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An experimental and theoretical study of lyotropic chromonic liquid crystals (LCLCs) confined
in cylinders with degenerate planar boundary conditions elucidates LCLC director configurations.
When the Frank saddle-splay modulus is more than twice the twist modulus, the ground state
adopts an inhomogeneous escaped-twisted configuration. Analysis of the configuration yields a
large saddle-splay modulus, which violates Ericksen inequalities but not thermodynamic stability.
Lastly, we observe point defects between opposite-handed domains and explain a preference for point
defects over domain walls.
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The elastic properties of nematic liquid crystals (LCs)
are crucial for liquid crystal display applications [1, 2],
and they continue to give rise to unanticipated funda-
mental phenomena [3–9]. Three of the bulk nematic LC
deformation modes, splay, twist and bend, are well known
and have associated elastic moduli K1, K2 and K3, re-
spectively. These moduli have been intensely studied be-
cause they are easy to visualize, and because it is pos-
sible to independently excite the modes via clever us-
age of sample geometry [10–12], LC boundary conditions
[13, 14], and external fields [15, 16]. As a result, these
moduli have been measured for a variety of thermotropic
and lyotropic LCs [12, 16–20]. By contrast, a much less
studied fourth independent mode [21–23] of elastic defor-
mation in nematic LCs can exist; it is called saddle-splay.
Saddle-splay is hard to visualize and to independently
excite [23, 24]. Moreover, the energy of this deforma-
tion class can be integrated to the boundary, so that the
mode does not appear in the Euler-Lagrange equations,
and with fixed boundary conditions, the saddle-splay en-
ergy will have no effect on the LC director configuration.
Even with free boundary conditions, the saddle-splay
energy will not affect the bulk LC configuration unless
the principal curvatures of the surface are different, i.e.,
saddle-splay effects are not expected for spherical or flat
surfaces. Thus, although much progress in understand-
ing saddle-splay has been made [25, 26], especially with
thermotropic nematic LCs, unambiguous determination
of saddle-splay energy effects on liquid crystal configura-
tions and measurement of the saddle-splay elastic mod-
ulus, K24, remain difficult [27].

While the bulk elastic constants described above
strongly influence LC director configurations, LC bound-
ary conditions at material interfaces also influence bulk
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structure. Indeed, considerable effort has gone into de-
velopment of surface preparation techniques to produce
particular bulk director configurations [13, 28–33]. The
saddle-splay term integrates to the boundary and effec-
tively imposes boundary conditions at free surfaces favor-
ing director alignment along the direction of highest sur-
face curvature for positive K24 [34] and outwardly point-
ing surface normals. For this effect to be present, the
director cannot be held perpendicular to the surface, as
was the case in our prior work [4]. The potential role of
saddle-splay effects in determining bulk director configu-
rations by spontaneous symmetry breaking has been ap-
preciated [13, 35–37] but has been difficult to fully char-
acterize; generally, molecular surface forces can impose
preferred boundary conditions that are hard to disentan-
gle from effects due to K24 [38, 39]. As a result, the mea-
surements of K24 to date have wide confidence intervals
[36, 40, 41] and even vary in sign [41]. Finally, additional
factors that have complicated assignment of saddle-splay
effects are the so-called Ericksen inequalities [42] that re-
quire 0 < K24 < 2K2 and K24 < 2K1. These inequalities
were derived assuming spatially uniform gradients of the
director. They do not, however, apply in geometries such
as ours in which gradients are not uniform.

In this contribution, we investigate director configura-
tions of the nematic lyotropic chromonic liquid crystal
(LCLC) Sunset Yellow (SSY) confined within cylindrical
glass capillaries with degenerate planar boundary condi-
tions as initially reported by Refs. [43–45]. Our study
employs a combination of polarized optical microscopy,
measurements of director-field thermal fluctuations, and
Frank-free-energy calculations to rationalize the observed
structures. Importantly, we show that a large K24 leads
to an escaped-twist (ET) ground state, which exhibits
a classic double-twist configuration. Note, chiral sym-
metry breaking in the ET configuration is fundamen-
tally different from symmetry breaking in other LCLC
systems with uniform principal curvatures [3], or with
homeotropic boundary conditions [4]. In the previous
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work, spontaneous twist deformation arises because K2

is much smaller than K1 and K3; K24 played no role in
the energetics. In the present work, comparison of the-
ory and experiment enables us to measure K24 for the
first time in a LCLC; we find a value of K24/K2 = 55.0,
which strongly violates the Ericksen inequalities. Finally,
we observe and characterize chiral hegdehog point de-

fects separating chiral domains of opposite handedness.
Interestingly, the presence of point defects rather than
smooth domain walls also provides precise quantitative
information about K24 that is consistent with our other
conclusions.

Before discussing the experimental results, we formu-
late the theoretical problem. We assume the achiral ne-
matic LCLC is described by a Frank free energy, i.e.,
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where n is the nematic director. Equation (1) explicitly
includes the saddle-splay term with modulus K24, which
can in principle be mimicked by a surface anchoring term
that is coupled to surface curvature; thus we consider a
saddle-splay term that combines the two effects [46, 47].
A Rapini-Papoular type surface anchoring term with in-
plane anisotropy [22, 38] is excluded and discussed later
in the text. The LC is contained inside a capillary of
radius R and cylindrical coordinates are used to parame-
terize its director field, n, with ẑ along the capillary axis
(see Fig. 1), i.e.,

n = cosα sinβ r̂ + sinα sinβ φ̂ + cosβ ẑ. (2)

To determine the configuration of the ground state,
we assume the director depends only on r and mini-
mize the Frank free energy with respect to α(r) and
β(r). Degenerate planar anchoring conditions at the
capillary surface prevent the director from having an r̂-
component, so α(r = R) = π/2. Cylindrical symme-
try sets β(r = 0) = 0. Both α(r = 0) and β(r = R)
are free to vary, but stationarity of the free energy pro-
vides the boundary conditions: ∂rα(r = 0) = 0 and
R∂rβ(r = R) = (K24

2K2
− 1

2 ) sin 2β(r = R).
With these boundary conditions, the Euler-Lagrange

equations of the Frank free energy give [38]

α(r) =
π

2
; (3)

β(r) = arctan
2
√
K2K24(K24 − 2K2)r/R√

K3[K24 − (K24 − 2K2)r2/R2]
. (4)

This ET solution exists for K24 > 2K2 and has right-
handed chirality, i.e., the director streamlines form right-
handed helices. A mirror-image solution β(r)→ π−β(r)
exists with the same energy. Notice that the radial posi-
tion r is scaled by the cylinder radius R and that K1 does
not appear because this configuration has no splay. If
K24 < 2K2, then only the trivial β(r) = 0 solution exists,
which corresponds to the simple parallel-axial configura-
tion [35]. As K24 surpasses 2K2 ≡ Kc, which is exactly
the upper bound found by Ericksen, the system sponta-
neously breaks chiral symmetry, and an ET configuration

of one handedness grows continuously from the trivial so-
lution. β1 = β(r = R) is plotted in Fig. 2. Prior work
with thermotopic LCs has found this ET configuration
when an azimuthal anchoring condition dominates the
behavior of β1 at the capillary surface through a chem-
ical or mechanical treatment of the surface [38, 39, 48].
β(r) (Eq. 4) can only be approximated by a linear twist
model [34] for certain ratios of elastic constants. For LCs
whose elastic moduli do not satisfy these ratios, such as
SSY, polarized optical microscopy textures are strongly
affected by the nonlinear behavior of β(r) [47].

The normalized free energy of the ET configuration is
readily calculated to be

F

πL
=− (K24 − 2K2) (5)

+

√
K2K3√
K3 −K2

arctan

√
K3 −K2(K24 − 2K2)√
K2(K3 +K24 − 2K2)

,

FIG. 1. (Color online) (a) Coordinate system used for direc-
tor configuration and defect energy calculations. The director
n is described by the angle α between the director projection
nxy and r̂, and by the angle β between n and the capillary
axis, which is parallel to ẑ. (b) 3D cutaway view of the cap-
illary and the ground state director field using K2/K3 = 0.1,
and K24/K3 = 4.6, which approximates the Frank moduli of
30 % wt./wt. SSY at 25◦C. Notice the large twist angle at
the capillary surface close to 90◦. α is independent of po-
sition and β depends on only the radial coordinate r. This
configuration has right-handed chirality.
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where L is the length of the capillary. Notice that as K24

increases beyond 2K2, the free energy decreases contin-
uously from 0, thereby confirming that the ET config-
uration as a ground state is preferred over the uniform
configuration whenever it can exist; K24 = 2K2 marks a
second-order phase transition line. The key to this ener-
getic stabilization is the saddle-splay term:

F24

πL
= −K24 sin2 β1. (6)

As noted by Ref. [34], who use an opposite surface nor-
mal convention, F24 couples the nematic director to the
surface curvature tensor and favors alignment in the di-
rection of highest curvature for K24 > 0. In our case, this
is the azimuthal direction along the circumference of the
capillary. Thus, the saddle-splay free energy stabilizes
the ET configuration despite introducing bulk director
distortion. We also have verified that both the ET and
the deformation-free solutions are stable whenever they
are preferred (K24 > 2K2 and K24 < 2K2, respectively);
that is, their stability matrices have positive eigenvalues
(see Supplemental Information) [47].

Our experimental investigations used nematic SSY, a
LCLC with relatively low twist modulus K2/K3 ≈ 0.1
[16]. Briefly, five SSY samples were loaded into five dif-
ferent capillary tubes with diameters 100 µm ±10%, from
VitroCom (CV1017-100). The sealed samples were il-
luminated between cross-polarizers by 10nm-bandpass-
filtered 660 nm LED light at high (160x) magnification,
enabling small depth of field and high spatial resolution
imaging. Images were captured by a Uniq UP680-CL

FIG. 2. Phase diagram of β1, the angle between the ne-
matic director and capillary axis at the capillary surface, as
a function of elastic moduli ratios of saddle-splay (K24) to
twist (K2) and bend (K3). Inset: an example capillary with
streamlines indicating a surface director field at angle β1 with
left-handed chirality.

video camera, and a piezo-objective positioner was moved
to image focal planes within the samples in 1 µm inter-
vals.

The capillaries without surface treatment were loaded
with SSY and sealed to prevent evaporation. A crit-
ical experimental question for any saddle-splay study
concerns possible structure on the cylinder interfaces
that could induce a preferred anchoring direction. To
this end, we examined the inner capillary surfaces using
atomic force microscopy (AFM) and scanning electron
microscopy (SEM), and we compared the inner capillary
surfaces to rubbed glass; the capillaries had no discernible
grooved structures as on the rubbed glass. Since SSY is
known to exhibit natural planar anchoring on smooth
glass surfaces [29], our observations of the capillary sur-
face strongly suggest that degenerate planar boundary
conditions are present on the inner surfaces of the cylin-
ders and any anisotropic Rapini-Papoular type anchor-
ing effect would be small [22, 38, 47]. We also considered
alignment caused by flow during capillary filling. Load-
ing capillaries with the LCLC in either the nematic or
the isotropic phase resulted in the same type of director
configurations. Further, since the filling flow is nearly
perpendicular to the final alignment found at the cap-
illary surface, flow alignment appears unlikely. Finally,
we considered the possibility that a layer of molecules
adsorbed to the capillary surface sets an easy access at
the capillary surface during or shortly after filling. We
exclude this possibility by cycling the filled capillary be-
tween nematic and isotropic phase and observing that
the director at the capillary surface retains no memory
from cycle to cycle [47].

We measure the director angle, β(r), directly by ob-
serving a flickering speckle pattern and its direction in
the LC. The pattern originates from director field tem-
poral fluctuations and accompanying fluctuations in the
ordinary and extraordinary refractive indices which cause
scattering [25]. These types of fluctuations of the direc-
tor field have been exploited previously to measure the
viscoelastic ratios of liquid crystals [10–12]. Our work
follows Ref.[11], which proposed using videos of LC flick-
ering to discern local orientation of the director field [47].
Flickering shape and direction depend on the local direc-
tor field configuration and LC viscoelastic anisotropy.

The experimentally measured β(r) for one of the five
LCLC samples studied is shown in Fig. 3c. It is well fit
by the calculated expression (Eq. 4), and the fitting pro-
vides experimental values for ratios of the twist-to-bend
and saddle-splay-to-bend elastic constants. The twist-to-
bend ratio is in close agreement with prior measurements
[16]. Since K24/

√
K3K2 ∼ tan(β1) when K24 � K2, the

fit values become increasingly sensitive to experimental
uncertainties as β1 → π/2. For example, the fit value of
K24/K3 is sensitive to the uncertainty of the measured
size of the capillary radius, R[47]. For the data in Fig. 3c,
the capillary was measured to have a diameter of 90.6 µm
to within ≈ ±0.4 µm. This relatively small uncertainty,
however, leads to the large uncertainty we give for our
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FIG. 3. (Color online) Representative flickering measure-
ments of 30% wt./wt. SSY in a 90.6 µm capillary at 25◦C. (a)
Single frame from a movie cropped to a 20µm square and after
background subtraction (see main text). (b) Averaged FFT
of a movie containing many images of fluctuations and con-
tour plot of a 2D Gaussian fit to the averaged FFT. The long
axis of the fit is perpendicular to the dominant fluctuation
direction and yields a measurement of β for the image slice.
(c) Fit of Eq. (4) to β(r) obtained by fluctuation measure-
ments along the capillary radius. Error bars are the standard
deviations in degrees of the angle found for the 2D gaussian
fits as in (b). A nonlinear least-squares fit of the parameters
K2/K3 and K24/K3 gives estimates of the elastic constant
ratios (6.5 and 0.15, respectively) for the sample. Across all
measurements the average K24/K3 = 6.6 and has a bounding
interval [3.8, 9.4].

estimate of K24/K3, i.e., K24/K3 has a mean value av-
eraged across experiments of 6.6 with bounding interval
[3.8, 9.4]. By contrast, K2/K3 is a stiff parameter in the
fit; it has a mean value averaged across experiments of
0.12 and a standard deviation σK2/K3

= 0.04 [47].

We also observed hedgehog defects associated with the
ET configuration. In long capillaries, we typically ob-
served ET domains of opposite handedness separated by
chiral point defects. These defects were qualitatively pro-
posed in Ref. [39]. We observed annihilation of neighbor-
ing defects, indicating that they carry opposite topologi-
cal charge[47]. The presence of nematic director singular-
ities are apparent in Fig. 4a; bright-field microscopy [47]
reveals dark spots from scattered light along the center
of the capillary. Once found, we image the point defect
under crossed-polarizers with the same illumination de-
scribed above. We compare these experimental textures
with those simulated numerically using Jones matrices
[47]. The comparison requires a test director configura-
tion, which we calculate using Eqs. 1 and 2. For config-
urations in the presence of defects, however, the direc-
tor depends on both r and z; the boundary conditions
at z → ±∞ bring the director configuration back to ET
configurations with opposite handedness. To arrive at an
optimized guess, we solve the Euler-Lagrange equations
numerically with a relaxational technique [47]. The con-
figurations that emerge are very similar to what one gets

FIG. 4. (Color online) (a) Left, cross-polarized quasi-
monochromatic optical images of singular point defects bor-
dering ET regions of opposite handedness in 90 µm capil-
lary. Yellow arrows indicate the polarizer pass axis directions.
Right, images reconstructed using Jones matrix calculations
from numerically computed director fields of defects. (b) A
3D cutaway view of a capillary with opposite-handedness ET
regions separated by a wall defect. (c) 3D cutaway view of a
capillary with opposite-handedness ET regions separated by
a point defect as imaged and simulated in (a). In both (b)
and (c) the director field represents an LC with K2/K = 0.1
and K24/K = 4.6, where K1 = K3 ≡ K and the color scale is
the same from Fig. 1b. (d) Energies of the point and domain
wall defects relative to the ET energy as a function of either
K24/K or equivalently β1, with K2/K = 0.1. Points indicate
numerical calculations and lines indicate analytical approx-
mations [47]; the latter have higher energy than the former
but demonstrate similar qualitative behaviors.

if one takes the standard radial and hyperbolic hedgehogs
and simply rotates all directors by π/2 about the z-axis
[47]. This simple operation, which is guaranteed to pre-
serve hedgehog charge, automatically produces opposite
chirality on opposite sides along z of the hedgehog defect
regardless of the sign (±1) of its charge. The topologi-
cal charges of successive hedgehogs necessarily alternate
in sign [47]. Using K1 = K3 ≡ K, K2/K = 0.1 and
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K24/K = 4.6, numbers which are consistent with our
measurements in the ET ground state, we observed re-
markable agreement between experimental and theoreti-
cal textures (Fig. 4a).

In principle, smooth domain walls can also separate
domains of opposite handedness, in which the escaped-
twist configuration continuously untwists from one do-
main to the wall mid-plane and then continuously re-
twists with opposite handedness into the other domain
(see Fig. 4b). In this case, throughout the mid-plane,
the director would align along the capillary axis. How-
ever, in SSY, we have never experimentally observed such
a domain wall structure. Defect energetics provide an
explanation for this observation which has an interest-
ing consequence. Again, we numerically calculate the
configurations of both domain walls and point defects to
obtain their energies [47]. For these calculations, we fix
K2/K = 0.1 in accordance with [16] and our fluctua-
tion experiments, and we allow K24 to vary. As shown
in Fig. 4d, point defects (domain walls) have lower en-
ergy than domain walls (point defects) for K24/K >∼ 4
(K24/K <∼ 4). Using K3 = K = 6.5 pN from [16] and
R = 50 µm, a typical dimensionless energy difference of
∆F/πRK = 0.1 corresponds to ∆F = 2.5 × 104kBT ,
where T = 298 K is the experimental temperature. If K24

is greater than the crossover value ≈4K, then, according

to theory, one should not expect to observe smooth do-
main walls. Thus, both our observations of defects (or
lack thereof) and our energy analysis set 4 as an approx-
imate lower bound for K24/K, in agreement with our
fluctuation-measured value of K24/K = 6.6 [3.8, 9.4].

In summary, we have completed an experimental and
theoretical study of a lyotropic chromonic liquid crystal,
Sunset Yellow, in its nematic phase and confined in a
hollow cylinder with degenerate planar boundary condi-
tions. The escaped-twist configurations found to form
in the bulk require a large saddle-splay modulus, which
we have measured. We also observed point defects in
this system whose existence (compared to the absence
of smooth domain walls) provides independent confirma-
tion of K24. In the future, it will be interesting to study
and manipulate these chiral configurations and investi-
gate their formation from the isotropic phase.
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