , (death). (5)

The first equation indicates that the number of individu-
als can increase by one unit with a probability per unit of
time XI . The second equation has an analogous mean-
ing. Note that in the stochastic model, the quantities nI
(and thus XI) are subject to discrete increments, whereas
in Eqs. (2) the concentrations are continuous variables.
The difference between the two models is controlled by
V and, as V →∞, the stochastic system (5) recovers the
deterministic description in Eqs. (2). All numerical sim-
ulations in the paper are performed using the Gillespie
algorithm [31], which simulates the stochastic model (5).

III. ANALYSIS

In this Section, we show that the fixed point X∗ un-
dergoes a pattern instability in niche space which drives
the system to diversification. To analyze the instability,
we define a suitable transform (Eq. (9) below) that diago-
nalizes matrices whose element depends on the sequences
only via their Hamming distance (i.e. Hamming matri-
ces). By doing so, we are able to diagonalize the linear
stability operator (i.e. the Jacobian matrix) of the fixed
point X∗.

Transform (9) is at the core of our analytical treat-
ment. We have arrived at this formula by generalizing
the Hadamard transform, (−1)|I·J|, previously used in
the study of competing binary genomes [20]. Another
way to understand Transform (9), is by noting that Ham-
ming matrices are special cases of a general class of ma-
trices called block circulant with circulant blocks (BCCB),
whose diagonalizer is known [32]. Using this latter fact,
we show that the spectrum of Hamming matrices can be
obtained explicitly (Eq. (17)), which allows a straightfor-
ward investigation of the properties of the pattern insta-
bility.

A. Pattern instability in niche space

The Lotka-Volterra equations (2) admit the fixed
point, X∗ = 1, which corresponds to a homogeneous
distribution of individuals in niche space. If the fixed
point is unstable, small perturbations grow exponen-
tially fast and the system relaxes to a non-homogeneous
profile, as described by pattern formation theory [33].
To inspect for instabilities, we linearize Eq. (2) around
the fixed point X∗. Denoting the small deviations by
δXI = XI −X∗, we arrive at (in vectorial notation):

d

dt
δX = J δX = − 1

C
G δX. (6)

To check for the stability of this system, we diagonalize
the linear stability operator J . Again recall that the
elements of J are defined by

JIJ = f(d(I, J)), (7)

and retain a dependence in the sequences I and J only
via their Hamming distance. We call matrices with this
property Hamming matrices. The overall dimension of
matrix J is D×D, where D is the total number of niches,
namely,

D =

L∏
l=1

∆l. (8)

As shown in the Appendix A, Hamming matrices are
special cases of a general class of circulant matrices and
are diagonalized by

F = F∆1
⊗ . . .⊗F∆L

, (9)
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where the symbol ⊗ indicates the Kronecker product be-
tween two matrices A and B:

A⊗ B =

A11B · · · A1dB
...

. . .
...

Ad1B · · · AddB

 . (10)

The matrix F∆l
(l = 1, . . . , L) is the ∆l × ∆l discrete

Fourier matrix defined by:

(F∆l
)jk = exp

(
i
2πjk

∆l

)
(11)

where i denotes the imaginary unit and with normaliza-

tion F†∆l
F∆l

= I∆l
(the symbol † stands for the conjugate

transpose and I∆l
is the ∆l -dimensional identity ma-

trix). The indexes j and k range from one to ∆l. Since
F∆l

is unitary, then F is unitary as well: F†F = ID.
Note that Transform F is not, in general, a Fourier trans-
form, since (for example for L = 2 and ∆1 = ∆2 = 2),
F = F2 ⊗F2 6= F4.

Applying F to both sides of Eq. (6) yields the decou-
pled equations

d

dt
δX̃K = JK δ̃XK , (12)

where we have defined the transformed vector,

δX̃K =
∑
I

FKIδXI , (13)

and JK are the eigenvalues of matrix J :

JK = (FJF†)KK . (14)

Note that the eigenvalues JK are real given that Ham-
ming matrices are symmetric, i.e. JIJ = JJI .

The variable K is the conjugate variable, in trans-
formed space, to the sequence variable I, and ranges from
one to D. When JK > 0, for some K, the fixed point
X∗ is unstable and the amplitude of the corresponding
eigenmode v(K), with component

v
(K)
M = F†MK , (15)

grows in the system. Note that since F is unitary, its
rows form an orthonormal basis in sequence space, with
respect to the canonical inner product so that

v(K1) · v(K2) =

D∑
M=1

v
(K1)
M v

(K2)∗
M = δK1,K2

. (16)

The symbol ∗ stands for the complex conjugate and the
dimension D is given by Eq. (8).

B. Spectrum of Hamming matrices

Transform (9) diagonalizes matrix (7), yet, carrying
out the matrix product FJF† may not be feasible as

the dimensionality D of Hamming matrices can be very
large, even for low dimensional niche spaces. However,
by extending Theorem 5.8.1 of [32], we can obtain a com-
pact expression for the eigenvalues and eigenmodes of any
Hamming matrix J . The result is stated in the following
and proved in Appendix A.

Let us consider any Hamming matrix, J , defined by
Eq. (7) via a certain function f . Then the K-th eigen-
value of J , denoted by JK , is given by

JK =

(
L∏
l=1

∆l−1∑
kl=0

(
B(k1, . . . , kL)

(
Ωk11 ⊗ . . .⊗ ΩkLL

)))
K

,

(17)

where we have used the following definitions:

B(k1, . . . , kL) = f(L−
L∑
l=1

δkl,0),

ωl = exp

(
i
2π

∆l

)
, Ωl = diag

(
1, ωl, ω

2
l , . . . , ω

∆l−1
l

)
.

(18)

The dependence on matrix J is contained in function B,
which returns the function f , evaluated on the number
of non-zeros which are passed to B as argument. For
example, for L = 3, B(1, 0, 0) = f(1). In Eq. (17), the

notation Ωk11 means that every element of the diagonal
matrix Ω1, whose diagonal is given by the argument of
the function diag(), is elevated to the power k1. Also,
note that JK is a scalar quantity, given by the K-th entry
of the diagonal of the matrix defined between parentheses
in the RHS of Eq. (17). The supplementary Mathematica
file contains an implementation of this formula.

The corresponding eigenmode to the K-th eigenvalue
is given by Eq. (15), and does not depend on the system
parameters but only on the dimension of the niche space.
This fact is not surprising, as it is analogous to what
occurs in other cases, such as in systems diagonalized by
a discrete Fourier transform. Note that if an eigenvalue
is degenerate, i.e. there is more than one corresponding
eigenmode, then the eigenvalue appears in Eq. (17) once
for each eigenmode.

In the following section, we use formulae (17) and (15)
for computing eigenvalues and eigenmodes of Hamming
matrices and show how the linear theory can be used to
predict the asymptotically long time population distri-
butions of niches. There is an alternative way for rep-
resenting the spectrum of Hamming matrices, which is
given, and proved, in Appendix B (Eq. (B3)). In doing
that, we have been able to show that the leading eigen-
value in pattern-forming instabilities is non-degenerate if
and only if the alphabet is binary (i.e. ∆l = 2, for each
l). Thus, the typical case consists of a degenerate insta-
bility, where many equally unstable eigenmodes compete
for their emergence.
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FIG. 1. (Color online) (Main figure) The spectrum of J ,
{JK} (red dots), is calculated with Eq. (17) and shown as a
function of the increasing wavelength K, after a reordering
as explained in Sec. IV A. The blue line has been added for
clarity. Parameter values: L = 4, ∆l = 2, R = 1 and σ =
2. (Inset) The components of eigenmode v(11) for the same
parameter values.

IV. TWO CASES STUDY

We have established the mathematical tools that we
need to inspect the pattern instability in Eqs. (2). We
now show that the linearly unstable eigenmodes give a
prediction for the final distribution of individuals in niche
space, in proximity of the instability onset. Two cases are
investigated: a non-degenerate and degenerate instabil-
ity. In the former case the analytical prediction matches
the result of stochastic simulations. In the latter, sim-
ulations show a different final individual distribution at
every run, due to stochastic effects (or the initial con-
dition) that randomly privilege some of the equally un-
stable competing eigenmodes. However, the dynamics
averaged over many run shows consistency with the pre-
diction of the linear theory, as also reported previously
in a one-dimensional niche model [25, 26].

In Sec. IV B, we also report the observation of stochas-
tic patterns, or noise-induced patterns, which arise when
a weakly stable eigenmode is subject to noise. Since we
investigate cases where the homogeneous state is linearly
unstable, stochastic patterns are superposed to determin-
istic patterns, and the difference between the two is that
the amplitude of stochastic patterns decrease as the patch
size V increases.

A. Case: Non-degenerate instability

We first study a simple case that displays a single mode
instability. We begin by considering binary sequences of
four bits, L = 4, ∆l = 2 (for every l = 1, . . . , 4), and
parameter values R = 1 and σ = 2. We find it useful
to reorder the eigenmodes so that we can interpret K
as a wavelength. For the case of binary sequences, the
eigenmodes (15) are manifestly real and we define the

wavelength as the number of times that the eigenmode
v(K) crosses the K axis. We then reorder the eigenmodes
by increasing wavelength. Note that is always possible to
choose a real basis of eigenmodes given that Hamming
matrices are symmetric, however, since we use Eq. (15)
for their expressions, the chosen eigenmodes are real only
for certain cases.

The spectrum of matrix J , calculated using Eq. (17)
and then reordered, is shown in Fig 1. Each eigenvalue
(red dots) is stable except the one with wavelength K =
11 (K = 16, without reordering) and the profile of the
corresponding eigenmode is shown in the inset. Thus,
starting close to the homogeneous state causes the growth
of the eigenmode v(11) whilst the other eigenmodes decay
away. The growth is eventually damped by the effect of
the non-linearities, which become relevant as the system
moves away from the homogeneous state.

The final individual distribution is given by a super-
position of those eigenmodes predicted to be unstable in
the linear analysis. In this case, there is a single unstable
mode so that we expect the final individual distribution
to exhibit a shape analogous to v(11). The results of
stochastic simulations, displayed in Fig. 2, show agree-
ment between the final state and that predicted in the
inset of Fig. 1. Note however, that on some simulation
run, the pattern may sometimes appear reversed, as ei-
ther of the eigenmodes v(11) or −v(11) may grow.
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FIG. 2. (Color online) (Main figure) The concentrations XI

as a function of the individuals I (represented as binary se-
quences at the top of the figure), obtained by running stochas-
tic simulations for time t = V ∗ 102 with V = 103 and other
parameter values as in Fig. 1. (Inset) The absolute value of
A(K), Eq. (20), obtained from the final individual distribu-
tion shown in the main figure.

Another way to check the agreement between theory
and simulations consists of expressing the final state X,
measured from the simulations, as a superposition of the
eigenmodes, i.e.

XI − X̄ =
∑
K

A(K)v
(K)
I (19)
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The profile X is renormalized to zero-average, by sub-
tracting X̄ = d−1

∑
I XI , in order to avoid a large com-

ponent in A(K = 0). The quantities A(K), obtained
by taking the scalar product between X and v(K), give
the extent to which that eigenmode emerges in the final
pattern. Specifically:

A(K) =
(
X − X̄

)
· v(K), (20)

where the dot is the scalar product (16). For our previ-
ous case, we expect that A(K) is approximately zero for
every wavelength exceptK = 11, on which it takes a posi-
tive (resp. negative) value, given that v(11) (resp. −v(11))
has grown. This is confirmed by the inset of Fig. 2, where
the absolute value of A(K) is shown. Note that both so-
lutions, v(11) and −v(11), yield the same contribution to
|A(K)|, since we have taken the absolute value.

The solution displayed in Fig. 2 is metastable, in that,
sooner or later a large rare fluctuation will lead the sys-
tem to extinction, since nI = 0, for all I, is an absorbing
state. Such a fluctuation is very rare and not observ-
able in simulations for timescales ∼ V ∗ 1̇06. Therefore,
the solution can be considered evolutionarily stable for
practical purposes.

As a final remark, let us note that we have verified
the agreement between linear theory and simulations for
various parameter instances and noise realizations. Re-
sults are not shown for the sake of compactness, but the
case discussed above is the prototypical example when a
single-mode instability is in play.

B. Case: Degenerate instability

Does the linear stability analysis provide a reliable pre-
diction for a general case? Typically the instabilities in
these kinds of models are highly degenerate as they pos-
sess many equally unstable eigenmodes. For example, let
us consider the case discussed in the Introduction where
L = 3, ∆1 = 3, ∆2 = 9 and ∆3 = 2 with σ = 2 and
R = 1. For this case we do not reorder the eigenmodes.
The spectrum (dots of Fig. 3) indicates that there are
sixteen unstable eigenmodes, each corresponding to the
same eigenvalue. When a degenerate instability is in play,
the fate between the competing eigenmodes is determined
by the non-linearity, the intrinsic noise and the initial
condition so that deviations from the linear prediction
are expected.

For example, let us examine the result of a single run,
shown in Fig. 4. Unlike the binary alphabet case, the
behavior displayed is now quite rich: in some niches the
population goes extinct, while other niches are scarcely
populated, and few of them contain a large number of
individuals. Computing the profile A(K) for this niche
distribution (not shown), yields a significantly different
result to what predicted in Fig. 3. Since there are many
equally unstable eigenmodes, stochasticity gives a ran-
dom advantage to some of them, which then grow faster
and overwhelm the growth of the other unstable modes.

Only the eigenmodes which have been privileged in this
way appear in the final profile, which is thus not pre-
dictable.

Although the fate of a single run is not captured by
our analysis, we may ask whether the average behav-
ior resembles the prediction of the theory. We therefore
compute the profile |A(K)|, averaged over several runs.
The result, shown in Fig. 5, indicates that the highest
values of 〈|A(K)|〉 correspond indeed to the eigenmodes
predicted to be unstable by the spectrum in Fig. 3. Inter-
estingly, the profile |A(K)| assumes small, but non-zero
values, for the Ks corresponding to stable eigenmodes.
This is an example of stochastic patterning — pattern
formation caused by a slowly relaxing eigenmode subject
to intrinsic noise — which have already been observed in
predator-prey [34] and reaction-diffusion systems [35].

Stochastic patterns could have also been visible in the
case studied in the previous section since, as shown in
Fig. 1, the wavelengths K = 6 and K = 14 are close
to the onset of instability. However, unlike deterministic
pattern formation, the amplitude of stochastic patterns
depends on the magnitude of the perturbation which
cause them, the intrinsic noise, and therefore scales as
V −1/2 [30]. Having chosen V = 103 for generating Figs. 1
and 2, and V = 102 for Figs. 3 and 5, has rendered the
stochastic patterns visible only in the latter two figures.
Indeed, redoing the simulations for Fig. 5 but with a
larger value for V , yields a profile 〈|A(K)|〉 which is zero
everywhere except the unstable eigenmodes.

FIG. 3. (Color online) The spectrum of J , {JK} (red dots),
is calculated with Eq. (17) and shown as a function of K for
parameter values: L = 3, ∆1 = 3, ∆2 = 9 and ∆3 = 2
with σ = 2 and R = 1. The blue line has been added for
clarity. Note that the (stable) eigenvalues corresponding to
K = 1, 19, 39 are not visualized in the plotted range.

V. TESTABILITY OF THE THEORY

The theory presented so far provides a tool for link-
ing niche distributions, based on multiple traits, to
the individual-based interactions that govern ecosystems.
We show in this Section how the theory can be used, in
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FIG. 4. (Color online) Final niche distribution of a single
run. Parameter values as in Fig. 3 but with V = 102. The
simulation has run for time T = 103 · V .

10 20 30 40 50

1

2

3

4

FIG. 5. (Color online) The average absolute value of A(K)
(red dots), obtained by averaging formula (20) over 104 runs.
Parameter values as in Fig. 3 but with V = 102. Each simu-
lation has run for time T = 103 · V . The blue line has been
added for clarity.

principle, to test an ecological idea against data from a
ecosystem. As a prototypical example, let us consider a
certain dataset representing species abundances and ask
the following question: “Is competitive exclusion the pri-
mary driver of ecological diversification?”.

1. Representing ecological and/or morphological niches

To begin with, we extrapolate the niche distribution
from the species abundances data. In order to identify
the possible niches, we need to select those traits within
which we want to divide the species. These traits can
refer both to the morphology of the species (e.g. the
body size) or describe an aspect of their behavior (e.g.
the nesting place). We allow a number of possibilities
to each trait (e.g. individuals of small, medium or large
body size), so that the niche space can be mapped into
the abstract sequence space, in the same way as described
at the beginning of Sec. II. We can then visualize the

number of individuals per niche, in a similar fashion to
Fig. 4.

2. Transforming the niche distribution

Once the sequence space has been established, we can
define Transform (9), that relies solely on the geometry
of the niche space (i.e. how many traits / how many pos-
sibilities per trait). We then transform the niche distri-
bution, using the eigenmodes (15) and Eq. (20), to yield
a figure analogous to Fig. 5. The peaks of the figure will
highlight the emerging eigenmodes in the system. The
aim is to predict the emergence of those peaks starting
from the individual-based interactions.

3. Agreement with an individual-based model

The individual-based model are represented by set of
differential equations such as System (2), and should in-
clude the effects which are supposedly the main drivers
for niche diversification. For example, if we assume that
competitive exclusion is the sole, or principal, driver,
then we can use directly the Lotka-Volterra equations (2).
The prediction of the model can be read off by looking at
its spectrum, such as in Fig.3: The eigenmodes predicted
unstable are those which correspond to a positive eigen-
values, that is, appear above the K axis. These eigen-
modes should be compared against those observed in the
data. If an agreement between the two sets of eigen-
modes indicates that the interactions in the individual-
based model are effectively responsible for niche diversi-
fication.

VI. CONCLUSION

In this paper, we have proposed a class of ecological
models which displays niche diversification due to com-
petitive interactions. The novelty of the work lies in the
fact that the niche space is high-dimensional: An ar-
bitrary number of phenotypic traits can be included in
the model, each admitting a certain number of possibil-
ities. In this way, the geometry of the niche space is in-
trinsically different from the conventional picture where
ecological niches are represented by hypercubes in Rn.
Also, niche overlapping is given by the Hamming dis-
tance, rather than the Euclidean distance, which is a
simpler and a more realistic way to quantify how many
traits two individuals have in common.

Most of the paper is centered on the mathematical as-
pects for analyzing these models. We have shown that
the underlying pattern instability can be predicted using
the mathematical tools presented in Sec. III B. The lin-
ear stability operators (i.e. Jacobian matrices) depends
on the niche indexes only via their Hamming distance,
and we have called such matrices Hamming matrices. We
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have shown that Hamming matrices are special cases of
a class of circulant matrices (i.e. BCCB), so that we can
use the diagonalizer of the latter for obtaining the spec-
trum of Hamming matrices. In this way, we have arrived
at formulas (17) and (15) which are our central results.
By using these expressions, we have then shown that the
linear stability analysis, for systems close to the insta-
bility onset, predicts the final individual distribution in
niche space, and that the prediction agrees on average if
a degenerate instability is present.

Let us comment on the limitation of the present work.
Our discussion has been centered on the agreement be-
tween theory and simulations and on the method for di-
agonalizing Hamming matrices, but little has been said
about how the niche distribution is affected by the niche
space dimensionality. It would be relevant for ecology to
study formula (17) in the limit D � 0, but this appears
not to be a straightforward task as it requires a sub-
stantial mathematical analysis that will be the subject
of future work. In a similar way, it would be interest-
ing to generalize Eqs. (2) to the case of different growth
rates. However, in this case, we cannot diagonalize any-
more the corresponding linear stability matrix by using
transform (9), because there is no guarantee that the lin-
ear stability matrix will be a Hamming matrix. Finally,
it would be more desirable to obtain the analogue of for-
mula (17) using the more realistic distance (1). This also
highlights another direction for a future work.

An alternative interpretation for our class of models
is that of interacting genomes, where L represents the
genome length and ∆l = 4 for all l (the symbols are now
nucleotides: A, G, T , D). Indeed, the advent of popu-
lation genetics has stimulated a similar kind of model-
ing, which has attracted interest in the physics commu-
nity thanks to quasispecies theories [36–40] and paramuse
models of evolution [40, 41]. The connection between
these studies and our work, is that in both cases the
models are sequence-based [40], in that they describe the

dynamics of an interacting population in which each in-
dividual is represented by a sequence. Binary sequences
are often analyzed as they allow analytical approaches,
such as mapping the model into the Ising model [42–44],
considering various limits [45] or by using an Hadamard
transform [20]. We expect our theory to be applicable
to these models as well, allowing for generalizations in
which larger alphabets are considered. This represents
another possible direction for future works.

Finally, let us notice that throughout the paper, our
analytical treatment is limited to the deterministic level
for simplicity, even though we have shown that the
stochastic model exhibits stochastic patterning, caused
by weakly stable eigenmodes subject to intrinsic noise,
as shown in [20] for the case of binary sequences.
The same authors have also reported a different type of
stochastic patterning based on the multiplicative nature
of noise [46], which occurs where the noise is strong in
the system. This effect can lead to stable, noise-induced
patterns. We expect that our model can exhibit this type
of order as well. Further investigations will be devoted
to extend our method for analyzing the stochastic coun-
terparts of these models.
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Appendix A: Block circulant matrices with circulant
blocks

The aim of this Appendix is to prove formulae (17)
and (18) of the main text. These equations provides an
expression for the spectrum of a matrix J whose ele-
ment, JIJ , retains a dependence in I and J solely via
their Hamming distance, i.e., JIJ = f(d(I, J)). We have
called these matrices, Hamming matrices. We shall show
that these matrices possess a block-circulant structure
(defined in the following), which allows us to compute
their eigenvalues and eigenmodes. The reference for this
Section is the book of Davis [32].

A matrix is circulant if each row vector is rotated one
element to the right relative to the preceding row vector.
Clearly, a circulant matrix is fully specified by one row as
the others are simply given by cyclic permutations. For
example, a 3× 3 circulant matrix has the form:

J =

c0 c2 c1
c1 c0 c2
c2 c1 c0

 . (A1)

In this definition, the symbols c0, c1 and c2 represent
numbers. On the other hand, if c0, c1 and c2 are cir-
culant matrices themselves, then J is called a circulant
matrix of level two. More generally, a circulant matrix of
level L can be decomposed in blocks which are circulant
matrices of level L− 1. A circulant matrix of level one is
tantamount to say that the matrix is circulant.

The size of the blocks can be different at each step and
specifies the type of the matrix. For example, we say that
a circulant matrix of level 3 is of type (∆1,∆2,∆3), if it
can be divided in ∆1 ×∆1 blocks, each of which can be
divided in ∆2 × ∆2 blocks, each of which is a circulant
matrix with dimension ∆3 ×∆3. In general, a circulant
matrix of level L is of type ∆ = (∆1, . . . ,∆L). Thus, the
level is specified automatically by the length of the type.
The following matrix is an example of type (2, 3, 2):

P(2,3,2) =



0 1 1 2 1 2 1 2 2 3 2 3
1 0 2 1 2 1 2 1 3 2 3 2
1 2 0 1 1 2 2 3 1 2 2 3
2 1 1 0 2 1 3 2 2 1 3 2
1 2 1 2 0 1 2 3 2 3 1 2
2 1 2 1 1 0 3 2 3 2 2 1
1 2 2 3 2 3 0 1 1 2 1 2
2 1 3 2 3 2 1 0 2 1 2 1
2 3 1 2 2 3 1 2 0 1 1 2
3 2 2 1 3 2 2 1 1 0 2 1
2 3 2 3 1 2 1 2 1 2 0 1
3 2 3 2 2 1 2 1 2 1 1 0



. (A2)

Let us now consider a niche space defined by sequences,
as explained in Sec. II. We assume that sequences are
long L characters, the character at position l chosen from
an alphabet of size ∆l. If ∆l < 10, for every l, we can
represent the sequences using the digits 0 – 9; e.g., ∆1 = 3
indicates that at position one of the sequence there is one
of the three symbols: 0, 1 or 2. The size of each alphabet
is summarized by the vector ∆ = (∆1, . . . ,∆L) and the
sequences are as ordered as the corresponding numbers.
For example, the sequence space defined by ∆ = (4, 2, 3)
starts from 000 and ends in 312. The number of possible

sequences is D =
∏L
l=1 ∆l = ∆1∆2∆3 = 24.

The Hamming distance between two sequences I and
J is denoted by d(I, J) and corresponds to the number of
positions at which the corresponding symbols are differ-
ent. For instance, I = 102 and J = 100 have Hamming
distance one. Two sequences are identical if and only if
their Hamming distance is zero.
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Let us consider the simplest Hamming matrix of type
∆, P∆, in which the function f is the identity. The cor-
responding matrix element is P∆,IJ = d(I, J). Consider-
ing, for example, ∆ = (2, 2), matrix P∆ looks as follows:

P(2,2) =

 0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

 . (A3)

It is clear that P(2,2) is also a circulant matrix of type
(2, 2). In general, a Hamming matrix acting on a se-
quence space defined by ∆ is a circulant matrix of type
∆.

Any circulant matrix J of type ∆ admits a decompo-
sition (see Theorem 5.8.1 in [32]) which, for simplicity, is
given in the following for the case L = 2 (generalization
to arbitrary L are straightforward):

J = F†
(

∆1−1∑
k1=0

∆2−1∑
k2=0

B(k1, k2)
(

Ωk11 ⊗ Ωk22

))
F . (A4)

The decomposition uses the definitions of F and Ωl in
Eqs. (9) and (18). The function B(k1, k2) returns the
element of J corresponding to the k2-th block with size
∆2 and its k1-th sub-block, where the blocks are indexed
by the following convention: If kl = 0, then the block
is on the main diagonal, otherwise is one of the blocks
off diagonal. In both cases, it is not important which
block is taken, as the circulant structure of the matrix
leads to the same result. For example, let us consider
the element B(k1 = 1, k2 = 0) of the level two circulant
matrix of Eq. (A3). The variable k1 = 1 indexes an off-
diagonal, 2× 2 block. Within that block, k2 = 0 indexes
the value of either of the two diagonal elements. Due
to the circulant structure of the matrix, those values are
identical.

The decomposition (A4) proves that circulant matrices
are diagonalized by Transform (9), since the term inside
the parentheses is a diagonal matrix. Thus, Hamming
matrices are diagonalized by the same transform.

To arrive at formula (17), we need to show that
B(k1, k2) = f(2−δk1,0−δk2,0), which is true for Hamming
matrices but not for a general circulant matrix. We begin
with the observation that matrix P(∆1,...,∆L) possesses a
simple block structure: The blocks on the diagonal are
given by P(∆1,...,∆L−1), whereas the blocks off diagonal
are given by the diagonal block but with all elements in-
cremented by one. For instance, for the case ∆ = (2, 2),
we have that

P(2,2) =

[
P(2) P(2) + 1
P(2) + 1 P(2),

]
(A5)

where

P(2) =

[
0 1
1 0

]
, 1 =

[
1 1
1 1

]
. (A6)

We can exploit the block structure of P∆ to obtain the
form of the corresponding function B(k1, . . . , kL). This
function returns the element of matrix P∆, which is an
integer equal to the number of off diagonal blocks neces-
sary to locate the element. With our convention, this is
equal to the number of non-zero kls. For example, in the
P(∆1,∆2) case, we have that B(k1, k2) = 2− δk1,0 − δk2,0.

For a general Hamming matrix, we can follow the
above reasoning, but replacing d(I, J) with f(d(I, J))
for the element of the matrix. As a consequence, the
form of function B(k1, k2) for a general Hamming matrix
of type (∆1,∆2) reads B(k1, k2) = f(2 − δk1,0 − δk2,0).
Formula (17) in the main text is its generalization to a
sequences of arbitrary length L.

Appendix B: Degeneracy structure of the spectrum
of Hamming matrices

The aim of this Appendix is to prove that the lead-
ing eigenvalue of a Hamming matrix is non-degenerate if
and only if the alphabet of the sequences is binary (i.e.
∆l = 2, for each l). The proof is, as it stands, not use-
ful for analyzing data. However, it enables us to prove a
theorem that can be used in conjunction with the results
of Sec. III B and V to identify ecological drivers of niche
diversification.

Let J be a Hamming matrix generated by a func-
tion f as defined in (7). For each binary sequence
s = (s1, . . . , sL), where we write |s| =

∑
` s`, define the

polynomial

ps(α, β) = (β − α)L−|s|
L∏
`=1

((∆` − 1)α+ β)s` . (B1)

Now, define the vector ηs so that ps is its generating
function, i.e.

ps(α, β) =

L∑
k=0

η(k)
s αkβL−k. (B2)

Said another way, η
(k)
s is the coefficient of αk in the poly-

nomial ps. Now define

λs =

L∑
k=0

f(k)η(k)
s . (B3)

Then λs is an eigenvalue of J with multiplicity

µs =

L∏
l=1

(∆l − 1)1−sl . (B4)

We prove these formulas below, but for now note that
it follows from this that if ∆` > 2 for all `, then the
only non-degenerate eigenvalue of J is λ1. We also show
below that if J = G/C as defined in (4) and (6), then
λ1 = −1. In particular, this means that if ∆l > 2 for all l,
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then it follows that the unstable eigenvalue is never non-
degenerate, and the system is always in the degenerate
case described above.

Also, if ∆l = ∆l′ for some l, l′, and s, s′ are two vec-
tors related by a transposition of the l-th and l′-th co-
ordinates, then λs′ = λs. In particular, if all of the ∆l

are the same (call these numbers ∆), then ps (and thus
λs) depends only on |s|, giving even more repeats. For
example, if ∆l = 2 for all l, then there are L+ 1 distinct
eigenvalues, with multiplicities given by L!/k!(L − k)!.
This is because even though µs = 1 for all s, ps is the
same for all s with the same number of ones. For exam-
ple, if L = 3 and ∆l = 2 for all l,

λ111 = f(0) + 3f(1) + 3f(2) + f(3),

λ110 = λ101 = λ011 = f(0) + f(1)− f(2)− f(3),

λ010 = λ100 = λ001 = f(0)− f(1)− f(2) + f(3),

λ000 = f(0)− 3f(1) + 3f(2)− f(3).

(B5)

From this, we see that there are two ways in which we
can obtain multiple eigenvalues: We could have µs > 1
for some s, or we could have λs = λs′ for two different
s, s′.

We will establish (B3), (B4) in the case L = 2, then
discuss how the argument differs for larger L. According
to (17), when L = 2 the eigenvalues are the numbers

∆1−1∑
k1=0

∆2−1∑
k2=0

B(k1, k2)(Ωk11 ⊗ Ωk22 ),

with Ωl = (1, ωl, ω
2
l , . . . , ω

∆l−1
l ). Said another way, for

any `1 = 0, . . . ,∆1−1 and `2 = 0, . . . ,∆2−1, the number

λ`1,`2 =

∆1−1∑
k1=0

∆2−1∑
k2=0

B(k1, k2)ω`1·k11 ω`2·k22

is an eigenvalue. For L = 2,

B(k1, k2) =


0, k1 = k2 = 0,

1 k1 = 0, k2 6= 0 ∨ k1 6= 0, k2 = 0,

2, k1 6= 0, k2 6= 0.

This means that

λ`1,`2 = f(0) + f(1)

(
∆1−1∑
k1=1

ω`1·k11 +

∆2−1∑
k2=1

ω`2·k22

)

+ f(2)

(
∆1−1∑
k1=1

∆2−1∑
k2=1

ω`1·k11 ω`2·k22

)
.

We need the following identity:

∆−1∑
k=1

(exp(2πi/∆))k` =

{
∆− 1, ` = 0 mod ∆,

−1, else.
From this, we see that there are four cases for the formula
for λ`1,`2 , depending on whether or not `1, `2 are zero or
nonzero:

f(0) + f(1)(∆1 + ∆2 − 2) + f(2)(∆1 − 1)(∆2 − 1),

(`1 = `2 = 0),

f(0) + f(1)(∆2 − 1) + f(2)(1−∆1), (`1 6= 0, `2 = 0),

f(0) + f(1)(∆1 − 1) + f(2)(1−∆2), (`1 = 0, `2 6= 0),

f(0) + f(1)(−2) + f(2), (`1, `2 6= 0),

and we see that this matches the coefficients of the four
polynomials:

(α+ (∆1 − 1)β)(α+ (∆2 − 1)β),

(α+ (∆1 − 1)β)(α− β),

(α− β)(α+ (∆2 − 1)β),

(α− β)2,

(B6)

respectively. Also, we can see from counting that the four
different numbers have multiplicities 1, ∆1 − 1, ∆2 − 1,
and (∆1 − 1)(∆2 − 1), respectively.

Finally, we claim that if the matrix is defined as in (6),
then the eigenvalue λ1 = −1. To see this, notice that the
`1 = `2 = 0 term above is

f(0) + f(1)(∆1 + ∆2 − 2) + f(2)(∆1 − 1)(∆2 − 1).

Notice that this must be the carrying capacity C, since
each row of G must have one term of size f(0), ∆1+∆2−1
terms of size f(1) (this is the number of sequences that
are unit Hamming distance from any given sequence),
and (∆1 − 1)(∆2 − 1) terms of size f(2) (similarly, the
number of sequences distance two from any given se-
quence). Therefore the largest eigenvalue of G/C is 1 and
thus the smallest eigenvalue of −G/C is −1. Moreover,
if ∆1,∆2 > 2, then it is clear from the multiplicities that
any positive eigenvalue of −G/C is a multiple eigenvalue,
giving rise to a degenerate instability.


