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Recently, there has been much progress in creating microswimmers or microrobots capable of
controlled propulsion in fluidic environments. These microswimmers have numerous possible ap-
plications in biomedicine, microfabrication, and sensing. One type of effective microrobot consists
of rigid magnetic helical microswimmers that are propelled when rotated at a range of frequencies
by an external rotating magnetic field. Here, we focus on investigating what magnetic dipoles and
helical geometries optimally lead to linear velocity-frequency response, which may be desirable for
the precise control and positioning of microswimmers. We identify a class of optimal magnetic field
moments. We connect our results to the wobbling behavior previously observed and studied in he-
lical microswimmers. In contrast to previous studies, we find that when the full helical geometry is
taken into account, wobbling-free motion is not possible for magnetic fields rotating in a plane. Our
results compare well quantitatively to previously reported experiments, validating the theoretical
analysis method. Finally, in the context of our optimal moments, we identify helical geometries for
minimization of wobbling and maximization of swimming velocities.

I. INTRODUCTION

Micro- and nano-robots capable of controlled propul-
sion have been pursued for a variety of microfabrication
and biomedical applications. Biomedical applications in-
clude drug delivery[1, 2], tissue manipulation[3–5], and
in vivo diagnostics and sensing[6–9]. A number of types
of microrobots employing different propulsion techniques
have been developed, including chemically-powered mi-
crorobots dependent on external fuels to create phoretic
flows[10–18], externally controlled biotic systems[19], di-
electrophoretically manipulated robots[20], and magnet-
ically actuated robots, including those that require a
nearby surface[21–24], and those that can swim in bulk
fluids[25–35]. In this paper, we focus on magnetically ac-
tuated microswimmers in bulk fluids which can be pro-
pelled when rotated by an external magnetic field[28–35].
These magnetic swimmers are one of the most promis-

ing types of microrobotic systems under current investi-
gation. Compared to other swimmers, magnetic swim-
mers have advantages for in vivo use[36], since they do
not require a potentially toxic chemical fuel, and mag-
netic fields permeate through tissue with little attenu-
ation. Furthermore, swimmers rotated via a magnetic
torque produced by field-dipole interactions can be scaled
down to micro- and nanoscales unlike those which rely on
magnetic forces produced by field gradient-dipole interac-
tions. Although non-helical magnetically rotated swim-
mers have been reported[35], nearly all such swimmers
so far have been helical in geometry[28–30, 32, 34], mim-
icking the rigid helical flagella of bacteria. Thus, in this
paper we focus on the swimming properties of helical ge-
ometries.
These swimmers are actuated by a magnetic field of

magnitude H , which has a time-dependent direction that
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rotates with angular velocity ω. In typical experiments,
the magnitude of the field is kept constant, while the
rotation direction ω̂ and frequency ω = |ω| are varied.
The direction ω̂ controls the swimming direction (along
ω̂), while the frequency ω is most often used to control
the speed. Typically, the magnetic field is rotated in a
plane perpendicular to its rotation axis, and we will focus
on that case here.

One desirable feature for control is a linear relation-
ship between velocity and frequency[37]. This allows sim-
ple proportional control of the swimming velocity as fre-
quency is varied, and is especially useful for precise con-
trol if the linear relationship extends all the way to zero
velocity. One way to achieve a linear velocity-frequency
relationship is to maintain a constant axis of rotation as
frequency changes[35, 37], but for generic geometries, the
axis of rotation varies as frequency is changed while mag-
netic field strength stays constant[35]. Previous studies
have observed these changes in rotation axis for mag-
netically rotated helices as frequency is varied[37–39].
The change in rotation axis leads to nonlinear velocity-
frequency response and hinders ease of control. The ro-
tation axis can be characterized by a “precession angle”
(β), which is the angle the axis of rotation makes with the
longitudinal helical axis (Fig. 1). For β = 0◦, the swim-
mer rotates as designed around the helical axis, while for
β = 90◦ the swimmer rotates about an axis perpendicu-
lar to the helical axis, which has been called “tumbling.”
Rotation about intermediate axes with 0◦ < β < 90◦ has
been called “wobbling.” For example, Ghosh et al.[39]
observed that helices magnetized with moments which
were not perpendicular to the helical axis tumble at the
lowest frequencies, and show little forward propulsion.
As frequency is increased past a critical frequency, the
tumbling transitions to wobbling and the precession an-
gle decreases while the velocity increases nonlinearly as
frequency is further increased. The precession angle ap-
proaches zero and the swimming velocity peaks at the so-
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FIG. 1. Rotation of the helix by angular velocity Ω can be
characterized by the precession angle β.

called step-out frequency. Beyond the step-out frequency,
steady rotation is no longer possible since the magnetic
torque is not large enough to rotate the swimmer as fast
as the field, and the swimming velocity decreases.

The tumbling and wobbling of magnetically rotated
helices has been theoretically examined in a number of
previous studies. Man and Lauga[40] showed that during
wobbling the precession angle scales as inverse frequency
using numerics and asymptotics of nearly straight helices.
Ghosh et al.[39, 41] and Morozov and Leshansky[42] in-
vestigated the transition of stability from tumbling to
wobbling behavior as frequency increases by treating the
rotational dynamics as that of ellipsoids numerically and
analytically, respectively.

Two studies have explored what types of magnetiza-
tion are optimal for helical microswimmers. Recently, Pe-
ters et al.[37] proposed that wobbling can be eliminated
by fabricating superparamagnetic helical microswimmers
in a way such that the paramagnetic easy-axis is per-
pendicular to the helical axis. They showed that mi-
croswimmers with such magnetization had much reduced
wobbling compared to microswimmers with random easy-
axis, as well as improved swimming characteristics. In
addition, in a theoretical examination of the rotational
and swimming behavior of helices with permanent mag-
netic dipole, Morozov and Leshansky[42] concluded that
for such microswimmers, it is optimal to have the mag-
netic dipole perpendicular to the helical axis to minimize
wobbling.

In previous publications[35, 43], we have described a
modeling method for rigid magnetically rotated swim-
mers that is applicable for arbitrary geometries. The
method identifies stable steady rotating orbits of the
swimmer for given experimental conditions in terms of
the rotation axis of the swimmer and the orientation of
the swimmer relative to the magnetic field. Here, we ap-
ply our techniques to investigate how the magnetization
direction and geometry of helical swimmers can be de-
signed in order to control the rotation axis, reduce wob-
bling, and produce linear velocity-frequency response,
which may enable simplified control, especially at the
low speeds required for precise position control.

In the previous work on the rotational dynamics of
helical microswimmers mentioned above[39, 41, 42], the
rotational dynamics was approximated by the dynam-

ics of an ellipsoid or rod, ignoring chirality and non-
axisymmetry of the helix. Here, we treat the rotational
dynamics of a truly helical geometry. We investigate the-
oretically whether the direction of magnetization can be
used to guarantee wobble-free rotation about the helical
axis, and find that it cannot. We show that although
no moment can completely eliminate wobbling, there are
ideal directions of magnetization that are optimal in the
sense that they can guarantee linear velocity-frequency
relationships. For helices with large aspect ratios (heli-
cal length/helical radius), the ideal magnetization direc-
tions are close to those suggested previously (i.e., per-
pendicular to the helical axis) by studies using the ellip-
soidal approximation, and we provide a comparison to
illustrate how the difference increases as the aspect ratio
decreases. We also compare swimming speeds predicted
by our theory to those reported for helical swimmers in
the literature and find good agreement. Finally, in the
context of these ideal directions of magnetization, we in-
vestigate what helical geometries minimize wobbling and
maximize velocities. Previous work investigating optimal
shapes for helical swimmers[44] assumed that the rota-
tion is along the helical axis; here we incorporate the full
wobbling dynamics of helices rotated by magnetic fields.

In this work we use both resistive force theory[45] as
well as the method of regularized stokeslets[46] to calcu-
late mobility matrices for helical geometries. The resis-
tive force theory is useful for obtaining analytical results
which allow exploration of varying helical geometries,
while the method of regularized stokeslets allows quanti-
tative comparison with experiments. Resistive force the-
ory is commonly used to investigate both artificial mi-
croswimmers as well as biological microswimmers, and
by comparing the results of resistive force theory and the
method of regularized stokeslets, we also show how thin
the helix filament should be for the resistive force theory
approximation to hold.

Besides its application to the helical swimmers, the
work reported here also provides quantitative validation
of the modeling technique used. In [35] and [43] we re-
ported the technique as a method applicable to generic
geometries, providing qualitative comparison to observa-
tions in [35], but did not quantitatively compare it to
experimental results. The agreement between our model
and experimental swimming speeds for helices lends sup-
port to the use of our model for a wide variety of ge-
ometries, including achiral geometries[35]. The poten-
tial insights allowed by our technique are demonstrated
by investigations of stability in varying magnetic field
conditions[43] as well as the rotational dynamics of he-
lices reported here. Our model may be useful for design-
ing effective microswimmers from a much larger geom-
etry space than helical geometries alone. Furthermore,
the conclusion that a moment perpendicular to the prin-
cipal axis of the rotational mobility matrix leads to lin-
ear velocity-frequency response applies to nonhelical ge-
ometries, which may be useful for general design of mi-
croswimmers.
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II. MODEL AND METHOD

We follow the general framework for modeling the ro-
tational propulsion of rigid bodies described in Ref. [43].
Here we summarize the essential features for the present
study; for more details please see Ref. [43]. In the zero
Reynolds number limit appropriate for microswimmers,
the instantaneous velocity (v) and angular velocity (Ω)
applied to a rigid body are linearly related to the external
force (F) and torque (N) through a 6×6 mobility matrix,

(

v

Ω

)

=

(

K C

CT M

)(

F

N

)

. (1)

In the above, K, M, and C are 3×3 submatrices that
relate translations to forces, rotations to torques, and
translations to torques, respectively. According to this
definition K and M are positive definite.
In typical experiments, a uniform field interacts with

a magnetic dipole to produce zero external force and a
net torque N = (m ×H), so the instantaneous angular
velocity of the swimmer is

Ω = M(m×H). (2)

A steady solution occurs when the angular velocity of
the swimmer is equal to the angular velocity of the ro-
tating magnetic field, so that in a body-fixed frame co-
rotating with the swimmer, the magnetic field and hence
angular velocity are constant[47]. Thus a steady solution
obeys

Ω = ω = M(m×H), (3)

and finding steady solutions amounts to identifying pairs
of H and ω in the body-fixed frame that satisfy Eq. 3.
In many experiments, the magnetic field is rotated in a

plane perpendicular to its rotation axis. In this work, we
restrict ourselves to this condition unless explicitly stated
otherwise. For such a field, the steady solutions can be
found by finding the magnetic field directions which sat-
isfy

0 = ĤTM(m× Ĥ). (4)

For example, the direction of the field can be specified
using spherical coordinates defined in Fig. 2b,

Ĥ = (cos θ, sin θ cosφ, sin θ sinφ) , (5)

in which case Eq. 4 provides a constraint on the angles
(θ, φ).
Once the magnetic field direction for a steady solution

is identified, the instantaneous swimming velocity can be
calculated from Eq. 1 as v = CN = C(m ×H), which
is also constant in the body-fixed frame. The average
swimming velocity over a rotation period is the compo-
nent of the instantaneous swimming velocity along the
rotation direction,

Vs = v · Ω̂. (6)

FIG. 2. a) Helix with two turns, pitch P , and radius R. The
helical axis is along x̂, and the helix is symmetric about a
180◦ rotation about ŷ. The principal axes of the rotational
mobility matrix M are ê1, ê2, and ê3. b)Angles φ and θ

used for expressing the magnetic field direction Ĥ in spherical
coordinates. As specified in text, the angles may be used
relative to the symmetry (x, y, z) axes or the principal (1,2,3)
axes.

Note that while the instantaneous velocity, which has
been used by others as a measure of swimming speed,
depends on the origin chosen for the body-fixed frame,
the swimming velocity of Eq. 6 is independent of the
choice of origin.
One way a linear relationship between swimming ve-

locity and frequency can be achieved if the rotation axis
remains constant as the frequency is altered. In that case,
Eq. 2 implies that the torque m × H also has constant
direction and increases in magnitude linearly with the
frequency. Therefore v also has constant direction and
increases linearly with frequency, and so Eq. 6 implies
Vs increases linearly with frequency. Thus, maintaining
a constant rotation axis for different frequencies can be
viewed as a design goal for helical swimmers.
One way to achieve a constant rotation axis is

to increase the magnetic field strength proportionally
to the frequency as the frequency of the rotation is
increased[35]. In this case, it should be clear that the
magnetic field direction and rotation direction satisfy-
ing Eq. 2 remains fixed while both the field magni-
tude and frequency increase. However impractically large
magnetic fields may be required at higher frequencies so
we will search for other ways to achieve linear velocity-
frequency response.
Steady solutions can be evaluated for stability by eval-

uating the eigenvalues of the matrix Q[43],

Qin = (MijǫjklmkǫlmnHm − ǫijnMjlǫlmommHo) . (7)

If the real parts of the eigenvalues are all negative, then
the solution is stable, otherwise, it is unstable.

III. MOBILITY MATRIX FOR A HELIX

Consider a helix with centerline specified by

r(ξ) = ξx̂+R cos(2πχξ/P )ŷ +R sin(2πχξ/P )ẑ, (8)
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where P is the helical pitch, R is the helical radius, ξ
varies from−nP/2 to nP/2, and n is the number of turns.
(See Fig. 2a.) The parameter χ = ±1 controls the chi-
rality of the helix. Note that the arclength s = ξ/ cosα,
where α = arctan(2πR/P ) is the pitch angle.
In these coordinates, the helix is unchanged by the

symmetry operation of a 180◦ rotation about the ŷ axis.
Applying the symmetry arguments described in Chapter
5 of Happel of Brenner[48], the mobility matrix takes the
form

K =





Kxx 0 Kxz

0 Kyy 0
Kxz 0 Kzz



 (9)

M =





Mxx 0 Mxz

0 Myy 0
Mxz 0 Mzz



 (10)

C =





Cxx 0 Cxz

0 Cyy 0
Czx 0 Czz



 . (11)

In this study, we calculate the mobility matrix for a
helix using resistive force theory[45], which is often ap-
plied to slender objects such as helical filaments. Al-
though resistive force theory is not always quantitatively
accurate[49], it is a convenient way to capture the quali-
tative dependence of the hydrodynamic mobility matrix
on the helical geometry using analytic expressions. Con-
sider a helix moving due to external forces and torques
in a quiescent fluid. In resistive force theory, the force
per unit length on a segment of the helix is

f(ξ) = [ζ‖n̂n̂+ ζ⊥(1− n̂n̂)]vrel(ξ), (12)

where vrel(ξ) is the velocity of the segment relative to
the quiescent background, n̂(ξ) is the tangent to the he-
lix segment, and ζ‖ and ζ⊥ are the resistive force theory
coefficients. The ratio ζ⊥/ζ‖ depends only logarithmi-
cally on the thickness of the helix relative to its pitch,
so in this work, we keep the ratio constant (ζ⊥/ζ‖ = 2)
for our qualitative investigations of the effects of varying
helical geometry.
The total force F and torque N on the helix are

F =

∫ nP/2

−nP/2

dξ

cosα
f(ξ) (13)

N =

∫ nP/2

−nP/2

dξ

cosα
r(ξ)× f(ξ) (14)

If the helix undergoes rigid body motions with transla-
tional velocity v and angular velocity Ω, then vrel(ξ) =
v+Ω×r(ξ). Calculating the total force and torque when
v and Ω take values along cartesian directions yields the
elements of the resistance matrix, which is the inverse of
the mobility matrix. In the appendix we list the elements
of the resistance matrix. The form of the matrix agrees
with that predicted by the symmetry analysis.

FIG. 3. For a rotation axis along the helical axis (x̂), the
torque N is not in the x-direction, and the moment m and
field H lie in a plane perpendicular to the torque. As the rota-
tion frequency changes, the angle H shifts to make a different
angle γ with m.

IV. MAGNETIZATION PERPENDICULAR TO

THE HELICAL AXIS DOES NOT LEAD TO

ROTATION ABOUT THE HELICAL AXIS.

Here we examine whether a permanent magnetic dipole
oriented perpendicularly to the helical axis (i.e. in the
y-z plane), similar to that proposed by Peters et al.[37]
and Morozov and Leshansky[42], leads to rotation about
the helical axis (Ω = Ωx̂) and hence no wobbling.
To do so, consider what moments and magnetic fields

are needed to yield a rotation axis in the x-direction. The
inverse of M has the same form as M; call its nonzero
elements

M−1 =





Rxx 0 Rzx

0 Ryy 0
Rzx 0 Rzz



 . (15)

In order to achieve a rotation Ωx̂, Eq. 2 requires that
the torque m×H = Ω(Rxxx̂+Rzxẑ). Note that the he-
lical geometry leads to off-diagonal elements Rzx so that
the torque has a z as well as x component. To satisfy this
torque, both m and H must lie in a plane perpendicular
to Ω(Rxxx̂ + Rzxẑ) (see Fig. 3). Consider what hap-
pens as the frequency of rotation changes. For a given
moment m in that plane, at small frequencies the field
H will point in a direction close to m. As frequency
increases, H will rotate in the plane to make a larger
angle with m and increase the torque. However, since
the plane is perpendicular to Ω(Rxxx̂ + Rzxẑ) and not
Ω = Ωx̂, the angle between H and Ω must change as the
frequency changes. In particular, for almost all frequen-
cies H will not be perpendicular to Ω. Thus, to achieve
a rotation about the helical axis requires a careful tuning
of the angle between the field and its rotation axis as the
frequency changes, which may be difficult to implement
experimentally.
The above argument applies to any moment in the

plane perpendicular to the torque. Of those, only one is



5

also perpendicular to the helical axis, m = mŷ. Thus for
a helical geometry, in contrast to what is suggested by the
ellipsoidal approximation, having a moment perpendicu-
lar to the helical axis does not lead to rotation about the
helical axis for fields perpendicular to rotation. Is there
another strategy that could be employed for easier con-
trol? Below, we show that although rotation about the
helical axis is not easily achievable, one can still choose
a moment to obtain linear velocity-frequency response.

V. ROTATION ABOUT THE PRINCIPAL AXIS

OF M.

Although the rotational mobility submatrix M is not
diagonal when referred to the symmetry basis x̂, ŷ, ẑ, it
is diagonal when referred to the principal axes ê1, ê2, ê3.
Call the respective eigenvalues M1, M2, and M3, which
are all positive. For typical helices with large aspect ra-
tio, Mxz is small compared to Mxx and Mzz and one of
the eigenvectors of M will be close to x̂. Let ê1 be the
principal axis closest to x̂. As the aspect ratio decreases,
ê1 increasingly deviates from x̂. Below, we show that if
the moment is chosen to lie perpendicular to ê1, then the
rotation axis will be along ê1, independent of frequency,
and there will be a linear velocity-frequency response.
First, consider how one could obtain rotation along the

1-direction (Ω = Ωê1). Repeating the argument from the
previous section but in the principal axis frame, since
the mobility matrix is now diagonal the torque is in the
1-direction, and m and H lie in the 2-3 plane. In this
case, the 2-3 plane is always perpendicular to the rotation
axis, so no tuning of the angle between the field and the

rotation axis is necessary as frequency is changed.

To be more specific, consider a magnetic moment in the
2-3 plane, m = m2ê2 +m3ê3. Specify the field direction
using spherical coordinates as in Eq. 5, referred to the
principal axes (i.e., θ is the angle between H and the 1-
axis). Then, substituting into Eq. 4, the field directions
giving steady solutions satisfy the constraint

0 = sin θ cos θ [(M1−M2)m3 cosφ− (M1−M3)m2 sinφ] .
(16)

There are two families of solutions to the above constraint
equation.

For the first family of solutions, θ = π/2 and H is in
the 2-3 plane (H = H2ê2 +H3ê3), leading to

Ω = M1(m2H3 −m3H2)ê1. (17)

This is the solution discussed two paragraphs above, and
is similar to the “propulsive” or “wobbling” solutions
found under the ellipsoidal approximation employed by
Ghosh et al.[39, 41] and Morozov and Leshansky[42, 50].
Since the rotation axis is always in the 1-direction, it will
have a linear velocity-frequency response. This solution
exists as long as ω < M1mH , the step-out frequency.
The second family of solutions is specified by

tanφ =
(M1 −M2)m3

(M1 −M3)m2

(18)

for any value of θ. (Note that this includes solutions to
Eq. 16 with θ = 0.) Referred to the principal axes, the
corresponding field directions are given by

Ĥ =

[

cos θ,± sin θ
(M1 −M3)m2

√

(M1 −M2)2m2

3
+ (M1 −M3)2m2

2

,± sin θ
(M1 −M2)m3

√

(M1 −M2)2m2

3
+ (M1 −M3)2m2

2

]

(19)

Ω = H

[

∓ M1m2m3(M2 −M3) sin θ
√

(M1 −M2)2m2
3
− (M1 −M3)2m2

2

,M2m3 cos θ,−m2M3 cos θ

]

. (20)

Vs can be found by direct substitution of Ĥ and Ω into
Eq. 6, but the expression is not illuminating and too
unwieldy to write explicitly here. As we will see using
a specific example below, this solution corresponds to
“tumbling” rotation.

Note that although any moment in the 2-3 plane has a
solution with constant rotation axis along the first prin-
cipal direction, it may be hard to experimentally realize
such moments, since aligning swimmers with the prin-
cipal, as opposed to symmetry, axes may be difficult.
However, ê2 = ŷ is perpendicular to both the symmetry
and principal axis, and may be feasible to achieve during
fabrication. For example, if helices made by glancing an-
gle deposition[30] are magnetized while still attached to

substrate, identification of the 180◦ symmetry axis cor-
responds to picking a particular direction parallel to the
substrate. Therefore, in some sense magnetization along
ê2 = ŷ is the most practical option and we investigate it
in more detail below.

A. Moment along 2-direction

For the case of a moment m = m2ê2 along the 2-
(or equivalently y-) direction the above two families of
solutions simplify to

Ω = M1m2H3ê1 = HM1m2 sinφê1 (21)



6

H = H(cosφê2 + sinφê3) (22)

Vs = |m2H3|C11 = ωC11/M1 (23)

for the first family and

Ω = −M3m2H1ê3 = −HM3m2 cos θê3 (24)

H = H(cos θê1 ± sin θê2) (25)

Vs = |m2H1|C33 = ωC33/M3 (26)

for the second family. It should be clear now that the
since the second family rotates about the third principal
axis, it is rotating about an axis which is nearly perpen-
dicular to the helical axis and represents the “tumbling”
solution. The first family has two solutions with oppo-
site signs of Ω for 0 < ω < |HM1m2| (corresponding to
φ and φ + π), while the second family has two solutions
for 0 < ω < |HM3m2| (corresponding to the ±).
Both families are steady solutions, but to determine

which solutions are realized experimentally we must eval-
uate the stability. For the first family, Q in Eq. 7 is

Q = H





−m2M1 cosφ 0 0
0 0 m2M1 sinφ
0 −m2(M1 −M3) sinφ −m2M3 cosφ



 . (27)

The eigenvalues are λ1 = −M1m2 cosφ and λ± = (A±
√
A2 + 4BC)/2, with A = −m2M3 cosφ, B = M1m2 sinφ, and

C = −m2(M1 −M3) sinφ. For all helices we have examined, M1 > M3. Thus BC = −m2

2
M1(M1 −M3) sin

2 φ < 0
and the real parts of λ± are both negative if and only if A = −m2M3 cosφ < 0. Therefore stability occurs for
−π/2 < φ < π/2 if m2 > 0 but for π/2 < φ < 3π/2 if m2 < 0, and in general a stable solution exists for the whole
range of ω where there are steady solutions.
For the second family, Q is

Q = H





∓m2M1 sin θ m2(M1 −M3) cos θ 0
m2M3 cos θ 0 0

0 0 ∓m2M3 sin θ



 (28)

The eigenvalues are λ3 = ∓m2M3 sin θ, and λ± =
(A ±

√
A2 + 4BC)/2, where now A = ∓m2M1 sin θ,

B = m2M3 cos θ, and C = m2(M1 − M3) cos θ. In this
case, BC = m2

2
(M1 −M3) cos

2 θ > 0, so that one of the
eigenvalues λ± is always positive and the other negative.
Thus the second family of solutions is always unstable.

In Fig. 4 we plot the swimming velocity versus the
frequency for the first and second families of solutions,
for a helix with n = 2, P = 4R and chirality χ = 1.
In the plots we use the dimensionless frequency speci-
fied by ω̃ = ωζ‖R

3/(mH), and the dimensionless veloc-

ity Ṽs = Vsζ‖R
2/(mH). Note that for a given swimmer,

the nondimensionalization of Vs that we use is not af-
fected by changes in frequency [unlike another possibil-
ity, Vs/(ωR)]; thus, our plots directly reflect the dimen-
sional velocity-frequency plots commonly presented for
experimental swimmers. For this chirality C11 > 0 and
C33 < 0, so the stable first family is the one with positive
slope that exists over a larger range.

For this geometry of helix (n = 2, P = 4R), we can
also characterize the rotation via the precession angle β
(Fig. 1), which is the angle the axis of rotation makes
with the helical axis (x̂). For the first family, this is just
the angle between ê1 and x̂, giving β = 4.9◦, while for
the second family, it is the angle between ê3 and x̂, giving
β = 85◦.

To conclude this section, we have shown that a mo-

ment perpendicular to the principal axis rather than he-
lical axis leads to a linear velocity-frequency response.
Although the resulting rotation axis (along ê1) is not
along the helical axis, for many helices it is relatively
close. The dependence of precession angle on helical ge-
ometry will be explored in more detail in Section VIII.
Finally, note that although we only analytically proved
that the propulsion solution is stable and tumbling solu-
tion is unstable for moment along the 2-direction, for all
helical geometries we have tested, we observed numeri-
cally that only the propulsive solution is stable so long as
the moment is perpendicular to the first principal axis.

VI. COMPARISON TO EXPERIMENTAL

SWIMMING SPEEDS

To validate our results, we compare to experimental
results for microswimmers. The examples of microscale
swimming magnetic helices in the literature do not ex-
actly correspond with the scenario which we discuss here.
Ghosh and Fischer[30] and Ghosh et al.[39] examine per-
manently magnetized helical swimmers with attached
heads (which therefore do not have the symmetry of a
helix). Other swimmers are soft ferromagnetic helices
with heads (e.g., [29]). While Peters et al.[37] examine
a helical ribbon with no head, their swimmer is param-
agnetic. Nonetheless, we can make rough comparisons
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FIG. 4. The swimming velocity vs frequency for the stable so-
lutions of a rotating helix with 2 turns, P = 4R, χ = 1, and a
moment along the y-direction. The lower branch corresponds
to rotation around an axis with precession angle β = 85◦,
while the upper branch corresponds to rotation around an
axis with precession angle β = 4.9◦

between these and our calculations to ensure that our
models are reasonable. Because typically the magnetic
moment of these swimmers is not measured the most
appropriate measure for comparison is the slope of the
velocity-frequency curve when nearly linear behavior is
observed. If the frequency is measured in Hertz (revolu-
tions/second), the slope corresponds to the distance trav-
eled per revolution, which is a property dependent only
on the geometry of the helix in our model. Therefore,
in the following we calculate the slope for the propulsion
solution with rotation about the first principal axis of M,
and compare to experimental results.

Ghosh et al.[39] report artificial swimmers that consist
of a spherical head attached to a helix, which has a fil-
ament diameter which tapers at the end away from the
head. In their paper, they find that swimming speeds
are best modeled using an “effective pitch,” the amount
of translation after one revolution about the helical axis,
of 0.08 pitches/revolution. The effective pitch is inde-
pendent of the moment direction and is a property of
geometry of the helix. We model the tail as a helix with
constant diameter (see Appendix for details). In Sections
V, VII, and VIII, we use resistive force theory to calcu-
late mobility matrices. Although resistive force theory is
useful for obtaining analytical expressions that reflect the
symmetry of helices and can reveal qualitative trends, it
is not expected to be quantitatively accurate for experi-
mental swimmers with thick filaments. We find that re-
sistive force theory is only accurate for filament radii less

than 0.035P , which are much thinner than experimental
microswimmers (see Appendix for details). Thus, we
calculate the mobility matrix using the method of regu-
larized stokeslets[46] (see Appendix for details). For our
model helix, we calculate a velocity-frequency slope of
0.09 pitches, and a precession angle of < 1◦, which means
that the rotation axis is nearly the same as the helical
axis. Our calculation does not include the spherical head;
its effect can be approximated by calculating the increase
in drag in the direction of the helical axis when a head is
included in the mobility matrix calculation, and decreas-
ing the effective pitch by the same proportion. With
this correction, the estimated velocity-frequency slope is
0.085 pitches/revolution, comparable to the experimental
effective pitch of 0.08 pitches/revolution.
Peters et al.[37] report superparamagnetic ribbons

wound into a helix with no head, which they can ro-
tate nearly without wobble. Again, for such a thick and
noncircular cross section resistive force theory is not ex-
pected to be accurate so we calculate the mobility matrix
using the method of regularized Stokeslets (see Appendix
for geometry). The resulting velocity-frequency slope is
2.64 microns/revolution, which is in good agreement with
the slopes from Figs. 8 and 9 of Peters et al., which have
slopes of 2.6− 2.8µm/revolution.
In contrast, Ghosh and Fischer[30] report a mi-

croswimmer with similar (but smaller) geometry to that
of Ghosh et al.[39], and find that the velocity corresponds
to 0.64 pitches per revolution. However, our model for
this helix (see Appendix for details) leads to a velocity-
frequency slope about an order of magnitude smaller. We
cannot explain the discrepancy; but we note that in addi-
tion to being inconsistent with our calculation, the quite
large value of 0.64 pitches per revolution is also inconsis-
tent with the effective pitch reported by Ghosh et al.[39]
as well as biological helical propulsion, which always in-
volves a significant amount of slip of the helix with re-
spect to the fluid.
Based on our numerics and the imprecision of mi-

croswimmer geometries, we expect our results to be ac-
curate within 15% (see Appendix for details). Thus, the
results for our model are in good overall agreement with
the results from two different research groups (Ghosh et

al.[39] and Peters et al.[37]).

VII. COMPARISON TO MOMENT

PERPENDICULAR TO HELICAL AXIS

In this section, we calculate the rotational and swim-
ming dynamics for a moment along ẑ, which is perpen-
dicular to the helical axis, but not perpendicular to the
principal axis. We compare it to the case described in
section V to show how moments perpendicular to the
helical axis can lead to undesirable swimming properties.
Returning to Eq. 4, but referred to the symmetry axes

x̂, ŷ, ẑ, we substitute magnetic field directions specified
in spherical coordinates by Eq. 5, where θ is the angle
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from the x-direction. This yields

0 = −m3 cosφ sin θ [(Mx −My) cos θ +Mxz sinφ sin θ] ,
(29)

which admits solutions for steady orbits in two families.
The first family is specified by

tan θ = −Mx −My

Mxz sinφ
(30)

or

H =
[Mxz sinφx̂+ (My−Mx) cosφŷ + (My−Mx) sinφẑ]

√

M2
xz sin

2 φ+ (Mx −My)2
. (31)

From this equation, Ω and Vs can be obtained by substi-
tution into Eqs. 2 and 6, but the expressions are not
illuminating so we do not write them here. This so-
lution corresponds to the previously observed wobbling
solutions[39].
The second family has φ = π/2 andH in the x-z plane,

H = H(cos θx̂+ sin θẑ) (32)

Ω = MymzHxŷ = HMymz cos θŷ (33)

Vs = Cyy|mzHx| = ωCyy/My, (34)

which represents a tumbling solution around the y-axis
with linear velocity-frequency response.

Performing a stability analysis on the two families of
solutions reveals that the tumbling solutions are stable at
the lowest frequencies up to a critical frequency and be-
come unstable at frequencies above the critical frequency
ωc. Below the critical frequency, the first family of solu-
tions is unstable, but above it the first family of solutions
is stable. This is similar to the behavior of ellipsoids
with magnetic moments which are not perpendicular to
the long axis in studies where the geometry of a helix is
approximated as an ellipsoid[41, 42].
We can obtain an expression for the critical frequency

by examining the stability matrix Q of Eq. 7 for the
second (tumbling) family, which is

Q = Hmz





−Mx sin θ 0 (Mx −My) cos θ
0 −My sin θ 0

My cos θ −Mxz sin θ 0 Mxz cos θ



 . (35)

The eigenvalues are λ1 = −My sin θ, which is less than
zero over the entire range of θ, and λ± = [(A + D) ±
√

(A+D)2 − 4(AD −BC)]/2. Here, A = −Mx sin θ,
B = (Mx − My) cos θ, C = My cos θ − Mxz sin θ, and
D = Mxz cos θ. In order for the tumbling solution to
be stable, both of the λ± must also be negative, which
requires that both (A + D) < 0 and (AD − BC) > 0.
Using Eq. 33, it can be shown that if Mx > My (which
holds for helices with aspect ratio larger than 1), then
both inequalities are satisfied for

ω2 < ω2

c =
(mzMyH)2

1 + (Mx −My)2/M2
xz

. (36)

In Fig. 5a, we plot the (nondimensional) velocity vs
frequency for the stable solution as a function of fre-
quency, for a helix with n = 2, P = 4R. The inset
shows the transition from the tumbling solution at low
frequencies to the wobbling solution above ωc. Note that
both the existence of the transition and the frequency
dependence of the wobbling solutions lead to nonlinear

dependence of the velocity on frequency, which are dis-
advantageous for precise swimmer control, especially at
low frequencies. At higher frequencies the velocity de-
pends on the frequency nearly linearly. The form of
the dependence is similar to that observed for helices by
Ghosh et al.[39], and modeled for ellipsoids with moment
non-perpendicular to the long axis by Ghosh et al.[41]
and Morozov and Leshansky[42]. However, those previ-
ous studies had found that in the ellipsoidal approxima-
tion, any moment perpendicular to the helical axis did
not have stable tumbling solutions. Here, we show that
by taking into account the helical geometry, even mo-
ments perpendicular to the helical axis lead to tumbling-
wobbling transitions and nonlinear velocity-frequency re-
sponse. In order to achieve the linear velocity-frequency
response, one must instead target rotation about the
principal axis using a moment perpendicular to ê1.

In Fig. 5b, we plot the precession angle β as a function
of frequency for the stable solution. Below the critical fre-
quency, the tumbling solution rotates around the y-axis,
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FIG. 5. The a) swimming velocity and b) precession angle vs frequency for the stable solutions of a rotating helix with 2 turns,
P = 4R, and a moment along the z-direction, which is perpendicular to the helical axis but not the first principal axis. The
inset to (a) zooms into the low frequency regime, illustrating the transition between tumbling with rotation about the y-axis
at the smallest frequencies, to wobbling rotation with varying precession angle at frequencies above the critical frequency ωc.
The inset to (b) shows a log-log plot of the precession angle vs frequency. The straight line has slope -1, demonstrating the
relation β ∼ ω−1.

so β = 90◦. Above the critical frequency, the wobbling
solution starts with β = 90◦ and decreases as frequency
increases. Man and Lauga have shown that β ∼ ω−1 for
asymptotically straight helices. In the inset of Fig. 5b,
we plot the precession angle as a function of frequency in
a log-log plot, to show that for a range of frequencies our
precession angle has the same ω−1 dependence (straight
line).
Fig. 5 shows that for a helix with n = 2 and P = 4R,

the critical frequency is relatively small compared the
the step-out frequency, so that the nonlinear response
regime is quite small. Is the nonlinear response regime
always small? To investigate this, in Fig. 6 we plot
the velocity-frequency response for helices with a num-
ber of different geometries. The general trend is that as
the aspect ratio (helix length/helix diameter) decreases,
the critical frequency increases and the nonlinear regime
grows in size. For a helix with n = 1 and P = 2R, ωc is
about a third of the stepout frequency, and the nonlin-
ear regime is a significant portion of the frequency range
below stepout. Thus results from the ellipsoidal approx-
imations, which predict that rotation about the helical
axis can be achieved for moments perpendicular to the
helical axis, fail strongly when the aspect raio of helices
is no longer large.

VIII. DEPENDENCE ON HELICAL

GEOMETRY

In this section, we continue to investigate the influence
of helical geometry on swimming properties. We return
to our proposed moment m = m2ŷ which is perpendic-
ular to the principal axis ê1 and leads to rotation about
ê1 and a linear velocity-frequency response. For this mo-

ment direction, we investigate what helical geometries
will lead to a) low precession angles, b) maximum veloc-
ity:frequency slopes, and c) greatest maximum velocity.
In Fig. 7 we plot the precession angle of the swim-

mer as a function of helical pitch for various numbers of
turns. Recall that this precession angle is simply the an-
gle between ê1 and the x-axis. A small precession angle
may be desirable if one wishes to precisely control the
location of the tip of the helix during swimming. Typi-
cally, the precession angle decreases for larger aspect ra-
tios. Specifically, in order to achieve a precession angle
β < 10◦, for n ≥ 2 the pitch must satisfy P > 2R, while
for n = 1, the pitch must satisfy P > 8. These results are
in accord with the arguments made by Morozov and Le-
shansky about the effect of helical geometry on rotational
dynamics modeled using ellipsoids[42]; here we quantify
how the helical geometry leads to a breakdown of the
ellipsoidal approximation.
In Fig. 8 we plot the slope of the velocity-frequency re-

sponse Ṽs/ω̃ of the swimmer as a function of helical pitch
for various numbers of turns. Recall that the dimension-
less frequency is ω̃ = ωζ‖R

3/(mH), and the dimension-

less velocity is Ṽs = Vsζ‖R
2/(mH); thus the dimension-

less slope is nondimensionalized by the helical radius R,
i.e. Ṽs/ω̃ = (Vs/ω)/R. Therefore, Fig. 8 is best inter-
preted as investigating the variation of the slope as the
helical pitch changes but the helical radius stays fixed.
For a fixed number of turns, the maximum slope occurs
for a pitch around 8-10 R. As the number of turns in-
creases, the slope increases, but saturates around n = 8.
In Fig. 9a we plot the maximum velocity Ṽ max

s of
the swimmer as a function of helical pitch for various
numbers of turns. Note that the maximum velocity is
distinct from the velocity:frequency slope, since it is the
product of the velocity:frequency slope and the step-out
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FIG. 6. The swimming velocity (a) and precession angle (b) vs frequency for the stable solutions of rotating helices with
moment along the z-direction. From left to right [for (a), as measured by location of sketched helices], and bottom to top
[for (b)], curves correspond to helices with: 2 turns, P = 4R [same case as in Fig. 5]; 2 turns, P = 2R; 1 turn, P = 5R;
1 turn, P = 3R; 1 turn, P = 2R. Curves are only plotted for frequencies below the step-out frequency. As the aspect ratio
(length/diameter) of the helix decreases, a greater portion of frequencies below stepout exhibit tumbling rotation.

FIG. 7. The precession angle of a helix with moment along
the y-direction, perpendicular to the first principal axis, as a
function of ratio of helical pitch and radius (P/R), for helices
with different numbers of turns: one turn (red, thick solid), 2
turns (orange, thick dashed), 4 turns (green, thin solid), and
8 turns (blue, thin dashed).

FIG. 8. The velocity:frequency ratio of a helix with moment
along the y-direction, perpendicular to the first principal axis,
as a function of ratio of helical pitch and radius (P/R), for
helices with different numbers of turns: one turn (red, thick
solid), 2 turns (orange, thick dashed), 4 turns (green, thin
solid), and 8 turns (blue, thin dashed).
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FIG. 9. a) The maximum velocity of a helix with moment
along the y-direction, perpendicular to the first principal axis,
as a function of ratio of helical pitch and radius (P/R), for
helices with different numbers of turns: one turn (red, circles),
2 turns (orange, squares), 4 turns (green, diamonds), and 8
turns (blue, triangles). b) The step-out frequency of the same
helices as a function of P/R.

frequency. The choice of whether it is more important to
optimize velocity:frequency slope or maximum velocity
depends on the application. For a fixed number of turns,
the maximum velocity occurs for pitches around 4-6 R, at
smaller pitch values than the maximum slope. This can
be rationalized by observing how the step-out frequency
ω̃stepout behaves for different helical geometries, as plot-
ted in Fig. 9b. For a fixed number of turns, the stepout

frequency is highest for small pitches near R. Since the
maximum velocity is the product of the slope (Fig. 8) and
the stepout frequency (Fig. 9b), it at intermediate pitch.
Similarly, one can rationalize why swimmers with many
turns (n = 8) have the largest velocity:frequency slope
in Fig. 8 but the smallest maximum velocity in Fig. 9;
the large velocity:frequency slope is multiplied by a small
step-out frequency (Fig. 9b) to yield small maximum ve-
locities. Based on Fig. 9a, the fastest swimmers would
be obtained for n = 1 and P ≈ 5R; however, these would
have relatively large precession angles (β ≈ 15◦). For
n = 2 and P = 4R, the maximum velocity is about half
as much, but the precession angle is reduced to β ≈ 5◦.
Note that all the discussion of geometrical dependence

in this section uses the helical radius R to nondimen-
sionalize the velocities. Thus, the results should be in-
terpreted as keeping the helical radius R fixed while the
pitch and number of turns are varied. For the most com-
mon fabrication processes, it is easiest to maintain con-
stant helical radius R as we have done. However, if one
wished to design helices with varyingR, the results would
be different since the scaling of our plotted results with
R would need to be taken into account.

IX. DISCUSSION

We investigated the rotational and swimming dynam-
ics of rigid helical microswimmers rotated by an exter-
nal magnetic field. We investigated how the rotation
axis and dependence of velocity on frequency is affected
by the direction of magnetic moment and geometry of
the helix. We use resistive force theory to obtain mo-
bility matrices that capture the helical geometry of the
swimmers, going beyond approximations which treat the
rotational dynamics of such swimmers as that of ellip-
soids. A linear velocity-frequency response is desirable
for control of such microswimmers, and we show that
this can be achieved by choosing the magnetic moment
to lie perpendicular to the principal axis closest to the
helical axis, which results in a single stable branch of
solutions which all rotate about the principal axis. We
also show that moments which are perpendicular to the
helical axis rather than the principal axis lead to nonlin-
ear velocity-frequency response including a transition be-
tween low-frequency tumbling and high-frequency wob-
bling dynamics. Finally, we explored the dependence of
swimming properties on helical geometry in the context
of our proposed moment perpendicular to the principal
axis. Precession angle, the slope of the velocity-frequency
response, and maximum velocity were optimized for dif-
ferent helical geometries.
Our work used the resistive force theory to obtain qual-

itatively accurate mobility matrices for the helical swim-
mers. The resistive force theory is sufficient to investi-
gate the trends in behavior by providing a convenient
way to calculate the mobility matrices for arbitrary he-
lical pitch and radius, and is sufficient to explore quali-
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tative features of linear velocity-frequency relationships.
While resistive force theory is accurate for very slender
helix filaments, we used a boundary element method to
obtain quantitatively accurate mobility matrices for the
thicker helices fabricated in experiments so far and ob-
tained good agreement between our calculated swimming
speeds and experimental results.
We assumed a helical geometry, but if a non-helical

geometry is used, the mobility matrix may be more com-
plicated than Eq. 1 due to a loss of the 180◦ rotation
symmetry. For example, although a helical microswim-
mer with a head or cargo[29, 30] will not have the sym-
metries we used in our analysis, this can be addressed
in two ways. First, if a second head is attached at the
other end of the swimmer, the symmetry upon 180◦ ro-
tation may be restored. Second, even if the swimmer is
not symmetric, one can identify the principal axes of its
mobility matrix. In that case, the results of Section V ap-
ply insofar as a moment perpendicular to a principal axis
will admit steady rotational solutions about the princi-
pal axis for a range of frequencies. In addition, rotation
about the principal axis with the smallest rotational mo-
bility eigenvalue will be stable.
Our work differs from that of Ghosh et al.[41] and Mo-

rozov and Leshansky[42] in that they approximate the
rotational dynamics as those of an magnetized ellipsoid.
One conclusion of their work is that a magnetization per-
pendicular to the helical axis can reduce wobbling and
lead to rotation about the helical axis. As shown in Sec-
tions IV–VII, using the true helical geometry means that
rotation about the helical axis is not actually feasible, and
instead rotation about the principal axis, which differs
from the helical axis, is a better target. Incorporating the
helical geometry, we find tumbling-wobbling transitions
and nonlinear velocity-frequency response even when the
moment is perpendicular to the helical axis. Although
the difference between principal axis and helical axis is
small for helices with large aspect ratio, which justifies
the ellipsoidal approximation in those cases, the prin-

cipal axis and helical axis can be significantly different
for helices with smaller aspect ratios. Thus, the helical
geometry alters the conclusions of those earlier studies
in a manner which may be significant for the design of
microswimmers. We propose that the most convenient
moment to target experimentally is one which is perpen-
dicular to both the first principal axis and the helical
axis, rather than any direction perpendicular to the he-
lical axis.

In this work we assumed a permanent magnetic dipole
and ignored paramagnetic response of the swimmers.
Such response has been addressed by Morozov and
Leshansky[50]. In that study, rotational dynamics are
approximated as that of an ellipsoid, and we would ex-
pect that taking into account the helical geometry may
yield similar differences with the ellipsoidal approxima-
tion that we have found in the case of a permanent mag-
netic dipole. Note that in particular the paramagnetic
response would be expected to alter the linear velocity-
frequency relations found in this work.

In this work we also ignored interactions with bound-
aries and walls. Although many research groups have ex-
plored magnetically rotated microswimmers which “roll”
along surfaces, the modeling techniques used here are not
directly applicable since the presence of the wall means
that the steady solutions found here do not exist; instead
there is a time-dependent mobility matrix as the swim-
mer rotates relative to the wall. Treatment of such cases
would require integration of such unsteady rotational or-
bits, and we do not expect our statements about rotation
axes to hold when interaction with surfaces and bound-
aries becomes strong.
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Appendix A: Resistance and mobility matrix for a helix

Here we report the coefficients of the resistance matrix for a helix with pitch P , radius R, and n turns calculated
using resistive force theory as described in the main text. Due to the symmetry, the resistance matrix D has the same
nonzero elements as the mobility matrix in the x̂, ŷ, ẑ basis,

D =















D11 0 D13 D14 0 D16

0 D22 0 0 D25 0
D13 0 D33 D34 0 D36

D14 0 D34 D44 0 D46

0 D25 0 0 D55 0
D16 0 D36 D46 0 D66















(A1)

For integer n, the elements above are specified by:

D11 = (ζ‖R)n
(

P̃ cosα+ 2πζ̃⊥ sinα
)

(A2)
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D22 = −(ζ‖R)πn
[

(ζ̃⊥ − 1) sinα− 2ζ̃⊥/ sinα
]

(A3)

D33 = D22 (A4)

D13 = 0 (A5)

D44 = −(ζ‖R
3)2πn

[

(ζ̃⊥ − 1) sinα− ζ̃⊥/ sinα
]

(A6)

D55 = (ζ‖R
3)

1

12
n
[

n2P̃ 3ζ̃⊥ cosα+ 12πζ̃⊥ sinα+
(

(15 + 2n2π2)− (9− 2n2π2)ζ̃⊥

)

P̃ cosα
]

(A7)

D66 = (ζ‖R
3)

1

12
n
[

n2P̃ 3ζ̃⊥ cosα+ 12πζ̃⊥ sinα+
(

(2n2π2 − 3) + (9 + 2n2π2)ζ̃⊥

)

P̃ cosα
]

(A8)

D46 = −(ζ‖R
3)nP̃χ

[

(ζ̃⊥ − 1) sinα− ζ̃⊥/ sinα
]

(A9)

D14 = −(ζ‖R
2)2πnχ(ζ̃⊥ − 1) cos(α) (A10)

D25 = (ζ‖R
2)
3

2
nπχ(ζ̃⊥ − 1) cosα (A11)

D36 = (ζ‖R
2)
1

2
nπχ(ζ̃⊥ − 1) cosα (A12)

D16 = −(ζ‖R
2)nP̃ (ζ̃⊥ − 1) cosα (A13)

D34 = 0 (A14)

Where P̃ = P/R and ζ̃⊥ = ζ⊥/ζ‖. The mobility matrix is the inverse of the resistance matrix. Our resistance matrix
differs from that reported in Man and Lauga [40] since according to their Eq. 1 their origin is located at one end of
the helix, while ours is located along the symmetry axis in the center of the helix. They also include contributions to
the moment from local moment densities which resistive force theory ignores.

Appendix B: Quantitative calculation of mobility

matrices

In most of the manuscript, we used resistive force the-
ory with the ratio of perpendicular to parallel resistive
force coefficients equal to two, which is the expected value
in the limit of very slender helical filaments. As the fil-
ament radius (a) becomes thicker one can adjust resis-
tive force coefficients; for helices, the following formulas
apply[45]:

ζ‖ =
2πµ

log(0.18P/a)
(B1)

ζ⊥ =
4πµ

log(0.18P/a) + 1/2
. (B2)

However, for the experimental geometries described be-
low (e.g. P = 0.91µm, a = 0.19µm), these formulas
yield negative ζ‖, implying that they are too thick to be
adequately treated by resistive force theory.
To calculate quantitatively accurate mobility matrices,

we used the method of regularized stokeslets[46, 51]. Our
group has previously implemented the method[52], in-
cluding to find mobility matrices for the modeling pro-
cedure employed in this paper[35, 43], and details of the
method can be found in those references.
Here, we provide geometries and results of convergence

studies for the helical microswimmers discussed in Sec-
tion VI. We use these to provide estimates for the error
in our calculations of velocity-frequency slopes.
The helical swimmer of Ghosh et al.[39] was modeled

as a helix with R = 0.16µm, P = 0.91µm, 4 turns, and

FIG. 10. a) Geometry used to model helix of Ghosh et al.[39].
b) Geometry used to model helix of Peters et al.[37].

a filament diameter of 0.38µm, as shown in Fig. 10a.
This geometry was obtained from Fig 1 of [39]. We per-
formed a convergence study by discretizing the surface
with varying number of regularized stokeslets (Fig. 11).
The results reported in the main text are for the largest
number of elements, 12,134 regularized stokeslets, but we
see that even for ≈ 6000 stokeslets there is < 5% error.

Based on the convergence study above, we can also
investigate the accuracy of resistive force theory results
for the velocity:frequency slope. In Fig. 12 we compare
results from resistive force theory to the method of regu-
larized stokeslets for the geometry above but for varying
filament radius. The number of discretization elements
for the method of regularized stokeslets varies from 6974
to 15544. For filament radii a < 0.032µm (a/P < 0.035),
there is less than 5% difference between the resistive force
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FIG. 11. Convergence study for modeling helix from [39]:
velocity-frequency slope as a function of number of regularized
stokeslets used in discretization.

FIG. 12. Comparison of velocity:frequency slopes calculated
using resistive force theory (blue circles) and method of reg-
ularized stokeslets (blaack squares) as a function of filament
thickness. The helix geometry is from [39], but with the fila-
ment radius a altered.

theory and method of regularized stokeslets. For resis-
tive force theory, the two largest filament radii plotted
(a = 0.128µm and a = 0.19µm) give unphysical nega-
tive results, which reflect unphysical resistive force coef-
ficients: Eqs. B1 and B2 give parallel coefficient larger

than perpendicular coefficient for a = 0.128µm, and neg-

ative parallel coefficient for a = 0.19µm.
The helical ribbon of Peters et al.[37] was modeled as

a helix with R = 2.9µm, P = 16µm, 3 turns, and a cross
section with width 2.8µm and depth 1.5µm. The geom-
etry is shown in Fig. 10b. This geometry was obtained
form Fig 3 of [37]. Based on the convergence study per-
formed for the Ghosh et al. helix, the reported results
are obtained from discretizations involving 5,832 regular-
ized stokeslets, for which we expect discretization error
of ≈ 5%.
Finally, we note we observed that changes in geome-

try, particular in the length of the helix, could produce
roughly proportional changes in the velocity-frequency
slope. Additionally, changing the depth and width of
the Peters et al. helix to 3.3 µm and 1.8 µm (10-20%
changes) reduced the swimming speed by approximately
10%. Based on the imprecision of our measurements of
experimental geometries which also do not form perfectly
regular helices, we therefore expect an additional 5-10%
errors in our results. Combining with the discretization
error, we estimate (conservatively) that our calculated
velocity-frequency slopes are accurate to within 15%.
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