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We use molecular dynamics simulations to test integral equation theory predictions for the struc-
ture of fluids of spherical particles with eight different piecewise-constant pair interaction forms
comprising a hard core and a combination of two shoulders and/or wells. Since model pair poten-
tials like these are of interest for discretized or coarse-grained representations of effective interactions
in complex fluids (e.g., for computationally intensive inverse optimization problems), we focus here
on assessing how accurately their properties can be predicted by analytical or simple numerical
closures including Percus-Yevick, hypernetted chain, reference hypernetted chain, first-order mean
spherical approximation, and a modified first-order mean spherical approximation. To make quanti-
tative comparisons between the predicted and simulated radial distribution functions, we introduce
a cumulative structural error metric. For equilibrium fluid state points of these models, we find
that the reference hypernetted chain closure is the most accurate of the tested approximations as
characterized by this metric or related thermodynamic quantities.

I. INTRODUCTION

A common challenge in materials science is the “in-
verse design problem” [1, 2], wherein one seeks to use
theoretical models to discover the microscopic character-
istics (e.g., the effective pair interactions) of a new system
which, if fabricated or synthesized, would yield a targeted
material property. Recent applications include designing
materials that self-assemble into specific crystalline lat-
tices [3–6], fluids that display optimized structural cor-
relations and related transport properties [7–9], or solids
that exhibit specific optical characteristics [10]. Inverse
design problems are commonly addressed by stochastic
optimization strategies like simulated annealing. Such
approaches have the advantage of being general and easy
to apply, and they can also be effective as long as mate-
rial properties required for evaluating the objective func-
tion can be accurately and efficiently computed for large
numbers of trial interactions during the optimization.
This requirement typically means that “exact” yet com-
putationally intensive methods for property determina-
tion (e.g., molecular simulations) are impractical for use
within such calculations. Approximate theories with an-
alytical or simple numerical solutions are attractive al-
ternatives to molecular simulation in these contexts, pro-
vided that they can make sufficiently accurate predictions
for a wide range of microscopic interaction types.
For bulk fluids, a key aim for property prediction is to

discover the one-to-one link [11] between g(r), the radial
distribution function (RDF) of a system at a given set
of conditions, and ϕ(r), the interparticle pair potential.
Knowledge of these functions of interparticle separation r
allows for the direct calculation of the static structure
factor, the energy, the pressure, and the isothermal com-
pressibility [12]. Estimations of other properties can be
directly obtained from knowledge of the RDF as well.
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One example is the two-body excess entropy, which is of-
ten a good approximation of the total excess entropy [13]
for simple liquids. Another is the information-theoretic
estimate for the probability pn(Ω) of observing n parti-
cle centers in a molecular-scale subvolume Ω, a quantity
which characterizes the fluid’s density fluctuations [14].
Excess entropy, its two-body approximation, and p0 have
been shown to correlate with various dynamic properties
of equilibrium fluids, e.g. diffusivity or viscosity [8, 15–
31]. Mode-coupling theory also predicts that dynamic
phenomena can be directly estimated from knowledge of
the static structure factor [32].

With these considerations in mind, herein we use
molecular simulations to test the accuracy of RDF predic-
tions for five approximate integral-equation theory clo-
sures: Percus-Yevick, hypernetted chain and reference
hypernetted chain [12], first-order mean spherical ap-
proximation (FMSA) [33], and a modified exponential
version of FMSA [34]. Other more resource-intensive the-
ories, like the Rogers-Young and hybrid mean-spherical
approximations [35, 36], self-consistent Ornstein-Zernike
approaches [12], and thermodynamic perturbation theo-
ries [37–39] are not considered here. We apply the sim-
pler five theories listed above to a diverse suite of eight
pair potentials previously introduced by Santos et al [40],
each composed of a hard core at r = σ plus two piece-
wise constant sections at larger r (i.e. wells or shoulders),
that qualitatively mimic some of the features observed
in the effective interactions of complex fluid systems.
For each interaction, we investigate four thermodynamic
state points with various combinations of low and high
density and low and high temperature, and we compare
the theoretical predictions for the RDF, the energy, and
the two-body excess entropy to data from event-driven
molecular dynamics simulations. To facilitate the RDF
comparisons we introduce a “cumulative squared error”
metric, which provides a quantitative characterization of
the overall quality of each theoretical prediction. We also
assess the accuracy of predictions for the potential energy
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and the two-body excess entropy.

II. METHODS

A. Integral Equation Theory

Integral equation theories for uniform, isotropic fluids
typically involve solving a system of two equations: the
Ornstein-Zernike relation,

h(r) = c(r) + ρ

∫

c (|r′ − r|) h(r′)dr′, (1)

which defines the direct correlation function c(r) in terms
of the number density ρ and the total correlation function
h(r) = g(r)− 1, and a closure, e.g.,

h(r) + 1 = exp [−βϕ(r) + h(r)− c(r) +B(r)] , (2)

which introduces the link to the pair potential ϕ(r),
where β = (kBT )

−1, T is temperature, kB is Boltzmann’s
constant, and B(r) is the so-called bridge function.
Two common approximations for B(r) are the Percus-

Yevick (PY) closure,

BPY(r) = ln [h(r) − c(r) + 1]− h(r) + c(r), (3)

and the hypernetted chain (HNC) closure,

BHNC(r) = 0. (4)

Another is the so-called reference hypernetted chain
approximation (RHNC), which assumes that the bridge
function can be accurately approximated by that of a
reference fluid, typically one of hard spheres at the same
density:

BRHNC(r) = BHS(r). (5)

The hard-sphere fluid’s bridge function BHS(r) has been
calculated through careful molecular simulations, and
multiple parameterizations for its density dependence ex-
ist [41–43]. For this work, we employ the analytical pa-
rameterization proposed by Malijevský and Lab́ık [41] for
the RHNC closure.
With B(r) specified by these closures, we solve the

coupled equations (1) and (2) using a rapidly-converging
combination of Newton-Raphson and Picard root-finding
methods developed by Lab́ık et al. [44].
An alternative strategy is to replace the closure of Eq. 2

with separate expressions. For example, the mean spheri-
cal approximation (MSA) assumes the following relations
hold,

gMSA(r) = 0 r < σ,

cMSA(r) = 0 r ≥ σ.
(6)

By further assuming first-order expansions in the char-
acteristic dimensionless energy of the potential βε for

both g(r) and c(r)–e.g., gFMSA(r) = gHS(r) + βεg1(r),
where gHS(r) is the pair correlation function for a hard
sphere system at the same density–Tang and Lu closed
the equations analytically for several common pair in-
teractions, including square wells [33]. We refer to this
solution as the first-order mean spherical approximation
(FMSA). In principle, FMSA can be applied to potentials
with square shoulders as well. But for strong interac-
tions, FMSA is known to incorrectly predict RDFs with
negative values for some interparticle separations [34].
To resolve this, Hlushak et al. modified the FMSA to
make it equally applicable to wells and shoulders by
rearranging the terms in the series expansion, so that
gEFMSA(r) = gHS(r) exp[−βεg1(r)] [34]. In this work, we
refer to this analytical solution as the exponential first-
order mean spherical approximation (EFMSA).

B. Suite of Two-Step Potentials

Motivated by Santos et al. [40], we examine predictions
for fluids from a set of pair interactions comprising a hard
core and two piecewise-constant steps,

ϕ(r) =











∞ r < σ,
ε1 σ ≤ r < λ1,
ε2 λ1 ≤ r < λ2,
0 r ≥ λ2,

(7)

where ε1 and ε2 are the energies of the first and second
steps, respectively, and λ1 and λ2 are the outer edges of
the first and second steps, respectively.
Furthermore, as in Santos et al., we restrict the values

of εi to the set {−ε,−ε/2, 0, ε/2, ε}, where ε is a char-
acteristic energy scale. Cases where ε1 = ε2 or ε2 = 0
reduce to either single square wells or shoulders, or hard
spheres, which have all been studied extensively else-
where (see, e.g., refs. 1-41 in [45]) and are not considered
here. We also exclude cases where max{|ε1|, |ε2|} = ε/2.
Of the cases where ε1 and ε2 have opposite sign, we con-
sider only combinations where ε2 = −ε1 = ±ε. We
choose λ1 = 1.5σ and λ2 = 2σ in order to provide chal-
lenging perturbations to the bare hard sphere system that
are still amenable to molecular simulation and theoretical
treatment. After imposing these restrictions, the remain-
ing eight pairwise interactions shown in Fig. 1, which we
refer to as “Type A–H,” form our test suite.
To explore how the accuracy of the various theories

varies with density and temperature, we investigate each
interaction at the four state points comprising combina-
tions of packing fraction η = ρπσ3/6 = 0.15 or 0.45 and
dimensionless temperature T ∗ = kBT/ε = 0.67 or 2.0.

C. Molecular Simulations

We compare the theoretical predictions for the RDF,
the energy, and the two-body excess entropy to the re-
sults of event-driven molecular dynamics simulations per-
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FIG. 1. The suite of eight pair interactions considered in
this study, inspired by Santos et al. [40], is topologically ex-
haustive (e.g., there are no other qualitative arrangements of
two constant pairwise pieces that are not more appropriately
labeled single wells or shoulders). For each of the eight inter-
actions, the dimensionless pair potential is shown by the red
(solid) line.

formed with the DynamO simulation engine [46]. Pe-
riodic boundary conditions were used, and the simu-
lated systems were sized such that adequate RDF statis-
tics could be collected for separations up to at least
r = 10σ. In practice, this required N = 4000 particles
when η = 0.15, and N = 8788 particles when η = 0.45.
The “bins” for particle counts were 0.005σ wide. Tem-
peratures were set and maintained using an Andersen
thermostat [47].
Each simulation was initialized as an FCC lattice of the

desired density at a high temperature, with randomly
assigned particle velocities. After equilibrating for ten
million events, the simulations were cooled to the de-
sired temperature and re-equilibrated for a further ten
million events. Then, the thermostat was removed, and
the RDF was measured over the final five million events.
Only isotropic, single-phase fluids were considered in the

comparisons with theory. Those state points determined
to be in two-phase (or non-fluid) regions of the phase di-
agram via analysis of the spatial distribution of particle
density or the static structure factor were not considered.

D. Quantifying Error in Predictions

To compare the various RDF theoretical predictions to
simulations at a given state point, we define a metric we
call the cumulative squared error, CSE(r):

CSE(r) =

∫

r

σ
[hsim(r

′)− hthy(r
′)]

2
r′2 dr′

∫

∞

σ
h2
sim(r

′)r′2 dr′
. (8)

The integrand in the numerator characterizes the
squared deviation in the total correlation function be-
tween the prediction of a given theory hthy(r) and the
result of the ‘exact’ simulation hsim(r); the power of two
eliminates any possible cancellation of error, e.g. for
cases where a theory both underpredicts and overpre-
dicts the value of h(r) at different values of r. The de-
nominator accumulates the total squared correlations in
the simulated system, and thus normalizes the overall
function to facilitate comparison between systems with
different degrees of correlation (e.g., between low-density
and high-density systems).
As r approaches infinity, all h(r) curves converge to

zero and the CSE converges to a finite value, CSE∞:

CSE∞ = lim
r→∞

CSE(r), (9)

which is a measure of the summed squared correlations as
a fraction of the total squared correlations in the system;
thus, a larger value of CSE∞ indicates that a theoretical
prediction deviates more significantly from the “exact”
simulation results. By construction, CSE∞ has a defined
minimum of 0 and, while it does not have a rigorous
maximum, its value is typically less than 1 except in cases
where the theoretical predictions are qualitatively very
poor.
We also calculate the static structure factor S(k)

[from which one can obtain the isothermal compressibil-
ity χT = S(0)/(ρkBT )], the potential energy per par-
ticle U/ε, the two-body contribution to excess entropy
s(2)/kB, and the compressibility factor, Z = βP/ρ, from
simulations and theoretical predictions. The potential
energy per particle is

U

ε
=

ρ

2

∫

∞

0

ϕ(r)

ε
g(r) dr, (10)

the two-body contribution to excess energy is

s(2)

kB
= −

ρ

2

∫

∞

0

[g(r) ln g(r)− g(r) + 1] dr, (11)
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and the compressibility factor is

Z = 1 +
2πρ

3

2
∑

i=0

λi
3
[

g(λ+
i
)− g(λ−

i
)
]

, (12)

where the superscripts − or + indicate the limiting val-
ues taken from the left or right of each discontinuity,
respectively, and λ0 = σ. All three quantities can also be
directly computed from g(r) and thus, the normalized ab-
solute deviation of the predicted versus simulated values
can be used as an indication of the success of theoretical
predictions. However, note that different RDFs can, in
principle, give rise to the same value of U/ε, s(2)/kB, or
Z. Moreover, U/ε only depends on correlations within
the range of the pair interaction, and Z only depends
on the magnitudes of the discontinuities in the correla-
tions. As a result, we argue here that since the RDF
is weighted differently for each thermodynamic quantity,
the CSE metric we introduce–which tests the overall sim-
ilarity between predicted and simulated RDFs–represents
a more sensitive measure for the overall predictive quality
of particular theory.

III. RESULTS AND DISCUSSION

Structural predictions for the Type A pair interaction
are compared to simulation results in Fig. 2 and 3,
along with the corresponding cumulative squared errors
as calculated via Eq. (8). For this interaction, the an-
alytic solutions (FMSA and EFMSA) perform better at
higher rather than at lower equilibrium fluid densities.
As density increases, the effect of the excluded volume
captured by the well-modeled hard-sphere RDF, gHS(r),
overwhelm the energetic perturbations from the repul-
sive steps and dominate the resulting structure. Of the
tested integral-equation theories with simple numerical
closures, the PY closure tends to perform least well near
contact, and for interaction Type A, the RHNC offers
the best predictions at all four state points investigated.
Analogous figures for each of the other interactions are
presented for the interested reader in Appendix A.
It is tempting to conclude from a visual comparison

of theoretical and simulated radial distribution functions
that all of the theories perform similarly well, especially
at the higher temperature (Figs. 2d and 2h). However,
the resulting CSEs differ by nearly two orders of magni-

tude from most to least accurate (Figs. 2c and 2g), which
underscores the utility and sensitivity of the CSE met-
ric. As discussed below, these differences in the CSE
become important when computing other quantities that
depend on the RDF, especially when one considers that
each thermodynamic quantity weights the RDF in a dif-
ferent way.
The total cumulative squared errors CSE∞ for all in-

teractions, state points, and theories are listed in Table
I. Six of the total thirty-two combinations of interaction
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FIG. 2. Radial distribution functions g(r) = h(r)+ 1 and the
associated cumulative squared errors (CSE, see Eq. (8)) pre-
dicted by the reference hypernetted chain (RHNC), hypernet-
ted chain (HNC), and Percus-Yevick (PY) Ornstein-Zernike
closures [12, 41]; the first-order mean spherical approximation
solution (FMSA) [33]; and the simple exponential first-order
mean spherical approximation (EFMSA) [34], for the “type
A” pair interaction. For clarity, unit vertical offsets were ap-
plied to the RDF curves, and they are stacked in the same
order (top-to-bottom) as listed in the legend. The simulated
RDF (solid circles) for this state point is reproduced five times
to compare with each vertically offset theoretical RDF; shaded
regions adjacent to each g(r) highlight the differences between
each theory and simulation results.

type and state point considered did not produce single-
phase, uniform fluids when simulated. Of the remaining
twenty-six systems, the RHNC offered the most accu-
rate structural predictions for all but four; however, at
three of these four points, the CSE∞ of the RHNC is
still within ca. 65% of the most accurate theory (HNC).
All four points are at low temperature (T ∗ = 0.67) and
high packing fraction (η = 0.45), and each of the pair
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ence hypernetted chain (RHNC), hypernetted chain (HNC),
and Percus-Yevick (PY) Ornstein-Zernike closures [12,
41]; the first-order mean spherical approximation solution
(FMSA) [33]; and the simple exponential first-order mean
spherical approximation (EFMSA) [34], for the “type A” pair
interaction. For clarity, unit vertical offsets were applied to
the structure factor curves, and they are stacked in the same
order (top-to-bottom) as listed in the legend. The simulated
structure factor (open circles) for this state point is repro-
duced five times to compare with each vertically offset theo-
retical S(k).

interactions include attractions (types D, F, G, and H).

We also compare CSE∞ against the absolute normal-
ized errors for predictions of three example thermody-
namic quantities: two-body excess entropy s(2)/kB, po-
tential energy U/ε, and compressibility factor (i.e., nor-
malized pressure) Z, in Fig. 4. Fig. 4a shows that CSE∞

is generally a good predictor of s(2)/kB accuracy, al-
though there are a handful of instances where the frac-
tional error in the excess entropy is low while CSE∞ is
higher.The correlations between CSE∞ and the poten-
tial energy or pressure are a bit weaker, but still present;
this is likely due to opportunities for fortuitous cancella-
tion of error when pair interactions contain both positive
and negative contributions (e.g., types D and H), when
portions of the interactions are zero (types C and G),
or when significant contributions to CSE∞ occur beyond
the range of the pair interaction. Overall, however, it is
clear that the accuracies of both example thermodynamic
quantity predictions correlate well with the cumulative
squared error. For the interested reader, the values of
excess entropy, potential energy, and compressibility fac-
tor errors are tabulated in Appendix B.

TABLE I. Total cumulative squared errors (CSE∞) for all the-
oretical approaches, thermodynamic state points, and inter-
actions considered. “R,” “H,” and “P” are the RHNC [12, 41],
HNC [12], and PY [12] closures to the Ornstein-Zernike re-
lation, respectively. “F” is the FMSA [33], and “E” is the
EFMSA [34]. Italics indicate the lowest value of CSE∞ (and
hence the theory with the most accurate structural predic-
tion) at each combination of state point and interaction type.

Type A Type B
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.000 0.003 0.002 0.001 0.001 0.011 0.000 0.002

H 0.002 0.044 0.010 0.052 0.001 0.039 0.001 0.059
P 0.226 0.093 0.052 0.039 0.013 0.021 0.005 0.007
F 0.123 0.012 0.014 0.003 0.092 0.053 0.010 0.006
E 0.123 0.010 0.024 0.004 0.082 0.097 0.008 0.011

Type C Type D
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.002 0.010 0.000 0.003 0.079 0.046 0.001 0.004

H 0.003 0.024 0.001 0.061 0.083 0.030 0.002 0.057
P 0.005 0.019 0.001 0.004 0.092 0.197 0.002 0.019
F 0.096 0.081 0.008 0.009 0.168b 0.269b 0.016 0.018
E 0.184 0.160 0.015 0.016 0.412 0.522 0.040 0.032

Type E Type F
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a –a –a 0.001 –a 0.094 –a 0.004

H –a –a –a 0.067 –a 0.027 –a 0.048
P –a –a –a 0.020 –a 0.268 –a 0.049
F –a –a –a 0.004 –a 0.287 –a 0.027
E –a –a –a 0.002 –a 0.113 –a 0.011

Type G Type H
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a 0.023 0.001 0.007 0.053 0.056 0.004 0.014

H –a 0.010 0.008 0.040 0.063 0.024 0.008 0.027
P –a 0.388 0.007 0.090 0.104 0.781 0.009 0.204
F –a 0.256b 0.018 0.039 0.208b 0.507b 0.031 0.078
E –a 0.174 0.020 0.019 0.750 0.405 0.044 0.044

a Simulated system is not a single-phase, uniform fluid at
equilibrium.

b Theory predicts an unphysical RDF, i.e. g(r) < 0 for some r.

IV. CONCLUSION

In order to quantify the overall accuracy of theoret-
ical predictions for fluid structure, we have introduced
the total cumulative squared error (CSE∞) metric, which
accumulates squared discrepancies between a theoretical
prediction and a reference “exact” result at all separa-
tion distances along the total correlation function and
avoids any possible cancellation of error. We find that
this CSE∞ metric is very sensitive and tends to forecast
the overall accuracy of structure-dependent thermody-
namic calculations. As a result, it is an excellent tool for
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FIG. 4. Correlations between total cumulative squared error
CSE∞ and (a) absolute normalized two-body excess entropy
error (circles), (b) absolute normalized potential energy error
(squares), and (c) absolute normalized compressibility factor
error (diamonds) for all data collected.

comparing accuracy between multiple theories, particu-
larly when differences are difficult to discern by visual
inspection.

We have used this metric to test the performance of five
integral equation theory-based approaches for predicting
equilibrium fluid structure in systems with pair interac-
tions comprising a hard core plus two piecewise constant

interactions, and we find that the reference hypernetted
chain (RHNC) integral equation closure offers accurate
and efficient predictions across a broad range of inter-
actions and thermodynamic state points. This kind of
analysis, i.e., considering the accuracy of various efficient
theoretical methods for predicting the structure consis-
tent with a broad range of possible interactions, will be
particularly important for inverse design problems where
the goal is to rather accurately predict which interaction
is consistent with a targeted structure (or structurally-
related property).

ACKNOWLEDGMENTS

The authors thank Anatol Malijevský for sharing
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Appendix A: Extended Type B-H Structure Plots

The predicted radial distribution functions g(r) com-
pared against simulation results, the resulting cumulative
squared errors CSE(r), and the corresponding structure
factors S(k) are shown for interaction types B through
H in Figs. 5–11, respectively.

Appendix B: Complete Thermodynamic Error

Tables

In Tables II and III, we present tabulated values for
the absolute normalized potential energy and 2-body ex-
cess entropy errors, respectively, for all theories and state
points considered in this study.
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109, 987 (2011).
[46] M. N. Bannerman, R. Sargant, and L. Lue, J. Comput.

Chem. 32, 3329 (2011).
[47] H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).



8

0

2

4

6

8

10

g(
r)

10
-4

10
-3

10
-2

10
-1

C
SE

RHNC
HNC
PY
FMSA
EFMSA

1 2 3 4 5
0

2

4

6

8

10

12

g(
r)

1 2 3 4 5 6
r/σ

10
-3

10
-2

10
-1

C
SE

η = 0.15, T* = 0.67 η = 0.15, T* = 2.0

η = 0.45, T* = 0.67 η = 0.45, T* = 2.0

(a) (c)

(d)(b)

(e) (g)

(h)(f)

Type B

FIG. 5. Radial distribution functions g(r) = h(r)+1 and the
associated cumulative squared errors (CSE, see Eq. (8)) pre-
dicted by the reference hypernetted chain (RHNC), hypernet-
ted chain (HNC), and Percus-Yevick (PY) Ornstein-Zernike
closures [12, 41]; the first-order mean spherical approximation
solution (FMSA) [33]; and the simple exponential first-order
mean spherical approximation (EFMSA) [34], for the “type
B” pair interaction. For clarity, unit vertical offsets were ap-
plied to the RDF curves, and they are stacked in the same
order (top-to-bottom) as listed in the legend. The simulated
RDF (solid circles) for this state point is reproduced five times
to compare with each vertically offset theoretical RDF; shaded
regions adjacent to each g(r) highlight the differences between
each theory and simulation results.
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FIG. 6. Radial distribution functions and cumulative squared
errors for the “type C” interaction. Series and labeling are as
in Fig. 5.
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errors for the “type D” interaction. Series and labeling are as
in Fig. 5.
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FIG. 9. Radial distribution functions and cumulative squared
errors for the “type F” interaction. Series and labeling are as
in Fig. 5.
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FIG. 10. Radial distribution functions and cumulative
squared errors for the “type G” interaction. Series and la-
beling are as in Fig. 5.
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squared errors for the “type H” interaction. Series and la-
beling are as in Fig. 5.
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TABLE II. Absolute normalized potential energy error,
|(Uthy/Usim) − 1|, for all approaches, state points, and inter-
actions considered. Labels are as in Table I. Italics indicate
the value closest to zero (e.g., a perfect prediction) at each
combination of state point and interaction type.

Type A Type B
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.000 0.003 0.000 0.001 0.007 0.021 0.001 0.006
H 0.000 0.004 0.001 0.001 0.005 0.029 0.001 0.021
P 0.020 0.008 0.008 0.008 0.006 0.019 0.002 0.008
F 0.098 0.001 0.015 0.002 0.182 0.009 0.018 0.012
E 0.079 0.007 0.019 0.003 0.091 0.043 0.012 0.005

Type C Type D
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.025 0.038 0.004 0.014 0.138 0.106 0.109 0.458
H 0.022 0.048 0.001 0.040 0.133 0.117 0.076 1.203
P 0.002 0.028 0.005 0.007 0.188 0.246 0.078 1.549
F 0.501 0.036 0.020 0.015 –b –b 0.040 0.404

E 0.245 0.143 0.034 0.035 0.473 0.123 0.071 2.630

Type E Type F
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a –a –a 0.002 –a 0.063 –a 0.007
H –a –a –a 0.002 –a 0.040 –a 0.016
P –a –a –a 0.004 –a 0.087 –a 0.013
F –a –a –a 0.005 –a 0.097 –a 0.020
E –a –a –a 0.000 –a 0.011 –a 0.003

Type G Type H
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a 0.005 0.001 0.010 0.073 0.093 0.021 0.038
H –a 0.016 0.002 0.025 0.086 0.138 0.026 0.074
P –a 0.096 0.014 0.042 0.102 0.374 0.016 0.284
F –a –b 0.013 0.023 –b –b 0.015 0.022

E –a 0.051 0.015 0.017 0.536 0.105 0.051 0.224

a Simulated system is not a single-phase, uniform fluid at
equilibrium.

b Theory predicts an unphysical RDF, i.e. g(r) < 0 for some r.
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TABLE III. Absolute normalized 2-body excess entropy error,

|(s
(2)
thy/s

(2)
sim) − 1|, for all approaches, state points, and inter-

actions considered. Labels are as in Table I. Italics indicate
the value closest to zero (e.g., a perfect prediction) at each
combination of state point and interaction type.

Type A Type B
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.003 0.006 0.002 0.001 0.018 0.046 0.004 0.004
H 0.010 0.014 0.009 0.029 0.014 0.069 0.004 0.008
P 0.025 0.001 0.021 0.011 0.021 0.106 0.022 0.003

F 0.009 0.005 0.005 0.005 0.320 0.045 0.009 0.011
E 0.034 0.013 0.012 0.002 0.012 0.024 0.011 0.049

Type C Type D
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.026 0.019 0.007 0.008 0.215 0.172 0.024 0.010

H 0.024 0.041 0.000 0.018 0.210 0.160 0.018 0.027
P 0.018 0.097 0.013 0.018 0.255 0.287 0.019 0.054
F 0.470 0.055 0.014 0.005 –b –b 0.008 0.032
E 0.153 0.038 0.005 0.064 0.388 0.448 0.040 0.079

Type E Type F
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a –a –a 0.015 –a 0.193 –a 0.040
H –a –a –a 0.030 –a 0.081 –a 0.043
P –a –a –a 0.040 –a 0.146 –a 0.011

F –a –a –a 0.010 –a 0.263 –a 0.051
E –a –a –a 0.005 –a 0.052 –a 0.031

Type G Type H
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a 0.063 0.003 0.045 0.185 0.040 0.012 0.063
H –a 0.029 0.011 0.048 0.191 0.151 0.011 0.044
P –a 0.162 0.020 0.037 0.220 0.201 0.020 0.151
F –a –b 0.022 0.045 –b –b 0.014 0.013

E –a 0.167 0.000 0.045 0.533 0.485 0.027 0.060

a Simulated system is not a single-phase, uniform fluid at
equilibrium.

b Theory predicts an unphysical RDF, i.e. g(r) < 0 for some r.
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TABLE IV. Absolute normalized compressibility error,
|(Zthy/Zsim) − 1|, for all approaches, state points, and inter-
actions considered. Labels are as in Table I. Italics indicate
the value closest to zero (e.g., a perfect prediction) at each
combination of state point and interaction type.

Type A Type B
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.002 0.011 0.008 0.009 0.002 0.050 0.001 0.019
H 0.005 0.100 0.001 0.161 0.005 0.110 0.011 0.153
P 0.008 0.090 0.028 0.105 0.030 0.021 0.004 0.047
F 0.001 0.011 0.009 0.018 0.135 0.099 0.042 0.085
E 0.048 0.008 0.027 0.016 0.041 0.091 0.006 0.012

Type C Type D
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.004 0.065 0.003 0.025 0.424 0.046 0.008 0.045
H 0.018 0.116 0.020 0.159 0.630 0.075 0.026 0.177
P 0.023 0.036 0.009 0.033 0.756 0.393 0.022 0.010

F 0.302 0.178 0.080 0.124 –b –b 0.203 0.223
E 0.042 0.063 0.005 0.022 4.977 0.312 0.053 0.059

Type E Type F
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a –a –a 0.018 –a 0.479 –a 0.143
H –a –a –a 0.556 –a 0.106 –a 0.777
P –a –a –a 0.164 –a 1.680 –a 0.950
F –a –a –a 0.038 –a 0.165 –a 0.450
E –a –a –a 0.004 –a 0.576 –a 0.012

Type G Type H
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a 0.514 0.002 0.150 7.449 0.929 0.037 0.157
H –a 0.055 0.061 0.493 11.351 0.204 0.047 0.256
P –a 2.821 0.068 0.818 49.218 2.310 0.025 0.655
F –a –b 0.050 0.338 –b –b 0.073 0.230
E –a 0.457 0.163 0.011 9.280 0.217 0.011 0.033

a Simulated system is not a single-phase, uniform fluid at
equilibrium.

b Theory predicts an unphysical RDF, i.e. g(r) < 0 for some r.


