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One of the intriguing questions in fluid dynamics is on the interrelation between dynamic singularities in
the solutions of fluid dynamic equations – unboundedness of the velocity field in an appropriate norm – and
the geometric ones – divergence of curvature at fluid interfaces. The present work focuses on two generic
interfacial singularities – genuine cusps and cuspidal edges – found here in both two and three dimensions thus
establishing a relation between real fluid interfaces and geometric singularity theory. The key new finding is
the necessary condition for the existence of geometric singularities, which is a variation of surface tension.
It is also established here that the dynamic and geometric singularities entail each other only in the case of
three-dimensional cusps. Explicit asymptotic solutions for the flow field and interface shape near steady-state
singularities at fluid interfaces are developed as well. The practical motivation for the present study comes
from the fundamental role interfacial singularities play in sustaining self-driven conversion of chemical into
mechanical energy.

The appearance of singularities in the solutions of non-
linear partial differential equations, that is when mod-
eled physical quantities become unbounded, is a conse-
quence of the simplification continuum theory gives over
the molecular level description and usually indicates that
some important unresolved physics takes place1. On the
other hand, singularities can also exhibit themselves ge-
ometrically as that of curves in two dimensions (2D) and
surfaces in three dimensions (3D), e.g. in the context of
fronts2–4 and fluid interfaces5–7, when geometric quanti-
ties (e.g. curvature) diverge.

Indeed, singularities in the solutions of fluid dynamics
equations – the focus of the present work – can emerge
not only as a divergence of the velocity field in an ap-
propriate norm, which is a central question in the theory
of existence of solutions8, but also geometrically as a di-
vergence of curvature at fluid interfaces, which is usually
avoided in the existence studies of fluid dynamics with
interfaces9,10 (i.e. the interface is usually assumed to be
smooth throughout the entire evolution). The interrela-
tion between these two kinds of singularities is the first
key question addressed in the present study and brings
together topological and analytical views of fluid dynam-
ics, which are arguably equally important11,12. Often,
mathematical singularities occur when viscosity and/or
surface tension are neglected13. The present study shows
that one can get a singularity even if these physical effects
are both present. While singular solutions are known
in the dynamics of viscous flows, especially in fixed ge-
ometries such as the Jeffrey-Hamel flow in a converging
channel14 and on a polygon15, in problems with free in-
terfaces primarily corner14,16 and cone5 type solutions
were studied, e.g. in the context of Taylor cones17,18 and
chemical-reaction driven tip-streaming19.

The present work focuses on two generic, according to
Whitney’s theory20, types of interfacial singularities21 –
cusps and cuspidal edges shown in Fig. 1 – constructed
here in both 2D and 3D thus establishing a relation be-
tween real physical interfaces and singularity (catastro-
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FIG. 1. Two of the generic singularities22 in 3D relevant to
the situation when there is a continuum media (fluid) on one
side of the interface: (a) cusp, (b) cuspidal edge (singular part
of a cuspidal lip4 – its transverse cross-section is a 2D cusp).

phe) theory22. Cusps differ from cone singularities as
the angle at their apex vanishes and are known to play
an important role in many other areas of physics, e.g.
gravitational lensing23, cuspy halo in cosmology24, and
day-side cusps in magnetosphere25, to mention a few.

In fluid dynamics, approximations26 to cusps in the
framework of macroscopic (continuum) theory were stud-
ied before in 2D with the methods of complex variable
theory by Jeong and Moffatt 27 in the case of clean in-
terface and by Antanovskii 6 in the presence of surfac-
tants; however, due to the requirement of analyticity of
a conformal mapping, these studies were limited to regu-
lar solutions, i.e. when the interfacial curvature remains
finite except for the case of surface tension vanishing
everywhere27, not just locally. In contrast, the second
key question in the present work is on the necessary con-
dition for the existence of the genuine cusp and cuspi-
dal edge singularities, which, as will be shown here, is
a variation of surface tension thus bringing Marangoni
phenomena28 – fluid flows resulting from variations of
interfacial tension – into the picture. As opposed to
the singularities forced externally29–34, cf. Fig. 2(a),
self-driven Marangoni singularities have not been thor-
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FIG. 2. Physical examples of steady-state interfacial singularities: (a) drop deformed due to external forcing of an extensional
flow17,35 – viscous stresses in the surrounding phase deform the drop, which forms pointed ends; (b) chemical reaction-driven tip-
streaming19,36,37 – the acid-base chemical reaction at the water-oil interface produces a surfactant, which drives the Marangoni
flow along the interface leading to a conical shape of the drop with a singular cone-tip; (c) surfactant-driven fingering38,39 –
soapy water displaces air in the narrow space between two glass plates (Hele-Shaw cell) and eventually leads to fingering with
cusps between the fingers.

oughly studied. Marangoni-driven flows exhibiting inter-
facial singularities, which motivated the present study,
were found experimentally only recently19,36–39 and are
shown in Figs. 2(b,c).

On the theoretical side, it was recently demonstrated
that the existence and topology of the recently observed
interfacial singularities driven by Marangoni effects can
be deduced using mean-curvature flow theory extended
to account for variations of interfacial tension40. This,
in turn, suggests that some of the physical mechanisms
underlying the formation of these interfacial singularities
originate from the surface tension flow, but existence and
the actual form of these solutions were not demonstrated
from first principles, i.e. as satisfying the Navier-Stokes
equations (NSEs) governing fluid motion14.

Since there can be a multitude of physical problems
leading to singularities with the same asymptotic behav-
ior and the task of constructing a general global ana-
lytic solution is formidable, the analysis offered here is
local in nature, which is sufficient for our purpose of
establishing only necessary conditions for the existence
of singularities. With the asymptotic analysis to follow
we will be able to answer both key questions formulated
above. In fact, a local approach is very common when
analyzing solutions near geometric singularities, e.g. in
fluid dynamics14,41–43, electrodynamics44, and in a gen-
eral mathematical context45. Such constructed leading
order local solutions are determined up to some unknown
constants, which values can be found from the global so-
lution only as is common for elliptic problems46.

In 2D, the analysis is relevant for both studying 3D cus-
pidal edges, cf. Fig. 1(b), as well as cusps in 2D, which
can be considered as a transverse cross-section of cuspidal
edges. Hence, we will start with incompressible viscous
flow formulation, which in 2D can be written in terms
of the streamfunction ψ defined such that the x- and y-
velocity components are given by (u, v) = (ψy,−ψx):

(ψy∂x − ψx∂y) ∆ψ = ν∆2ψ, (1)

where ∆ = ∂2x + ∂2y is the Laplacian, ν is the kinematic
viscosity. The problem is closed with dynamic normal

and tangent boundary conditions at the cusp interface
h(x) = c xα, where 0 < α < 1 and for negative x one
takes −x:

n ·T · n = −σ∇ · n, (2a)

t ·T · n = t · ∇sσ, (2b)

as well as the kinematic boundary condition:

u · n = 0, (3)

i.e. −hxu+v = 0. Here Tij = −p δij+2µ eij is the stress
tensor, eij the rate of strain tensor, µ dynamic viscosity,
p the pressure, σ the interfacial tension, t and n tangen-
tial and outer (w.r.t. the fluid phase) normal vectors,
respectively, ∇s the interfacial gradient, s the arclength
parameterizing the interface, and ∇ ·n the interface cur-
vature, which diverges as ∇ · n ' hxx/h3x = O(x1−2α).

Without loss of generality, we will place the system
of coordinates at the apex of the singularity, which will
simplify notations and the form of solutions. In the case
when inertia in (1) can be neglected, which will be veri-
fied a posteriori, the analysis of (1) reduces to the Stokes
approximation

∆2ψ = 0, (4)

i.e. the solution is considered at small spatial scales
where viscosity dominates. If one represents the stream-
function as ψ(x, y) = xβyγ , equation (4) admits any val-
ues of the exponents β and γ from the following sets
(β, γ) = ({0, 1, 2, 3} , {0, 1}) or ({0, 1} , {0, 1, 2, 3}), which
implies that a solution can be a combination of any ad-
missible values of the exponents β and γ thus giving the
following basic elements of the streamfunction:

ψ =
{

1;x, x2, x3; y, y2, y3;x y, x y2, x y3;x2 y, x3 y
}
. (5)

In addition, in the context of cusp singularities it will be
also relevant to consider solutions of the form

ψ(x, y) = ψ0(x) + ψ1(x, y) + . . .

= d0x
β0 + d1x

β1yγ1 + . . . ,
(6)
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which differs substantially from the works of Lugt 42 and
Brøns 41 on non-singular interfaces in the sense that Tay-
lor series expansions (i.e. with integer powers) are no
longer applicable as the solutions are not expected to be
regular near cusps – instead, the first term depends on
one coordinate only and the second term possesses non-
integer powers. Leaving aside the irrelevant solutions
corresponding to β0 = 0 (which gives constant leading-
order term) and γ1 = 0 (which gives β0 = β1 and no
dependence on y), we arrive at the following possible ex-
ponents

(γ1, β1) = (2, β0 − 2) or (4, β0 − 4); β0 = {1, 2, 3} . (7)

Let us identify the conditions under which a solution
local near a cusp singularity exists in the Stokes approx-
imation. The corresponding stream-function (6) satisfies
the kinematic boundary condition (3) provided

β1 = β0 − αγ1, (8a)

d0 + d1 c
γ1 = 0, (8b)

which allows us to rewrite the formula (6) as

ψ(x, y) = d0x
β0 + d1x

β0

( y

xα

)γ1
+ . . . , (9)

where the ratio y/xα ≥ 1 in the interior of the singular-
ity (fluid phase). Thus, to make the representation (6)
meaningful one needs to bring the second term to the
next order of approximation compared to the first term,
i.e. one must have

γ1 < 0. (10)

Note that because of (8b), the streamfunction vanishes
at the interface ψ = 0 (at the leading order) as it should.
The determined conditions (8,10) narrow down the class
of possible solutions (6)47.

The dynamic boundary conditions (2) produce at the
leading order

−µhxψxx = σx, (11a)

−p+
2µ

hx
ψxx = σ

hxx
h3x

. (11b)

Given the form of the interface h(x) = c xα and the lead-
ing order term of the streamfunction ψ0 = d0 x

β0 , one
gets the following key scalings for the surface tension and
pressure in the cases β0 = {2, 3}:

σ ∼ xα+β0−2, (12a)

p ∼ x−α+β0−1, (12b)

respectively. Note that in this case (β0 = {2, 3}) both
surface tension and pressure are bounded and vanish at
the cuspidal point as x → 0; the y-component of the
velocity field scales as O(v) = xβ0−1 and thus vanishes
as well, for x → 0. Also, the vorticity, ω = −∆ψ, scales

(a) (b)

FIG. 3. Flow fields – streamline patterns – in (a) 2D cusp/3D
cuspidal edge and (b) 3D cusp – cross-section at y = 0.

as ∼ d0 x
β0−2, i.e. is bounded near the cusp apex. The

surface tension gradient takes the form

σx = −µ c β0(β0 − 1) d0x
α+β0−3, (13)

where, as was pointed out before, the unknown constants
can be determined only from knowledge of the global so-
lution, i.e. the boundary conditions away from the sin-
gularity set the values of these constants. The presence
of unknown constants in (13) is also a reflection of the
self-similar character of the solution (12) since there is
no characteristic length scale in the problem. This also
suggests that Marangoni-driven singularities can be phys-
ically realized on different length scales (as long as the
flow near the singularity is in the Stokes regime). In the
context of the cases β0 = {2, 3}, it must be noted that
existence of a genuine 2D cusp with vanishing surface ten-
sion at the cuspidal point was predicted by Antanovskii6

in the particular case of the flow driven externally by two
counter-rotating cylinders27. Also, the mesoscale theory
of Pismen48, which aimed to resolve the singularity in the
same problem with constant non-zero surface tension27,
showed that the cusp is formed due to a decrease of sur-
face tension, but now caused by mesoscopic physical phe-
nomena, i.e. different from the result established here
within the framework of the continuum theory (NSEs).

As for the case β0 = 1, it corresponds to ejection of
fluid as in the tip-streaming mode (v ∼ const, cf. Fig.
4) and gives the variation of surface tension σ ∼ xα−1

at the next order thanks to the contribution of ψ1, while
pressure scales as p ∼ x−α; thus both surface tension and
pressure are singular in this case49 and the flow (recircu-
lation) direction in Fig. 3(a) is the opposite to that in
the cases β0 = {2, 3}.

Concluding the discussion of the 2D case, we can verify
that the constructed solutions indeed correspond to the
Stokes flow approximation at the leading order despite
their singular behavior50. Noting that since |x| � 1 and
0 < α < 1 in the fluid domain we have x � xα ≤ y,
so that differentiation with respect to x dominates that
with respect to y and hence the leading order part of (1)
is

−ψ0x ∆ψ1y = ν∆2ψ0. (14)
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Plugging (9) in (14) and evaluating nonlinear inertia and
viscous terms and normalizing with respect to the latter
leads to

xβ0

( y

xα

)γ1 (y
x

)−1

; xβ0

( y

xα

)γ1 (y
x

)−3

; 1. (15)

Since the first two terms representing the order of mag-
nitude of nonlinear inertia are asymptotically small com-
pared to the last (Stokes) term for each of the three pos-
sible cases, β0 = {1, 2, 3}, one concludes that inertia does
not contribute at leading order.

In 3D, while it is tempting to perform the analysis
of cusps in the Cartesian system of coordinates as was
done in the 2D case above, the interface representation
y = h(x, z) = c xαx zαz does not correspond to a cusp.
Since the goal is to establish existence of cusps in 3D, it
is sufficient to consider the axisymmetric case, cf. Fig.
1(a),

θ = h(r) = c rα with α > 0 s.t. θ → 0 as r → 0. (16)

In the mathematical formulation we choose to work with
spherical coordinates centered at the apex of the cusp,
cf. Fig. 1(a): x = r sin θ cosφ, y = r sin θ sinφ, z =
r cos θ, where z is directed along the axis of symmetry,
θ ∈ [0, π], φ ∈ [0, 2π]. Defining the interface in terms
of (r, θ)-variables, θ = h(r), the interfacial curvature is
calculated via ∇ · n ' (r h)−1.

Representing the solution for the axisymmetric stream-
function ψ(r, θ) = rn f(θ) and taking into account that
the cusp shape is given by (16) we will look for solutions
in the narrow sector of angle |θ| � 1, i.e. f(θ) = d θm, so
that the corresponding axisymmetric biharmonic prob-
lem in spherical coordinates

E2ψ = 0, where E =
∂2

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
, (17)

produces

m(m− 4)(m− 2)2+

2

3
m(m− 2) [8 + 3(n− 3)n+m] θ2 +O(θ4) = 0,

(18)

that is for any n the leading order solution corresponds
to m = {0, 2, 4}.

It is natural to expect the solution for the streamfunc-
tion ψ(r, θ) in the form analogous to (6), but the first
term cannot be ψ0(θ) simply because it would produce
v = 0 and u ∼ r−2 so that the kinematic boundary con-
dition (3) would imply that h = const, i.e. cone-type in-
terface, which contradicts the assumption of a cusp (16).
Thus, one needs to assume

ψ(r, θ) = ψ0(r, θ) + ψ1(r, θ) + . . . , (19)

which, of course, implies that the leading order term gives
both r- and θ-velocity components to be non-vanishing
u, v 6= 0, which is the key difference from the 2D case.

However, the θ-component of velocity has lower singu-
larity compared to the r-component; namely, if at any
order

ψ(r, θ) = d rn θm, (20)

then

u = dmrn−2θm−2, v = −nd rn−2θm−1. (21)

Given the allowed values {0, 2, 4} of m, one concludes
that m = 0 is not relevant, while m = 4 lets u → 0 as
θ → 0 provided n ≥ 2.

The kinematic boundary condition (3) at θ = h(r)
gives

mα = −n, i.e. ψ(r, θ) = d r−mαθm, (22)

and at each order ψ0, ψ1, . . . are balanced individually
as opposed to the 2D case. As it should be, according to
(22), the streamfunction at the interface assumes a con-
stant value ψ = d cm. Also, the condition (22) suggests
that since m = 2, 4 and α > 0, there should be n < 0,
which implies that the fluid velocity is unbounded at the
cusp apex.

Balancing the capillary, viscous, and Marangoni effects
in the dynamic conditions (2) leads to the following scal-
ings for the surface tension and pressure:

σ ∼ rn−2+α(m−1) = r−2−α, (23a)

p ∼ rn−3+α(m−3) = r−3−2α, (23b)

where the restriction (22) imposed by the kinematic
boundary condition was used. Clearly, both surface ten-
sion and pressure are divergent at the cusp apex, which
distinguishes the 3D case from the results in the 2D case.
As for vorticity, it proves to be singular as well:

ω = − 1

r sin θ
Eψ ∼ r−mα−3θm−3. (24)

Thus, the key distinction between the constructed so-
lutions (12) in 2D and (23) in 3D is that the former ad-
mits a singular interface shape with non-singular surface
tension, velocity and pressure fields. This entails the dif-
ference in the flow patterns between the 2D and 3D cases,
cf. Figs. 3(a) and 3(b), respectively. From the mathe-
matical point of view, a singularity of the velocity field
at the apex of a cusp/cuspidal edge can be understood
in two ways: (a) abstractly, as the condition for the ex-
istence of a singularity in the fluid dynamics equations,
and (b) practically, as an approximation of reality in the
same way as, for example, the self-similar solution in the
chemical-reaction driven tip-streaming5,19 is singular at
the apex of the cone, but real physical effects may limit
the existence of (smoothen out) the actual singularity at
the sub-macroscopic level, cf. Fig. 2(b). Resolution of
interfacial singularities should be performed at the meso-
scopic level as was done, for example, in the context of
the vortex dipole flow27 by Pismen48 through nanoscale
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molecular interactions. In general, such an effort would
require the use of a microscale theory of interfaces51 to
be generalized onto the case of surface tension varying
due to interfacial chemistry (surfactants and/or chemi-
cal reactions) and due to curvature52,5354.

The key fact established here is that the existence of
cusp/cuspidal edge singularities accompanied by diverg-
ing curvature requires a variation of surface tension (and
thus Marangoni flow) along the interface both in 2D and
3D with either surface tension vanishing or diverging at
the singularity apex. In the former case (σ → 0), vanish-
ing surface tension occurs, e.g. due to very high concen-
tration of surfactants, which is called ultra-low surface
tension and achievable in practice55. In the latter case
(σ → ∞), this implies that the interface either becomes
clean (free of surfactant) or rigid as surface energy in-
creases significantly compared to that of the liquid and
in practice means relatively large values of σ. One must
note that there are several physical mechanisms due to
which surface tension varies substantially along the in-
terface in nature and applications – this can be due to
the presence of surface active substances (soap molecules,
i.e. so-called surfactants)56, temperature gradients along
the interface57, or a non-uniform electric field58 – and be-
lieved to assume even negative values59,60. In the case of
chemically-driven surface tension variations, they range
from 0.1 mN/m55 to 600 mN/m for liquid gallium; in the
case of water interface, surface tension may vary from
72 mN/m for clean interface down to below 0.1 mN/m
when surfactant is produced by a chemical reaction. Such
variations of several orders of magnitude warrant the ex-
istence of macroscopic singularities at interfaces both in
the case when the mathematical analysis presented in
this paper requires either vanishing or diverging surface
tension at the point of singularity. The divergence of sur-
face tension is understood in the same asymptotic sense
as the singularity itself, i.e. surface tension having much
higher value at the singularity compared to that away
from the singularity (a similar argument applies to the
case of surface tension vanishing at the singular point).
Depending on the actual range of surface tension values,
the singularity may propagate down to the length scales
at which the continuum assumption built into the NSEs
is no longer valid.

While the above theoretical arguments suggest exis-
tence of both types of generic geometric singularities, i.e.
cusps and cuspidal edges, the observability of these sin-
gularities depends on a few factors. Gravity, for exam-
ple, limits existence of these singularities to small scales
when the gravity effects can be neglected5. Also, the
realistic limited range of surface tension values and dy-
namic stability of singularities to time-dependent pertur-
bations may affect their observability as well, which, in
fact, is suggested by the observations in Fig. 2 – while
the singularities appear to be at the macroscopic scale,
they are smoothened out at the microscopic level, e.g.
by tip-streaming which is an unsteady phenomena. To
the author’s knowledge, only one study was done on time-

Γ >  Γ 0

Γ
0

Γ
0

Γ <  Γ 0

H O
2

(iii) (i)

(ii)

oil

FIG. 4. A motor driven by Marangoni effects at the water-oil
interface and the role of singularities: when interfacial sur-
factant concentration Γ reaches a critical value Γc, its mag-
nitude is suddenly reduced by ∆Γ, which implies that most
of the surfactant is removed in the process of tip-streaming.
Once triggered, the following sequence of events takes place:
(i) sweeping surfactant towards the tip of a new pendant
drop, which facilitates the tearing up of the interface; (ii)
tip-streaming, which removes surfactant from the drop and
thus increases interfacial tension, so that the surfactant con-
centration gradient between the top and the tip of the drop
drives Marangoni flow; (iii) drop relaxation back to a round
shape due to the increased interfacial tension at its tip.

dependent stability of singular solutions, namely by Con-
stantin and Kadanoff7. However, while these authors7 es-
tablished formation of singularities in finite time, using a
model problem in a Hele-Shaw cell based on Darcy’s law,
there was no surface tension variation in their problem
and thus, given the results of the present study, formation
of such singularities in the framework of the original (not
simplified) fluid dynamics description (1) is not possible.
Observability of the determined cusp (23) and cuspidal
edge (12) solutions can be conjectured based on the ex-
istence of the cone solutions shown in Fig. 2(b) – the
cusp should be generic too as any topological perturba-
tion of a cone preserving the interfacial singularity either
leaves it a cone or deforms it to a cusp61. And, lastly,
the exact power-law form of the equation of state σ(x) is
not crucial for the existence of a self-similar solution as
long as (a) the problem defined by (1,2,3) is well-posed
in Hadamard’s sense62 and thus not very sensitive to a
variation of the coefficients (e.g. in the equation of state)
in the governing equations and boundary conditions, and
(b) σ(x) is close to the power-law form for some range of
x’s in the sense of intermediate asymptotics63.

In conclusion, one may ask the question: “Why is it
important to study interfacial singularities?” Besides the
fundamental reasons which motivated this study, from a
practical point of view the interfacial instabilities often
lead to singularities at a macroscopic level19,38, which
are crucial for self-sustained motions such as, for exam-
ple, singularity formation is instrumental in the chemical-
reaction driven tip-streaming shown in Fig. 4. If one
can identify other geometries relevant for the useful con-
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version of chemical energy into mechanical energy, they
can be exploited to perform a number of functions such
as pumping, propulsion, and mixing currently accom-
plished with complex machinery and active control. The
non-trivial feature of the direct chemical-to-mechanical
energy conversion is its isothermality as opposed to all
heat engines, the efficiency of which is limited by the
Carnot cycle, and is analogous to how all motors in liv-
ing organisms, known for their efficiency, operate. On
the experimental side, the fact that Marangoni effects
can transfer chemical into mechanical energy directly has
been known for a long time, e.g. in the context of cam-
phor scrapings64,65. Indeed, as known from experimental
observations, among the regimes of interfacial mechani-
cal motion are violent and erratic pulsations66–69, all of
which indicate intermittent formation of singularities.

Since formation of singularities is relevant to
Marangoni-driven motors, cf. Fig. 4, understanding of
the emergence of such singularities in unsteady solutions
as well as their thermodynamics will be a crucial future
step. The latter is important since the fluid kinetic en-
ergy Ekin dissipation rate due to viscosity is infinite in
2D for β0 = 1 and in 3D in general:

Ėkin ∼
{
x2β0+α−3 in 2D;
r−4−3α in 3D,

(25)

due to substantial stresses applied to infinitesimally small
fluid elements. This means that thermodynamics should
come into play to regularize the infinite dissipation rate70

at the microscopic level. And, in the general context, es-
tablishing a connection between singularities of solutions
of fluid dynamics equations and that of real fluid inter-
faces might be relevant in the ongoing research on the
existence of solution in 3D71, when realistic boundary
conditions are taken into account.
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