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plane parallel shear flows is developed, based on the Reynolds number scaling

of streamwise-averaged (mean) and streamwise-varying (fluctuation) velocities ob-

served in numerical simulations. The resulting system is characterized by an effective

unit Reynolds number mean equation coupled to linear equations for the fluctuations,

regularized by formally higher-order diffusion. Stationary coherent states are com-

puted by solving the resulting equations simultaneously using a robust numerical

algorithm developed for this purpose. The algorithm determines self-consistently

the amplitude of the fluctuations for which the associated mean flow is just such

that the fluctuations neither grow nor decay. The procedure is used to compute

exact coherent states of a flow introduced by P. G. Drazin & W. H. Reid (Hydro-

dynamic Stability, Cambridge University Press (1981)) and studied by F. Waleffe

(Phys. Fluids 9, 883 (1997)): a linearly stable, plane parallel shear flow confined

between stationary stress-free walls and driven by a sinusoidal body force. Numer-

ical continuation of the lower branch states to lower Reynolds numbers reveals the

presence of a saddle-node; the saddle-node allows access to upper branch states that,

like the lower branch states, appear to be self-consistently described by the reduced
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I. INTRODUCTION

Exact, fully nonlinear, three-dimensional (3D) solutions of the Navier-Stokes equations

play an important role in our understanding of the transition to turbulence in parallel shear

flows and of the recurrence properties of the turbulence that results. These solutions, first

computed by Nagata [1] and Waleffe [2] and now called exact coherent states (ECS), may

take the form of time-independent states (i.e., equilibria) or time-periodic states (e.g., trav-

eling waves). ECS have now been computed by numerous investigators for a number of

different flows, including plane Couette flow [3] and pipe flow [4–7]. Typically, these solu-

tions consist of streamwise-oriented streaks and vortices that bear a striking qualitative and

even quantitative resemblance to the coherent structures commonly observed in turbulent

wall flows, although they are generally unstable. In fact, despite their instability, ECS are

frequently observed as transients in both shear flow simulations and experiments. Analysis

of a low-order model by Waleffe [2] and a more systematic numerical study by Schmiegel

[8] reveal that the ECS in plane Couette flow (PCF) are born in a saddle-node bifurcation

as the Reynolds number Re increases, and continue as upper- and lower-branch solutions;

this ECS bifurcation scenario seems generic in that it is commonly found in other shear

flows. Much of the interest in ECS can be attributed to the possibility that upper-branch

solutions comprise the “skeleton” of a high-dimensional “turbulent” attractor in the shear-

flow phase space. Both Waleffe [9] and Kawahara & Kida [10] demonstrate that certain

low-order statistics of PCF turbulence, particularly the mean and root-mean-square (rms)

velocity profiles, can be accurately reproduced using these unstable solutions, quantitatively

attesting to their physical relevance.

In two particularly insightful papers, Waleffe [2, 9] identifies a fully nonlinear process,

involving the interaction of streamwise-oriented streaks and rolls, that sustains lower-branch

ECS in plane parallel shear flows (including PCF), following earlier work by Hall & Smith

[11] on the closely related phenomenon of vortex-wave interaction. Certain lower branch

solutions have the remarkable property that they have only a single unstable eigendirection.

These coherent states appear to separate, in phase space, disturbances that decay, causing

relaminarization of the flow, from those that follow an excursion toward a turbulent (or at

least transiently chaotic) state. For this reason, investigation of these “edge states” and their

stability is of great interest, offering tantalizing opportunities for flow control. Importantly,

the recent discovery by Schneider et al. [12] of spatially localized edge states in PCF has

served to further increase interest in ECS by establishing that they are not special solutions

found only in small laterally-periodic domains but, rather, that they exist in unbounded

flows and may thus play a role in transition in open shear flows.

In general, the extraction of both lower and upper branch ECS in PCF, as in other shear

flows, has required substantial computational effort. In particular, because ECS are typi-

cally disconnected from the structureless base shear flow, standard methods based on linear

theory cannot be used to identify them, and more sophisticated algorithms (or considerable

ingenuity and physical intuition – see [2, 9]) are required. These challenges are exacerbated

for flows at large Reynolds numbers and in large domains. To alleviate these challenges we

propose in this paper a reduced description of ECS in the transition regime. Our approach,
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Mode u0 (v0, w0) (u1, v1, w1) (u2, v2, w2) (u3, v3, w3) (un, vn, wn)

Scaling O(1) O(Re−1) O(Re−0.9) O(Re−1.6) O(Re−2.2) o(Re−2.2)

TABLE I. Summary of the scalings obtained by Wang et al. [16] for lower branch ECS in plane

Couette flow. These authors decompose the ECS into streamwise Fourier modes: u(x, y, z, t) =

yx̂ +
∑N/2

n=−N/2 un(y, z)einθ + c.c., where n denotes the index of the Fourier mode un, N is the

number of Fourier modes retained and θ = α(x− ct). Here α is the fundamental streamwise wave

number, c is the speed of the wave (in the case of a traveling wave solution), and c.c. denotes the

complex conjugate. The last column shows that higher harmonics (n > 3) decay faster than the

primary ones.

like the related approach of Hall & Sherwin [13] and Blackburn et al. [14], is based on

a decomposition of the flow into streamwise-invariant (i.e., mean) and streamwise-varying

(i.e., fluctuation, or “wave”) components and subsequent exploitation of the properties of

these fields as observed in numerical simulations. Specifically, we use the fact that along the

lower ECS branch streamwise-invariant streaks are O(1) as Re → ∞ while the streamwise-

invariant rolls scale as O(Re−1), as originally suggested by [15] and confirmed by Wang et

al. [16] for PCF. Fundamental streamwise-varying modes also scale roughly as O(Re−1) –

Wang et al. [16] cite an exponent of approximately −0.9 – but higher harmonics are found

to be o(Re−1), see table I. We note that Hall & Sherwin [13] have used the appropriate

critical layer scalings suggested by Hall & Smith [11] to develop an asymptotic analysis valid

in the limit Re → ∞. The resulting theory leads to a two-dimensional (2D) system for the

streamwise-averaged fields at unit rescaled Reynolds number coupled to a quasi-linear invis-

cid eigenvalue problem for neutral disturbances to a mean streaky streamwise (x-directed)

flow u0(y, z), where y and z are wall-normal and spanwise coordinates, respectively. This

eigenvalue problem is singular, possessing a non-planar critical layer at u0(y, z) = 0. The

authors perform a careful matched asymptotic analysis to incorporate a viscously regularized

critical layer, ultimately deriving jump conditions across the layer that link the mean fields

on either side. In addition to reducing the computational cost of numerically solving for the

lower-branch ECS at large Re, their analysis clearly demonstrates the physical mechanism

by which the fluctuations sustain the mean fields in this limit: namely, steady streaming

is driven within the critical layer, which in turn drives the mean flow outside the layer.

Despite this Hall & Sherwin [13] are obliged to employ a sophisticated high-order domain-

decomposition numerical scheme to solve their equations, which requires the numerical grid

to be adaptively updated since the location of the critical layer is not known a priori.

For all its merit the asymptotic analysis of Hall & Sherwin [13] generates solutions whose

dynamical significance remains to be established since at extreme values of the Reynolds

number the flow is likely to be fully turbulent. In contrast, our primary interest is in

transitional and low Re turbulent flows, for which the dynamical relevance of the ECS is,

in fact, clear [3]. At these more moderate values of the Reynolds number (yet still large

compared to unity), the critical layer broadens into a critical region. Consequently we seek

a uniform approximation over the entire domain. To obtain a uniformly valid system, we
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retain formally small dissipation terms in the fluctuation equations, as described by Beaume

[17] and subsequently employed by Blackburn et al. [14]. This procedure obviates the need

for explicit introduction and subsequent smoothing of jump conditions and for any further

regularization of the fluctuation equations. Since jump conditions are not imposed, there is

no need for adaptive mesh refinement associated with dynamic tracking of the critical layer.

Of course, for very large Re sufficiently many modes or grid points must still be used to

resolve the inevitable sharp gradient regions that arise. This issue is mitigated, however, in

the transition regime.

Since we are interested in equilibrium ECS we choose a simple body-forced parallel shear

flow first proposed by Drazin and Reid [18] and later studied by Waleffe [2], which we refer

to as “Waleffe flow” (hereafter WF, see Sec. II). This flow is a close relative of PCF, being

linearly stable for all Re, implying a likely connection between the ECS we compute and

those found by Nagata [1], Clever & Busse [19] and later continued via homotopy by Waleffe

[20] to other flows. Our reasons for studying this flow instead of plane Couette flow are three-

fold: (a) the properties of the ECS in this flow have not been studied, (b) trigonometric

basis functions may be employed in both the wall-normal and spanwise directions to provide

a higher mesh density within the critical region, and (c) it provides an excellent example

of a nontrivial configuration on which the new algorithm can be tested. In particular, we

employ – and, as necessary, refine – an equispaced grid in both coordinate directions, and

as a result are able to identify structures not only in the direction normal to the broadened

critical layer but also along it. Finally, and somewhat remarkably, we demonstrate in Sec.

IV that our asymptotically-reduced PDE model admits both lower branch and upper branch

solutions [21]: in spite of the large Reynolds number scaling incorporated into the theory,

the approach proves sufficiently robust to capture the saddle node bifurcation at which both

the lower and upper branch ECS are born. Thus, our reduced PDEs should prove useful

for a variety of further studies of parallel shear flows that aim, for example, to investigate

streamwise and spanwise localization.

The remainder of this paper is organised as follows. In Sec. II we describe in detail the

multiscale averaging approach we use to obtain our reduced description. Sec. III outlines

the customized numerical algorithm we develop to solve the reduced equations while Sec.

IV summarizes the results obtained. The paper ends with brief conclusions in Sec. V.

II. MULTISCALE SYSTEM

Incompressible channel flow driven by a volume force f(y) is governed by the nondimen-

sional Navier–Stokes equations

∂tv + (v · ∇)v = −∇p +
1

Re
∇2v + f(y), (1)

along with the incompressibility constraint

∇ · v = 0. (2)

Here and throughout, a Cartesian coordinate system is adopted in which x, y and z are the

dimensionless streamwise, wall-normal and spanwise directions, respectively. The velocity
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vector v has dimensionless components (u, v, w), and p is the dimensionless fluid pressure.

In (1) all lengths have been scaled by H , i.e. half the (dimensional) distance separating

the plane parallel walls, and all velocities by a characteristic velocity U . In PCF, U is the

dimensional speed of the upper wall, the flow being driven by in-plane but opposing motion

of the no-slip boundaries; in this case the body force vanishes: f(y) = 0. This configuration

admits a structureless laminar solution, namely Couette flow, as depicted in figure 1 (left

panel). As is well known, this solution is linearly stable even for asymptotically large values

of the Reynolds number Re ≡ UH/ν [22, 23], although stability is observed experimentally

only for Re < Reu ≈ 310 [24–26]. Careful parameter studies have revealed, for larger

Reynolds numbers, a variety of structured flow regimes [27]: in Reu < Re < Reg ≈ 325,

perturbations to Couette flow evolve into evanescent turbulent spots before Couette flow is

restored. The lifetime of the transient spots diverges as Reg is approached [28], indicating

the onset of sustained turbulence above Reg, where most of the turbulent spots survive and

organize themselves into turbulent bands oblique to the streamwise direction [29, 30]. As

Re is increased further, turbulence progressively invades the domain until Rt ≈ 415, where

space-filling turbulence is observed.

We focus here on a close relative of PCF, namely Waleffe flow (WF), depicted in figure 1

(right panel). This flow is driven by an x-directed body force that varies sinusoidally in the

wall-normal direction, viz., f(y) =
√
2π2

4Re
sin
(

πy
2

)

x̂, where x̂ is a unit vector in the x direction.

Moreover, stress-free rather than no-slip conditions are imposed along stationary boundaries

located at y = ±1. This flow was suggested by Waleffe [2] as an alternative to PCF that is

more convenient for low-order modeling. Indeed, WF can be naturally expanded in Fourier

modes in all three coordinate directions, and the laminar basic state v=(
√
2 sin(πy/2),0,0) is

itself a low-order mode in this basis. Note that in WF the velocity scale U is the root-mean-

square velocity of the corresponding dimensional laminar base flow. Although this base flow

has an inflection point, it is nevertheless linearly stable for all Re [18]. This is a consequence

of the blocking effect of the walls at y = ±1; in contrast, the related Kolmogorov flow [31] is

defined with periodic boundary conditions in y, thereby eliminating the stabilizing effect of

the walls and permitting linear instability on large scales [32–34]. However, WF does admit

finite amplitude solutions supported by the self-sustaining process identified by Waleffe [2].

These ECS also cannot bifurcate from the base flow, but instead appear through saddle-node

bifurcations as Re increases, much as in PCF.

A. Multiscale analysis

In this section we derive the basic equations used in this paper. The procedure is moti-

vated by earlier work on flows with strong restraints [35], particularly Langmuir circulation

[36]. In these flows the strong restraining force reduces the effective dimensionality of the

system, leading to a simplified description.

We begin by decomposing the velocity v into a streamwise component u and the perpen-
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FIG. 1. Sketch of plane Couette and Waleffe flows. Plane Couette flow is driven by wall motion in

the x direction, the top and bottom walls moving with opposite velocities ±U . Plane Waleffe flow

is driven by an x-directed body force. The forcing profile is a half-period of a sinusoid in y. Note

that the laminar flow is stable despite the presence of an inflection point owing to the proximity

of the (stress-free) walls.

dicular components v⊥ = (v, w), i.e., v ≡ (u,v⊥). Thus

∂tu+ u∂xu+ (v⊥ · ∇⊥)u = −∂xp+
1

Re

(

∂2
x +∇2

⊥
)

u+

√
2π2

4Re
sin
(πy

2

)

, (3)

∂tv⊥ + u∂xv⊥ + (v⊥ · ∇⊥)v⊥ = −∇⊥p+
1

Re

(

∂2
x +∇2

⊥
)

v⊥, (4)

∂xu+∇⊥ · v⊥ = 0. (5)

These equations are supplemented with the following boundary conditions along the walls

at y = ±1:

∂yu = v = ∂yw = 0. (6)

In addition, all fields are taken to be periodic in the streamwise and spanwise directions,

with periods Lx and Lz, respectively.

To allow for slow modulation in the streamwise direction, we explicitly introduce a slow

streamwise coordinate X ≡ ǫx and an associated slow time scale T ≡ ǫt, where the small

parameter ǫ ≡ 1/Re. Thus, all field variables are interpreted as functions of (x,X, y, z, t, T ).

Replacing the original x and t derivatives by ∂x+ǫ∂X and ∂t+ǫ∂T , respectively, Eqns. (3)–(5)

become

[∂t + ǫ∂T ]u+ [∂x + ǫ∂X ] u
2 +∇⊥ · (v⊥u) = −[∂x + ǫ∂X ]p+ ǫ

√
2π2

4
sin
(πy

2

)

+ǫ
[

∂2
x + 2ǫ∂X∂x + ǫ2∂2

X +∇2
⊥
]

u,

(7)

[∂t + ǫ∂T ]v⊥ + [∂x + ǫ∂X ] (uv⊥) +∇⊥ · (v⊥v⊥) = −∇⊥p

+ǫ
[

∂2
x + 2ǫ∂X∂x + ǫ2∂2

X +∇2
⊥
]

v⊥,

(8)

[∂x + ǫ∂X ] u+∇⊥ · v⊥ = 0. (9)
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Next, we decompose all variables into a fast (x, t) average plus a fluctuation with zero mean.

For example, for the x velocity component, we write

u(x,X, y, z, t, T ) = ū(X, y, z, T ) + u′(x,X, y, z, t, T ),

where the overbar denotes the fast (x, t) average. The motivation for averaging only in x

rather than over the entire horizontal (x, z) plane is that nontrivial spanwise structure of

the streamwise-averaged streamwise velocity, associated with the streamwise streaks, plays

a crucial role in the process that sustains the streamwise rolls. With this decomposition,

the mean equations can be expressed as

ǫ∂T ū+ ǫ∂X
[

ūū+ u′u′
]

+∇⊥ ·
[

v̄⊥ū+ v′
⊥u

′
]

= −ǫ∂X p̄+ ǫ∇2
⊥ū+ ǫ3∂2

X ū

+ ǫ

√
2π2

4
sin
(πy

2

)

, (10)

ǫ∂T v̄⊥ + ǫ∂X
[

ūv̄⊥ + u′v′
⊥
]

+∇⊥ ·
[

v̄⊥v̄⊥ + v′
⊥v

′
⊥
]

= −∇⊥p̄ + ǫ∇2
⊥v̄⊥ + ǫ3∂2

X v̄⊥,

(11)

ǫ∂X ū+∇⊥ · v̄⊥ = 0. (12)

We proceed by positing an appropriate expansion for the various fields. To this end, we

are motivated in part by the scaling behavior identified in [16] and recalled in Sec. I for

lower-branch ECS although we emphasize that the resulting reduced system is not limited

to lower-branch states. For large Re the rolls comprising the streamwise-averaged flow in

the perpendicular plane are weak, O(1/Re), relative to the deviation of the streamwise-

averaged streamwise flow from the base laminar profile (i.e., the streaks). A closed, self-

consistent reduced model may be obtained by further positing that the (streamwise-varying)

fluctuations are similarly weak relative to the mean streamwise flow, an assumption that is

consistent with the scalings reported in table I. Thus, we expand the velocity components

and pressure as follows:

u ∼ (ū0 + u′
0) + ǫ (ū1 + u′

1) + . . . , (13)

v⊥ ∼ ǫ (v̄1⊥ + v′
1⊥) + ǫ2 (v̄2⊥ + v′

2⊥) + . . . , (14)

p ∼ (p̄0 + p′0) + ǫ (p̄1 + p′1) + ǫ2 (p̄2 + p′2) + . . . (15)

At O(1), Eqs. (7)–(9) imply

∂tu
′
0 + (ū0 + u′

0)∂xu
′
0 = −∂xp

′
0, (16)

0 = −∇⊥(p̄0 + p′0), (17)

∂xu
′
0 = 0. (18)

From this equation set we conclude that u′
0 ≡ 0 and p′0 ≡ 0. Note that p̄0, if nonzero, can

only depend on X and T ; this term is set to zero for PCF and WF, but may be retained for

flows driven by externally-imposed mean pressure gradients (such as plane Poiseuille flow).

Using these leading-order results, Eq. (7) yields at O(ǫ)

∂tu
′
1 + ∂T ū0 + ū0∂xu

′
1 + ū0∂X ū0 + [(v̄1⊥ + v′

1⊥) · ∇⊥] ū0 = −∂xp
′
1 − ∂X p̄0 +∇2

⊥ū0

+

√
2π2

4
sin
(πy

2

)

. (19)
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Averaging this equation over the fast x and t variables, and using the fact that p̄0 ≡ 0 for

both PCF and WF, we obtain

∂T ū0 + ū0∂X ū0 + (v̄1⊥ · ∇⊥) ū0 = −∂X p̄0 +∇2
⊥ū0 +

√
2π2

4
sin
(πy

2

)

. (20)

Subtracting Eq. (20) from Eq. (19) yields an equation for the streamwise fluctuating velocity

u′
1:

∂tu
′
1 + ū0∂xu

′
1 + (v′

1⊥ · ∇⊥) ū0 = −∂xp
′
1. (21)

At O(ǫ), the perpendicular momentum equation (8) takes the form

∂tv
′
1⊥ + ū0∂xv

′
1⊥ = −∇⊥(p̄1 + p′1), (22)

from which we conclude that

∇⊥p̄1 = 0 (23)

and

∂tv
′
1⊥ + ū0∂xv

′
1⊥ = −∇⊥p

′
1. (24)

Finally, the O(ǫ) continuity equation requires

∂X ū0 + ∇⊥ · v̄1⊥ = 0 (25)

and

∂xu
′
1 + ∇⊥ · v′

1⊥ = 0. (26)

To obtain a closed reduced system, we average the O(ǫ2) perpendicular momentum equa-

tion,

∂tv
′
2⊥ + ∂T (v̄1⊥ + v′

1⊥) + ū0∂xv
′
2⊥ + (ū1 + u′

1)∂xv
′
1⊥ + ū0∂X(v̄1⊥ + v′

1⊥)

+ [(v̄1⊥ + v′
1⊥) · ∇⊥] (v̄1⊥ + v′

1⊥) = −∇⊥(p̄2 + p′2)

+
(

∂2
x +∇2

⊥
)

(v̄1⊥ + v′
1⊥), (27)

and obtain, on using Eq. (26), the following equation for the evolution of v̄1⊥:

∂T v̄1⊥ + ∂X [ū0v̄1⊥] +∇⊥ ·
[

v̄1⊥v̄1⊥ + v′
1⊥v

′
1⊥
]

= −∇⊥p̄2 +∇2
⊥v̄1⊥. (28)

The fluctuation equations (21) and (24) are linear and non-dissipative and hence the

steady version of these equations exhibits a critical-layer singularity. For this reason these

equations require an appropriate regularization before the above equation set can be used

to compute ECS. This procedure is discussed next.
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B. Structure and regularization of the reduced model

For ease of reference, we collect here the key results of the analysis. Specifically, the

multiscale reduced model consists of Eq. (20), with p̄0 ≡ 0, Eqs. (28) and (25),

∂T ū0 + ū0∂X ū0 + (v̄1⊥ · ∇⊥) ū0 = ∇2
⊥ū0 +

√
2π2

4
sin
(πy

2

)

, (29)

∂T v̄1⊥ + ∂X [ū0v̄1⊥] +∇⊥ ·
[

v̄1⊥v̄1⊥ + v′
1⊥v

′
1⊥
]

= −∇⊥p̄2 +∇2
⊥v̄1⊥, (30)

∂X ū0 + ∇⊥ · v̄1⊥ = 0, (31)

which govern the mean (i.e., fast x and t averaged) dynamics, and Eqs. (21), (24) and (26),

appropriately regularized,

∂tu
′
1 + ū0∂xu

′
1 + (v′

1⊥ · ∇⊥) ū0 = −∂xp
′
1 + ǫ∇2

⊥u
′
1, (32)

∂tv
′
1⊥ + ū0∂xv

′
1⊥ = −∇⊥p

′
1 + ǫ∇2

⊥v
′
1⊥, (33)

∂xu
′
1 + ∇⊥ · v′

1⊥ = 0, (34)

for the fluctuating fields. These equations are to be solved subject to the mean and fluctu-

ating boundary conditions obtained by applying the mean/fluctuation decomposition to the

conditions (6), viz.,

∂yū0 = ∂yu
′
1 = v̄1 = ∂yw̄1 = v′1 = ∂yw

′
1 = 0 (35)

on y = ±1.

Physically, the averaged equations constrain the slow temporal and streamwise evolution

of the streaks (ū0) and rolls (v̄1⊥). The presence of an effective Reynolds number equal to

unity (the prefactor in front of the Laplacian in Eqs. (29) and (30) equals one), together

with the absence of fast streamwise and temporal variation, suggests that these equations

should be more computationally tractable than the full Navier–Stokes equations at large

Re. Indeed, if the slow streamwise (X) variation is suppressed, the averaged equations are

spatially 2D and may be expected to exhibit quasi-laminar behavior. Thus, deviations from

the base laminar flow, if nonzero, are driven solely by the fluctuation-induced Reynolds

stress divergence in Eq. (30); this correlation involves only the perpendicular fluctuating

velocity field, all other Reynolds stress components being smaller than the retained mean

terms.

Presuming fluctuation gradients remain O(1), the fluctuating fields themselves evolve in

accord with the equations governing the inviscid stability of streamwise streaks (under the

consistent approximation that the O(1/Re) rolls may be neglected). In particular, span-

wise inflections in the profile of ū0(X, y, z, T ) may be expected to give rise to an x-varying

3D instability whose primary effect will be to re-energize the streamwise rolls through the

Reynolds stress term, in accord with the self-sustaining process of Waleffe [2]. As explicitly

demonstrated in [16], the fluctuation (or wave) fields, which are necessarily steady (neutral)

for equilibrium ECS, exhibit a critical layer structure along the isosurface ū0(y, z)=0. In the

neighborhood of the critical layer, the fluctuation gradients are large, resulting in a distinct

leading-order dominant balance involving diffusion. In Eqs. (32) and (33) this balance is

captured, as in [17], by retaining the formally small diffusion terms ǫ∇2
⊥u

′
1 and ǫ∇2

⊥v
′
1⊥,
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respectively, where ǫ ≡ 1/Re. From the point of view of asymptotics the retention of these

terms may be justified by appeal to the method of composite asymptotic approximations or

to the related method of composite asymptotic equations [37] but in our reduced model these

terms are retained because they capture correctly the broadening of the critical layer in the

transition region that is of interest here. A similar regularization was employed in recent

work on high Reynolds number Couette flow by Blackburn et al. [14] in order to avoid the

intricacies associated with carrying out a systematic matched asymptotic analysis valid in

the limit Re → ∞ [13].

It is important to compare our approach with that of Hall & Sherwin [13] and Blackburn

et al. [14] in more detail. The analysis of Hall & Sherwin [13] demonstrates that in the limit

Re → ∞ the amplitude of the fluctuating fields in the Nagata–Busse/Clever–Waleffe lower-

branch PCF equilibrium solution scales as Re−7/6 – not Re−1 – away from the critical layer.

Within the critical layer, the fluctuation velocity components tangent to the critical layer

are amplified, becoming O(Re−5/6) – again rather than O(Re−1) as prescribed here. Thus, in

the limit Re → ∞, the fluctuation-induced forcing of the rolls is asymptotically confined to

the critical layer, justifying the jump condition formulation derived in [13]. In contrast, our

reduced equations are not optimised to capture the properties of ECS in the limit Re → ∞.

Instead the equations have been developed for transition values of the Reynolds number

where no singular critical layer is present and one can confirm that all of the terms required

to capture the physics of this region are retained. Since our procedure leads ultimately to

the retention of the same terms as that of Hall & Sherwin [13] and Blackburn et al. [14] it

follows that our fluctuations will grow near the critical layer and decay away from it with

increasing Re when Re is very large. This is not an issue since we apply our equations in the

transition regime where ECS are known to be dynamically relevant [16]. In this regime the

results of Wang et al. [16] indicate that the scale separation between the magnitude of the

fluctuation/roll fields and the streak field, on which the reduced model is founded, is already

evident. Moreover, at these moderate values of Re (e.g., Re = O(103)), the quantity Re−1/3

is not particularly small, and the distinction between the fluctuation amplitude within and

outside the critical layer becomes blurred. Of course, there may also be other, perhaps

non-equilibrium (e.g., a periodic-orbit) ECS that do not exhibit critical layer structure at

all but that can nevertheless be captured by our self-consistent reduced model.

It is significant that the fluctuation equations (32)–(34) do not mix x modes, a fact we

exploit in our computations of ECS for WF using the reduced system. Specifically and in

accord with the scalings given in table I, we retain only the fundamental streamwise Fourier

mode for each fluctuation field, and write

u′
1(x, y, z, t) = û1(y, z, t)e

iαx + c.c., (36)

where α ≡ 2π/Lx is the dimensionless fundamental streamwise wave number and c.c. denotes

the complex conjugate; similar expressions are written for v′1, w
′
1 and p′1. In the following,

we drop the hat over fluctuating variables for brevity of notation. In very long domains

a nearly continuous band of modes with similar streamwise wave numbers will be neutral

or very weakly damped, leading to a description of the flow in terms of an evolving linear

superposition of these modes exhibiting a slowly-varying envelope. This evolution will in
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turn drive slow streamwise modulations of the mean fields through the Reynolds stress

divergence term in Eq. (30). A mechanism of this type may provide an explanation for

the streamwise localization of ECS observed in a variety of plane parallel shear flows [12],

further attesting to the value of the reduced structure identified here.

In the first instance, however, slow streamwise variations can be suppressed. The resulting

averaged equations (29)–(31) can then be further simplified by introducing a streamwise-

invariant streamfunction φ1: v̄1 = −∂zφ1, w̄1 = ∂yφ1, yielding the streamwise-invariant

vorticity ω1 = ∇2
⊥φ1. Consequently, the averaged system can be expressed as

∂Tu0 + J(φ1, u0) = ∇2
⊥u0 +

√
2π2

4
sin(πy/2), (37)

∂Tω1 + J(φ1, ω1) + 2(∂2
yy − ∂2

zz) (R(v1w
∗
1)) + 2∂y∂z(w1w

∗
1 − v1v

∗
1) = ∇2

⊥ω1, (38)

where J(φ1, f) = ∂yφ1∂zf−∂zφ1∂yf and R denotes the real part. In writing these equations,

we have dropped the overbar on the mean streamwise velocity component u0, again for

notational brevity. The fluctuation equations can also be simplified, in particular by taking

the divergence of Eqs. (32) and (33) and using Eq. (34) to obtain a Helmholtz equation for

the pressure p1. The resulting fluctuation equations can be written in the form

(α2 −∇2
⊥)p1 = 2iα(v1∂yu0 + w1∂zu0), (39)

∂tv1⊥ + iαu0v1⊥ = −∇⊥p1 + ǫ∇2
⊥v1⊥. (40)

The boundary conditions at y = ±1 are

∂yu0 = ω1 = φ1 = v1 = ∂yw1 = 0, (41)

together with periodic boundary conditions in z. Observe that u1 does not appear in these

equations although it can be recovered from Eq. (34).

Equations (37)–(40) capture the self-sustaining process explicitly: the rolls ω1 (φ1) deform

the structure of the streamwise velocity u0 to generate streaks as described by Eq. (37).

These streaks lead to the formation of a fluctuating structure v1⊥ through the advection

term in Eq. (40). Lastly, these fluctuations feed the rolls through the Reynolds stresses in

Eq. (38). The reduced model (37)–(40) thus isolates the self-sustaining process described by

Waleffe [2].

III. NUMERICAL STRATEGY

A common approach for computing edge solutions is to apply a so-called edge-tracking

algorithm, which only requires use of a time-stepper for the equations [38, 39]. In the present

case, however, implementation of this technique is complicated by the occurrence of two time

scales t and T = ǫt = t/Re in our reduced equations: the mean variables u0, ω1 evolve on

the long time scale T , while the fluctuating variables v1⊥ and p1 vary on the fast time scale

t. In the small ǫ limit, the slow mean variables are quasi-steady during the evolution of the

fast fluctuating variables. Thus, the fluctuation equations (39)–(40) are effectively quasi-

linear, and the mean variables only respond to the evolution of the fluctuations on a longer

time scale. Systems of this type are best solved by treating the fluctuation system as an
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eigenvalue problem [17], thereby avoiding edge tracking altogether; a similar strategy was

followed by Hall & Sherwin [13] and Blackburn et al. [14].

We now describe the details of our algorithm. We consider a two-dimensional domain D
initially of size Ly × Lz = 2 × π, where Ly = 2 is the (dimensionless) distance between the

walls and Lz = π is the (dimensionless) imposed period in the spanwise direction, and set

the streamwise wave number α = 0.5. For PCF this domain yields the least unstable lower

branch solution [40]. The two-dimensional domain is meshed using equidistributed points

and the solutions expressed in a Fourier basis. The equations are treated in spectral space

using the Fast Fourier Transform in the periodic direction z and either the Fast Cosine

Transform-I or Fast Sine Transform-I in the wall-bounded direction y, depending on the

boundary conditions: u0 and w1 are expanded in a cosine basis while ω0 and v1 are expanded

in a sine basis [41]. All spatial derivatives are computed pseudospectrally in physical space.

The usual 2/3 dealiasing is applied for quadratic nonlinearities to avoid mode contamination

by spectral convolution.

By analogy with PCF we seek solutions that are shift-reflect-symmetric, i.e., solutions

that are invariant under the operation [u, v, w](x, y, z) = [u, v,−w](x+Lx/2, y,−z), where Lx

is the imposed period in the streamwise direction – in our case Lx = 4π. Within the reduced

model framework, this operation becomes [u0, ω1, v1, w1](y, z) = [u0,−ω1,−v1, w1](y,−z).

In addition, the solutions can be translated in x: [u, v, w](x, y, z) → [u, v, w](x + ℓ, y, z),

where ℓ is an arbitrary real quantity. Within our approach this symmetry corresponds to

[u0, ω1, v1, w1](y, z) → [u0, ω1,R(v1) cos(ℓ
′) − I(v1) sin(ℓ′) + i(R(v1) sin(ℓ

′) + I(v1) cos(ℓ′)),
R(w1) cos(ℓ

′)−I(w1) sin(ℓ
′)+ i(R(w1) sin(ℓ

′)+I(w1) cos(ℓ
′))](y, z), where R(·) (resp. I(·))

denotes the real (resp. imaginary) part and ℓ′ ≡ αℓ.

The numerical algorithm for solving the above problem consists of two parts, an iterative

strategy to obtain a good initial condition (described in Sec. IIIA) and a Newton method

to converge the initial condition to an exact ECS solution of the reduced model (37)–(40)

(described in Sec. III B). The latter step requires a novel preconditioner also described

in Sec. III B. This two-step process forms the basis for our numerical continuation of the

resulting ECS in Re ≡ ǫ−1.

A. The initial iterate

We start by decoupling the mean variables u0 and ω1 that evolve slowly from the fluctua-

tions v1 and w1 that evolve more rapidly. We thus consider in succession the slow equations

(37) and (38) in which the Reynolds stresses are fixed, and the fast equations (39) and (40)

in which the quantity u0 is maintained constant. Within this framework, the fluctuation

equations are linear and autonomous. We take advantage of this structure by treating the

fluctuation system as an eigenvalue problem, i.e., we seek solutions with exponential depen-

dence in time: v1⊥(y, z, t) ≡ v̂1⊥(y, z)e
λt and p1(y, z, t) ≡ p̂1(y, z)e

λt, where λ is the growth

rate of the fluctuations. This approach is critical as it provides more information on the fast

dynamics than is available with time-steppers, which only determine the dominant modes.

The basic idea is straightforward: if one of the fluctuating modes is marginal, it corresponds

to a stationary solution of the fluctuation equations and if the associated mean variables are
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also stationary, then the combined mean/fluctuation fields comprise a stationary solution of

the reduced system (37)–(40).

The separate treatment of the mean and fluctuation problems implies that the scalar

amplitude of the fluctuations in Eqs. (39) and (40) is not fixed by the eigenvalue solve, but

must be self-consistently determined as part of the iterative procedure. We refer to this a

priori unknown scalar as A and define it mathematically in Sec. IV. Finding a solution

of the problem (37)–(40) is then equivalent to finding the correct fluctuation amplitude A

for which, given stationary mean variables u0 and ω1, there exists a fluctuating mode with

vanishing growth rate. To obtain a good first approximation to an ECS for subsequent

refinement and continuation via Newton iteration, we use the following multi-step iterative

algorithm:

1. Arbitrarily choose the fluctuation amplitude A

2. If the growth rate λ of the fastest non-oscillatory growing (or slowest decaying) mode

is nonzero:

2.1. Compute the fastest non-oscillatory growing (or slowest decaying) fluctuating

mode and its growth rate λ from equations (39) and (40)

2.2. Time-advance u0 and ω1 to steady state using equations (37) and (38)

2.3. Repeat steps 2.1 and 2.2 until a converged growth rate λ(A) is obtained

3. Adjust A to drive λ(A) to zero by repeating steps 2.1–2.3.

Although developed for canonical wall-bounded shear flows [17] we mention that a similar

procedure has been employed with considerable success in a recent study of the saturation

of the von Kármán vortex shedding instability of the flow past a cylinder [42].

To use the above algorithm, an initial condition for u0 alone is required. Solutions of the

eigenvalue problem in step 2.1 are obtained using the exponential power method and the

package ARPACK [43]. Note that this computation is equivalent to finding the stability

of u0 with respect to streamwise fluctuating perturbations of wave number α. As we are

interested in the least unstable, and hence the most dynamically influential, solutions, we

focus on the fastest growing or slowest decaying mode. Other equilibria or periodic orbits

may be found by looking at subsequent eigenvalues but this is outside the scope of the

present paper. The time integration of Eqs. (37) and (38) in step 2.2 is carried out using

a semi-implicit third-order Runge–Kutta scheme [44]. This step is very fast compared to

the eigenvalue computation. To simplify the entire computation, we impose the shift-reflect

symmetry during the eigenvalue search and the time integration of the mean equations.

B. Preconditioned Newton method

Following the computation of good approximates using the iterative algorithm just de-

scribed, the final step is to converge these solutions to the desired accuracy. Typically, this

is done using a Newton method for which an inner iteration is required to invert a certain
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Jacobian matrix that we define below. The Jacobian resulting from the reduced system

(37)–(40) is poorly conditioned and complicates the use of a Newton method. A suitable

preconditioner is therefore required and we designed one based on that originally proposed

by Tuckerman [45, 46]. Here, we describe its implementation on the generic system

γt∂tU = N(U) + γDLU, (42)

where U is the dependent variable, N is a nonlinear operator, L is a linear (Laplace) operator,

with γt, γD real constants. We look for stationary solutions and so aim to solve

0 = N(U) + γDLU. (43)

The preconditioner introduced by Tuckerman is constructed from an implicit Euler

scheme with time-step △t applied to Eq. (42):

U(t +△t) =

(

I − △t γD
γt

L

)−1(

U(t) +
△t

γt
N(U(t))

)

, (44)

where U(t) stands for the value of U at time t and I represents the identity operator. We

note that by substracting U(t) from expression (44), we obtain

U(t +△t)− U(t) =
△t

γt

(

I − △t γD
γt

L

)−1
(

N(U(t)) + γDLU(t)

)

, (45)

where the right hand side of Eq. (43) is recovered and preconditioned by P = I−△t γD/γt L.

A Newton method can be obtained by writing for iterate U [k] at iteration k

N(U [k]) + γDLU
[k] = J(U [k]) δU, (46)

solving for δU and correcting U [k+1] = U [k] − δU . In writing Eq. (46), we have introduced

J(U [k]) = δN(U [k]) + γDL, the Jacobian of the right hand side operator in Eq. (42) with

δN(U [k]) ≡ δN/δU(U [k]). On multiplying both sides of Eq. (46) by △t/γt P
−1, one obtains

△t

γt
P−1

(

N(U [k]) + γDLU
[k]
)

=
△t

γt
P−1J(U [k]) δU. (47)

The left hand side of Eq. (47) can be obtained directly using Eq. (45) by computing one

implicit Euler time-step of the full equation (42) and substracting the initial condition.

Moreover, applying the same method to Eq. (42) linearized around U [k] we obtain a linearized

version of Eq. (45) that can then be used to calculate the right hand side of Eq. (47). In

the small △t limit, P ≈ I and the equation is not preconditioned while for sufficiently

large △t, we get the so-called Stokes preconditioner P ≈ △t(γD/γt)L. This preconditioning

method is easy to implement as it only requires a first order implicit Euler time-integration

scheme and its use is natural within matrix-free methods, where the Jacobian is not explicitly

constructed. The Stokes preconditioner has been widely used in problems that are dominated

by diffusion like coupled convection [47–49]. In contrast, most shear flow studies are carried
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out at large Reynolds numbers and involve weakly diffusive flows. The required computations

are then often performed without preconditioning [50, 51].

In the present case, none of these approaches was efficient and we extended the previous

preconditioning method to develop a mixed preconditioner. We note that the Jacobian is

influenced by two terms: the linearized nonlinear term and the diffusive operator: J(U) =

δN(U) + γDL. In the case of weakly diffusive flows, γD ≪ 1 and the spectrum of the

Jacobian is dominated by modes resulting from δN(U). This is what happens in large

Reynolds number studies. On the other hand, in the aforementioned convection problems

γD = O(1). These problems are poorly conditioned due to the prominence of eigenvalues

generated by the diffusion operator. This difficulty is natural and can be understood by the

following heuristic argument: on a given Fourier grid, the condition number of a periodic

Laplace operator scales in proportion to k2, where k is the largest wave number allowed. Thus

accuracy is reached at the expense of poorer conditioning. This difficulty is typically handled

by the use of Stokes preconditioning. In our reduced model, the mean equations (37) and (38)

are diffusion-dominated: γt = ǫ−1 and γD = 1. According to the above considerations, these

equations require Stokes-type preconditioning and we have found that△t = ǫ−1 = Re (hence

△tγD/γt = 1 such that P = I−L) provides good results. The fluctuation equation (40), with

Eq. (39) solved as a preliminary step, is weakly diffusive with γt = 1 and γD = ǫ but was not

efficiently solved without preconditioning. To improve the efficiency, we observed that the

contribution of the nonlinear and the diffusive terms to the Jacobian depends strongly on the

gradients within the critical layer. For the lower branch solution, the width of this layer scales

like (αRe)−1/3, yielding a diffusion operator (1/Re)∇2
⊥ = O(α2/3Re−1/3) = O(α2/3ǫ1/3). We

incorporate this scaling by setting △t = ξ2α2/3ǫ−2/3, such that P = I − ξ2α2/3ǫ1/3L, where

ξ = O(1) is a tuning constant. Several values of ξ were tested and we adopted ξ = 0.5 for

the computations that follow, unless stated otherwise.

To compute the desired ECS using a Newton search we embed the biconjugate-gradient-

squared routine from NSPCG [52] within the Newton algorithm and impose a shift-reflect

symmetry on the solutions of Eqs. (37)–(40). Extra care is necessary to eliminate errors aris-

ing from the x-invariance of the solutions. Within our Fourier decomposition, translations

correspond to the eigenvector [u0, ω1, v1, w1](y, z) = [0, 0, iv1, iw1](y, z). The evaluation of

the left side of the system corresponding to Eq. (47) is carried out without any constraint

while the right side is projected onto the space orthogonal to the above eigenvector, thereby

removing the singularity of the Jacobian arising from translation invariance of the solution

in x. The above procedure is implemented at each step of the Newton search and forms part

of the continuation algorithm used to continue the converged solutions in parameter space.

The above procedure generates numerically exact stationary solutions of the reduced

model (37)–(40) for fixed values of the Reynolds number Re, the streamwise wave number

α and the cross-stream domain size. These converged ECS are characterized by a self-

consistently determined amplitude A of the fluctuations that is required to distort the mean

velocity profile in just such a way that the fluctuations neither grow nor decay. Thus A also

provides a convenient measure of the nonlinear distortion of the streamwise velocity, and we

can use it to track the evolution of the self-consistent ECS with the Reynolds number Re,

the streamwise wave number α or the cross-stream domain size, just like other measures of
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FIG. 2. (Color online) Initial condition for the iterative algorithm obtained by advecting/diffusing

u0 given a steady roll structure with ω1(y, z) = 20 sin(π/2y) sin(2z). The upper red (resp. lower

blue) region has u0 > 0 (resp. u0 < 0.

the solution such as kinetic energy or maximum vorticity.

IV. EXACT COHERENT STATES

In this section, we present the ECS we have computed using the reduced model (37)–(40)

with stress-free boundary conditions (41) at y = ±1 and periodic boundary conditions in z.

A. Initial search

We set Re = 400 (or equivalently ǫ = 1/400) and employ the iterative strategy in-

troduced in Sec. III on a 32 × 32 mesh. The accuracy of the results presented here is

confirmed by computations on a 64 × 64 grid. We recall that the use of the iterative algo-

rithm introduced in Sec. IIIA only requires an initial condition on u0. We generate such

an initial condition by advecting the structureless Waleffe flow by a steady sinusoidal roll,

ω1(y, z) = 20 sin(π/2) sin(2z) (or equivalently φ1(y, z) = −5(π2/16+1)−1 sin(π/2y) sin(2z)),

integrating Eq. (37) with a fixed φ1 until a steady state is reached. The roll structure and

amplitude have been chosen such that the resulting initial condition on u0 resembles the

ECS in PCF [13, 16, 40]. The resulting initial profile for the iterative algorithm is shown in

figure 2.

We define the amplitude of the fluctuations numerically as the maximum value of any

component of the in-plane fluctuating velocities on the meshgrid:

A = max (|v1(yi, zj)|; |w1(yi, zj)|) for i = 1,M , j = 1, N, (48)

where yi (resp. zj) represents the i-th (resp. j-th) meshpoint in y (resp. z), M and N are

the number of points in y and z, and |f | =
√

f 2
r + f 2

i where the subscript r (resp. i) denotes

the real (resp. imaginary) part. We employed the iterative algorithm for different values of

A and observed two distinct regimes with different behavior of the leading real eigenvalue.

In the first regime, observed for A ≤ AH ≈ 6.81, the leading real eigenvalue converges to

λ = λc(A). This regime is illustrated in figure 3(a). For A = 0 the solution converges to

the Waleffe flow but as A increases the converged flow departs from WF. For A > AH ,
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FIG. 3. (a) Steady regime of the iterative algorithm (A ≤ AH ≈ 6.81). The curves represent

the value of the largest real eigenvalue λ plotted against the iteration number. Only the first 50

iterations are shown and the curves correspond to A = 5, A = 5.5, A = 6 and A = 6.5 from bottom

to top. The A = 6.5 eigenvalue converges at a later iteration (not shown). The oscillatory regime

(A > AH) is represented in the same way for A = 6.9 in (b), A = 7.5 in (c) and A = 8 in (d). In

all cases, the algorithm is initialized using the initial condition shown in figure 2.

a second regime is present in which the algorithm does not converge but instead displays

undamped oscillations (figures 3(b)–(d)). During the oscillations, the streaks u0 alternately

decay towards the trivial solution and then regrow into a more nonlinear structure that

exaggerates the traits of the exact coherent state, a process that repeats in a periodic fashion.

This process is straightforward for sufficiently small values of A but becomes increasingly

complex as A is increased. For example, the oscillations in λ and the accompanying solution

have a period of only 6 iterations for A = 6.9 (figure 3(b)) but 11 iterations per oscillation

for A = 7.5 and 23 iterations per oscillation for A = 8 with λ showing increasingly complex

behavior (figures 3(c,d)).

The difference between these two regimes can be traced to the way in which A, the scalar

amplitude of the fluctuations, enters Eq. (38), where the Reynolds stress term has amplitude

A2. For a given fluctuation mode, increasing (decreasing) A leads to a greater (lesser) forcing

of the rolls ω1. The induced rolls deform the streaks u0 generating a new eigenvalue problem
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FIG. 4. The leading stationary eigenvalue λ50 after 50 iterations of the algorithm in the steady

regime (A ≤ AH ≈ 6.81) shown using a solid line with the dots indicating the value actually

computed. Most of these eigenvalues decrease by less than 10−4 per iteration after 50 iterations.

The eigenvalues for 6.4 ≤ A ≤ 6.6 (corresponding to the region of steepest increase in the figure)

are not fully converged after 50 iterations but do converge to slightly smaller values after a larger

number of iterations. In fact convergence is not required as the aim is to generate a good initial

condition for subsequent refinement by the preconditioned Newton method. The amplitude of the

eigenvalue oscillations after 50 iterations in the oscillatory regime (A > AH) is indicated by vertical

dashed lines at the values of A actually used.

for the fluctuations. Hence, A is a forcing parameter that tunes one step in the self-sustaining

process. If the forcing is too weak, the iterative algorithm relaxes to the trivial solution

perturbed by a latent forcing induced by the non-vanishing fluctuations. If the forcing is too

strong, the feedback from the mean variables (rolls ω1, then streaks u0) is also too strong,

causing overshooting of a potential “steady” solution of the iterative algorithm. Since A

is fixed during the iteration process, successive overshoots occur, generating the observed

oscillatory behavior. By analogy, one can think of a simple dynamical system which admits a

stable steady solution at low A before undergoing a supercritical Hopf bifurcation at A = AH

to produce stable oscillations while the steady solution has become unstable. The variable

in which the solution oscillates, the iteration number, is discrete which may account for the

small departures from strictly periodic oscillations that can be observed in the data (figures

3(b)–(d)), as the period may vary continuously with A.

We look for ECS that are stationary, and so seek solutions with λc close to zero. Figure 4

shows the largest real eigenvalue after 50 iterations λ50 for values of A spanning the interval

[5, 8]. Although our results have been checked using a refined mesh (64×64 modes) and the

leading eigenvalue converged to 10−4 in most cases, we emphasize that convergence is not

required at this stage as this algorithm is only intended to provide a good initial condition

for a Newton iteration. The results reveal two possible candidates, corresponding to values

of λ50 close to 0: A1 ≈ 6.55 and A2 = AH ≈ 6.81. The state corresponding to A1 is
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undoubtedly a good initial condition as λ50 < 0 for A < A1 and λ50 > 0 for A2 > A > A1.

That corresponding to A2 is seemingly less secure: for A = 6.81, the converged eigenvalue is

λc(A = 6.81) ≈ 0.003191 and approaches 0 from above as A is increased but the oscillatory

regime is reached by A = 6.82 leading to small amplitude oscillations close to but not

crossing zero.

These impressions can be confirmed by inserting the approximate solution with amplitude

A1 into the Newton algorithm described in Sec. III B. On a 32× 64 meshgrid the solution

readily converges to a lower branch state at this Reynolds number (Re = 400). In contrast,

when the solution with amplitude A2 is used the solution converges to the corresponding

upper branch state.

B. Continuation in Reynolds number

The regularized equations (37)–(40) contain the parameter ǫ ≡ 1/Re. The presence of

this parameter allows us to continue the solutions obtained above to both larger and smaller

Reynolds numbers. The results for a 32× 64 meshgrid are displayed in figures 5 and 6.

The solution branches are plotted in six different ways. In figure 5(a) we present Nu ≡
2Eu, where Eu ≡ 1

2D

∫

D u2
0(y, z) dy dz is the streamwise-invariant streamwise kinetic en-

ergy per unit volume and D ≡
∫

D dy dz. In figure 5(b) we present Nω ≡ 2Re2Eω ≡
1
D

∫

D ω2
1(y, z) dy dz, a quantity related to the streamwise-invariant in-plane enstrophy per

unit volume. In figure 5(c) we present the quantity N ′ ≡ 2Re2E ′, where E ′ ≡ 1
2DRe2

∫

D(v
2
1 +

w2
1) dy dz measures the streamwise-fluctuating in-plane kinetic energy per unit volume. The

lower branch (labeled L) passes a saddle-node at Re ≈ 136, giving rise to an upper branch

(labeled U). Figure 6 shows a projection of our solutions onto pointwise maxima of the

corresponding quantities, thereby providing a complementary representation of the results.

The emergence of the upper branch is rather unexpected since the reduced system (37)–

(40) was developed by appealing to lower branch scalings. Evidently the asymptotic pro-

cedure is sufficiently robust to capture both lower and upper solution branches. However,

the computation of the upper branch is more delicate. As observed by Beaume et al. [21],

upper branch solutions and their critical layer have a different spatial structure which dra-

matically increases the computational cost. To continue these solutions we used a 64× 128

meshgrid and adjusted the preconditioner as necessary. Specifically, we started by testing a

few values of △t (see Sec. III B) and selected the most efficient one for continuation near

the saddle-node. We then continued the upper branch until the algorithm failed. Each time

this occurred we tested a few values of △t to determine the most suitable one, repeating

this process as many times as necessary to continue the branch up to the desired value of

the Reynolds number. Upper branch solutions can also be computed directly by starting

from the approximate solution with amplitude A2, obtained using the iterative scheme of

Sec. IIIA, and applying the Newton algorithm with the modified preconditioner described

above. In particular, the upper branch is identified with the value of A ≈ 7.04 at which the

(unstable) fixed point of the iterative process corresponds to zero eigenvalue.

Some care is required in interpreting the values of the energies in figure 5, as Nω and N ′

are proportional to Re2. The trivial solution, for which Nu = 1, Nω = N ′ = 0, represents
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FIG. 5. Bifurcation diagrams showing branches of exact coherent states as a function of the

Reynolds number Re obtained by continuation of converged solutions (solid dots) starting from

approximates generated by the iterative algorithm with initial amplitude A1 (converged to a lower

branch state, indicated by L) and A2 (converged to an upper branch state, indicated by U). (a)

Nu, (b) Nω, (c) N ′.

the state of maximal transport and hence has the greatest kinetic energy. All other ECS are

found to have a lower kinetic energy, as indicated by lower values of Nu. The quantities Nω

and N ′, as well as the maximum of ω1 and the amplitude A, remain O(1) along the lower

branch, reflecting the relevance of the reduced model. Interestingly, a similar observation

can be made for the upper branch solution for which the fluctuations also remain O(1).

However, possible departures from the assumed scaling may be observed in the enstrophy-

related norm of the upper branch states. Indeed Nω = O(100), max(ω1) ∼ 80 − 90 at

Re = O(1000), suggesting that the vorticity becomes larger and larger in an increasingly

narrow region. However, these values, despite being relatively large at low Re do not appear

to increase sufficiently with Re to violate the assumed ordering in the expansion.

Figure 7 depicts the lower branch solution at Re ≈ 1500 using streamwise-averaged quan-

tities while figure 8 provides a three-dimensional rendition of this solution. Figures 9 and

10 provide analogous representations of the upper branch solution at the same Reynolds

number. The lower branch solution possesses a smoothly undulating critical layer that is

maintained by two nearly circular rolls (cf figure 7(a)). This structure is supported by fluc-
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FIG. 6. The same bifurcation diagrams as in figure 5 rendered in terms of the maximum values of
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FIG. 7. (Color online) Lower branch solution computed at Re ≈ 1500 represented by (a) contours

of the streamwise-constant streamfunction φ1 and (b) contours of |(v1, w1)|L2
representing the

amplitude of the in-plane fluctuations. Positive streamwise contours are shown in red (right roll)

while negative contours are shown in blue (left roll); contours are equidistributed to give a sense

of local gradients. Each contour plot is overlaid on the streak profile shown in black, with the

solid line representing the critical layer u0 = 0. Three-dimensional visualizations of the fluctuating

variables are displayed in figure 8.
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FIG. 8. (Color online) Three-dimensional rendition of the fluctuating flow associated with the

lower branch solution at Re ≈ 1500. The surfaces represented in color correspond to two equal and

opposite values at half the maximum value of (a) the streamwise-fluctuating streamwise velocity

u1 , (b) the streamwise fluctuating wall-normal velocity v1, and (c) the streamwise-fluctuating

spanwise velocity w1. Red (light gray) color corresponds to positive values while blue (dark gray)

corresponds to negative values. The gray surface shows the critical layer u0 = 0.
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FIG. 9. (Color online) Same representation as in figure 7 but for the upper branch solution at

Re ≈ 1500. Three-dimensional visualizations of the fluctuating variables for this solution are

displayed in figure 10.

tuations accumulating in the critical layer. Figure 7(b) shows that these fluctuations have

a rapid variation in the direction perpendicular to the critical layer (its thickness being pro-

portional to (αRe)−1/3) while slow variations are observed along the critical layer. The three-

dimensional representations in figure 8 confirm these observations and shed some additional

light on the streamwise dynamics of the lower branch solution. The streamwise-fluctuating

streamwise velocity u1 is essentially concentrated in the regions of stronger streamwise-

invariant streamfunction φ1 (compare figure 7(a) with figure 8(a)) and therefore away from

the crests of the critical layer. As a consequence of the incompressibility of the fluctuations

(Eq. 34), the in-plane fluctuating dynamics accumulate at the extrema of the critical layer,

away from the location of the streamwise rolls, as documented in figure 7(b). Figure 8 shows

that at x = 0 (defined arbitrarily as the front section in the figure), in the region around
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FIG. 10. (Color online) Same representation as in figure 8 but for the upper branch solution at

Re ≈ 1500. Intersections of non-zero fluctuations with the upper and lower walls can be observed

in (c) and are allowed by the stress-free boundary conditions.

the lowest point of the critical layer, z = π/2, the fluid flows from left to right along the

u0 = 0 surface. The reverse occurs half a period downstream and at the highest point of the

critical layer (located at the boundary of the (periodic) domain when x = 0).

In comparison to the lower branch solution, the upper branch solution has stronger vari-

ations along the critical layer, the extrema of which approach the top and bottom walls.

This change in shape is a signature of stronger rolls. The resulting structure is shown in

figure 9(a), where by comparison with figure 7(a), it is evident that the rolls are stretched

diagonally and split, displaying a bimodal structure. This last feature is responsible for the

sharper crests of the u0 = 0 surface relative to that for the lower branch solution. This

change in structure is reminiscent of the differences between lower and upper branch states

in PCF (see figure 7 from [53]) and hints at the usefulness of our reduced model for states

beyond the lower branch states for which it was developed. Associated with the bimodal

structure in φ1 is a similar bimodal structure of the fluctuations which are now strongly lo-

calized on either side of the critical layer turning points. Figure 9 shows that as a result the

location of the streamwise rolls almost coincides with the maxima of the fluctuation field,

suggesting that the increased shear in the streamwise rolls suppresses fluctuations, with the

location of the self-sustaining process moving towards the critical layer turning points. This

evolution in turn implies that for the upper branch states the width of the critical layer

depends strongly on location along the critical layer: the layer appears broader near its

maximum deflection from y = 0 and is substantially thinner in the intervals inbetween. In

addition, the amplitude of both the rolls and the spanwise fluctuations peaks strongly in the

vicinity of these turning points. Although we have not pursued this phenomenology further,

the results suggest that in the limit Re → ∞ the common assumption of uniform critical

layer thickness may require reexamination, with the critical layer “breaking up” into some-

thing more akin to critical “spots”, where most of the critical layer forcing is concentrated

(figure 9(b)).

These properties of the lower and upper branch solutions are reflected in the associated

mean streamwise velocity profiles shown in figure 11. As expected, the ECS in each case
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FIG. 11. (Color online) Streamwise velocity profiles at Re ≈ 1500. (a) (x, z)-averaged streamwise

velocity ūxz0 as a function of the wall-normal coordinate y. (b) Standard deviation σ(ū0) of the

streamwise velocity u0 from ūxz0 (y). The trivial solution is shown in black (labelled T ), the lower

branch (labelled L) in blue and the upper branch (labelled U) in red.

reduces the shear across the layer. The reduction is less for the weaker lower branch ECS

than for the upper branch ECS (figure 11(a)). Of particular interest is the standard deviation

of the velocity from these profiles, σ(ū0, y) =
√

∫

z
(u0(y, z)− ūxz

0 )2dz, shown in figure 11(b).

For the lower branch ECS σ peaks at mid-height where the streamwise rolls are strongest

and falls off quite strongly towards the walls at y = ±1 (figure 11(b)). In contrast, on

the upper branch σ is quite uniform across the layer, with a local minimum at mid-height,

an effect that can be directly attributed to the stretching of the streamwise rolls along the

critical layer and the location of their peak amplitude near regions of maximum deviation

of the critical layer from y = 0.

C. Spectra

To check the accuracy of the solutions, we plot in figure 12 the one-dimensional spectra

of the fluctuation velocity in the wall-normal and spanwise directions. These are defined in

terms of the normalized partial sums

Σy(my) =
1

2(M−1)N

(

S2(my, 0) +
∑N

mz=1(S
2(my, mz) + S2(my,−mz))

)1/2

, (49)

Σz(mz) =
1

2(M−1)N

(

∑M
my=0 S

2(my, mz)
)1/2

, (50)

where S2(my, mz) = |v1(my, mz)|2 + |w1(my, mz)|2 and M (resp. N) is the maximum wave

number in the y (resp. z) direction. The quantity Σy(my) (resp. Σz(mz)) has been defined in

such a way thay it is proportional to the sum of the amplitudes of the fluctuations with wave

number my (resp. mz) in the y (resp. z) direction. The plots confirm that the amplitude

of the upper branch fluctuations is larger than that along the lower branch solutions. In

addition, the spectra in the wall-normal direction decay exponentially at the same rate for

both lower and upper branch states while the spectrum of the upper branch solution decays
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FIG. 12. Spectra of the lower (downward triangles) and upper (upward triangles) branch solutions

represented through the normalized partial sums
∑

y(my) and
∑

z(mz) defined in Eqs. (4.2) and

(4.3).

more slowly in the spanwise direction than that of the lower branch solution. These results

reflect the fact that the scales of the wall-normal variation remains comparable as one goes

from the lower branch to the upper one while the smallest spanwise scale shrinks. These

results highlight the fact that the change in structure between the lower and upper branches

is primarily associated with differences in the spanwise variation of the fields and inform

the numerical requirements to compute these solutions accurately: while the wall-normal

mesh can be designed independently of the solution sought with 30 wave lengths sufficient at

Re = 1500 (i.e., approximately 30 modes in the cosine/sine basis, or 60 modes in the complex

Fourier basis), the number of points in the spanwise direction needs to be increased by a

factor of about 1.5 for upper branch states at Re = 1500. Obviously, increasing the Reynolds

number or any other factor that sharpens the critical layer impacts these requirements.

D. ECS dependence on the domain size

We next investigate how the solutions computed in the previous section depend on the

spanwise domain size Lz and the imposed streamwise wave number α = 2π/Lx. We begin

by fixing α = 0.5 and studying the effect of varying Lz. The resulting bifurcation diagrams

are shown in figure 13. Continuation of the lower branch states to domains with smaller

spanwise extent reveals that they pass a saddle-node at Lz ≈ 2.1 before terminating on a

branch of solutions with two wave lengths per period when Lz ≈ 2.5. These solutions are

depicted in the top two panels in figure 14 together with the initial lower branch solution

at Lz = π in the third panel. The rolls present at Lz = π gradually tilt as the domain

period is reduced (figure 14, second panel). Beyond the saddle-node at Lz ≈ 2.1 these tilted

vortices continue to stretch diagonally, in a direction transverse to the critical layer. As this



26

(a)

(b) (c)Lz Lz

Lz

Nu

Nω N ′

U

L

L

U

L

U

FIG. 13. The ECS at Re ≈ 1500 as a function of the spanwise period Lz. The diagrams show (a)

Nu, (b) Nω (c) and N ′. The full square indicates the termination of the branch on a branch of

solutions with two wave lengths in the domain (figure 14, upper panel). Solutions along the lower

branch (denoted by L) are shown in figure 14, while those on the upper branch (denoted by U) are

shown in figure 15.

happens the centre of each roll gradually splits forming two co-rotating rolls, one on either

side of the critical layer, a process that greatly reduces the deflection of the critical layer

from its laminar location at y = 0. At the same time small counter-rotating rolls appear in

the corners above and below each tilted structure and these grow in strength as Lz increases,

ultimately forming a period two state at Lz ≈ 2.5 with an unperturbed y = 0 critical layer

(figure 14, top panel). The resulting period-doubled ECS bears a number of similarities with

the solutions EQ7 and EQ8 first observed by Gibson et al. [3] and reported in figure 16 of

Gibson & Brand [54].

Continuing the lower branch state at Lz = π in the opposite direction, towards larger Lz,

reveals a new type of behavior. The increasing domain size stretches the rolls, which evolve

into a bimodal structure reminiscent of the upper branch solution with Lz = π (compare

figure 14, fourth panel, with figure 9(a)). Increasing Lz further leads to the progressive

breakup of each of the original rolls into a pair of co-rotating rolls (figure 14, fourth panel).

Once formed these rolls are pulled farther apart as Lz increases, resulting in a periodic array

of pairs of counter-rotating rolls supporting a highly deformed critical layer interspersed with
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FIG. 14. (Color online) Structure of the lower branch solutions with different spanwise periods

Lz represented in the same way as in figure 7. From top to bottom: endpoint of the branch at

Lz ≈ 2.5, left saddle-node at Lz ≈ 2.1, solution at Lz = π (taken from figure 7), solution at Lz ≈ 5

and solution at the right saddle-node at  Lz ≈ 7.4. The contour values of the streamwise velocity

are the same throughout, but different values of the streamfunction are used from panel to panel

for better representation of the flow. The contours are in all cases equidistributed and the scale of

the domain is kept the same for all solutions.
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connecting zones where the trivial laminar flow is only weakly perturbed (figure 14, bottom

panel). The resulting state cannot be continued to larger domain sizes and passes a saddle-

node at Lz ≈ 7.4 where it connects with states originating along the upper branch (see below

and figure 15). This type of behavior is similar to that observed for PCF by Deguchi et

al. [55] but is not related to spatial localization in the spanwise direction as conventionally

understood, since true localized states must become independent of the domain size.

From the saddle-node solution (last panels in figures 14 and 15) one can continue the

branch back to lower values of Lz but in the direction of increasing fluctuation intensity, i.e.,

along the upper branch (see figure 13(c)). The resulting upper branch states are shown in

figure 15. As the period Lz is reduced from Lz ≈ 7.4 along the upper branch the stretching

gradually disappears, but the co-rotating rolls do not merge, in contrast to the behavior

along the lower branch. Instead, two additional rolls are nucleated between the orginal pair

of co-rotating rolls, and these also co-rotate (figure 15, fourth panel). The net result is

an array of four co-rotating rolls whose combined action deforms the critical layer further

from the laminar case, and these are paired with a similar set of four co-rotating rolls in

the other half of the domain, but rotating in the opposite sense. This four-roll structure

is destroyed as the branch passes through a loop between Lz ≈ 4.8 and Lz ≈ 5.1: the two

weaker middle rolls that have appeared along the upper branch below Lz ≈ 7.4 gradually

fade, thereby restoring the bimodal structure (figure 15, second panel) and generating the

state in figure 9. When Lz is decreased further, the bimodal structure gradually disappears

as the rolls are squeezed together (figure 15, top panel). At the same time, both the mean

streamfunction and the fluctuation fields grow without bound while the streamwise velocity

u0 becomes increasingly homogenized and ultimately approaches zero. These developments

are reflected in the dramatic decrease in the streamwise velocity norm Nu, together with

increases in enstrophy norm Nω and fluctuation norm N ′ shown in figure 13, and indicate

that the postulated form of the solutions is starting to break down. Thus solutions in this

regime are unlikely to be physically relevant.

We mention that in related calculations for PCF, Melnikov et al. [56] find that the lower

and upper branch states form an isola in Lz with no additional bifurcations (except for

saddle-nodes) as Lz varies.

We have also studied how the morphology of the ECS in a domain with Lz = π varies at

fixed Re = 1500 when the streamwise wave number α is changed. The bifurcation diagrams

obtained are shown in figure 16. The figure reveals that the ECS lie on an isola and therefore

do not connect to any other solution. Thus the isola defines an interval of existence for the

ECS at Lz = π and Re = 1500: 0.0380 < α < 1.1890. While the lower bound for α

hints at the persistence of these structures for very long domains (Lx ≈ 165), the upper

bound indicates that the required streamwise periodicity of the domain be at least Lx ≈ 5.3

for these structures to be self-sustaining, a value close to that observed in PCF [13]. The

ECS at the left and right saddle-nodes along the isola are represented in figure 17. For

small α (long streamwise domain), the critical layer is distorted approximately sinusoidally

by nearly circular rolls and the fluctuations do not exhibit sharp gradients despite being

located close to the critical layer u0 = 0. In contrast, for large α and therefore short

streamwise domains, the fluctuations become very localized and the associated critical layer
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FIG. 15. (Color online) Structure of the upper branch solutions with different spanwise periods

Lz. From top to bottom: diverging solution at Lz ≈ 2.3, solution at Lz = π (taken from figure 9),

solution at the right saddle-node of the loop at Lz ≈ 5.1, solution at the left saddle-node of the

loop at Lz ≈ 4.8 and solution at the right saddle-node at  Lz ≈ 7.4 (taken from figure 14). The

same figure style is used as for figure 14.
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FIG. 16. Bifurcation diagrams showing the ECS at Re = 1500 and Lz = π as a function of the

streamwise wave number α. (a) Nu. (b) Nω. (c) N ′. Solutions at the left and right saddle-nodes

are shown in figure 17. The letter L (resp. U) denotes the lower (resp. upper) branch.

is deformed into a sawtooth profile. The associated rolls are highly elongated and align with

the approximately constant slope sections of the critical layer. These developments are a

consequence of the (αRe)−1/3 critical layer scaling [57]. As Re is kept fixed, decreasing α

increases the width of the critical layer thereby weakening the strength of the fluctuations.

This is a direct consequence of the fact that α affects the amplitude of the u0-induced

advection of fluctuations, as described by Eq. (40). As a result decreasing the value of α

decreases the coupling between the mean and fluctuation fields. Thus, the fluctuations no

longer track the critical layer efficiently, and so remain weak and do not deform the rolls.

The associated critical layer is sinusoidal. The converse is true when α is increased: the

coupling becomes stronger, leading to fluctuations that are strongly focused on the critical

layer and that substantially deform the rolls and hence generate a strongly distorted critical

layer.

V. DISCUSSION

In this paper we have presented a simple rational procedure that leads to a reduced

description of plane parallel shear flows. The method assumes that the flow is dominated by
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FIG. 17. (Color online) Structure of the ECS at (a) the left saddle-node at α ≈ 0.0380 (Lx ≈ 165)

and (b) the right saddle-node at α ≈ 1.1890 (Lx ≈ 5.3) of the isola shown in figure 16. The solutions

are represented through their mean streamwise velocity with contours of the streamfunction (top

panel) and the fluctuation norm (bottom panel). The contours are in all cases equidistributed.

the mean streamwise flow component, with spanwise components of the velocity field (the

rolls) that are much weaker. Despite this the Reynolds stress generated by the fluctuating

fields modifies the mean spanwise velocity and hence the mean streamwise flow, as described

by Eqs. (29)–(31), and this in turn modifies the fluctuations as described by Eqs. (32)–(34).

Of these the former are simplified in having an O(1) effective Reynolds number while the

latter constitute a viscously regularized (cf. [14, 17]) but quasilinear system that admits

solutions of arbitrary amplitude. In our approach this amplitude is determined by a self-

consistency requirement: in steady state the Reynolds stress generated by the fluctuations

must be such as to produce a streamwise flow for which the fluctuations neither grow nor

decay, and we have described an iterative process whereby the amplitude of the fluctuations

can be adjusted to realize this requirement. Our approach therefore captures the essence

of the self-sustaining mechanism identified by Waleffe [2] and leads to reduced equations

that capture the universality in the behavior of plane parallel shear flows. We believe that

these equations are suitable not only for studying steady ECS with critical layers but also

exact traveling waves and indeed other nonequilibrium structures with no critical layer at

all. In this respect the equations possess advantage over detailed studies of particular flows

using flow-specific scalings. However, to justify these claims our results for WF and other

flows will have to be compared quantitatively with solutions of the corresponding fully three-

dimensional problems. In addition, such comparisons will determine, on a case by case basis,

the range of Reynolds numbers for which our results provide a reliable guide to the solutions
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of the full problem.

We have applied the numerical algorithm developed here to compute a variety of exact

coherent states in a body-force driven flow we refer to as Waleffe flow. The fundamental

assumptions we make turn out to capture not only the expected lower branch states but also

the corresponding upper branch states, reached via numerical continuation in the parameter

Re ≡ 1/ǫ. The results we obtain are similar to the corresponding PCF results obtained

by Blackburn et al. [14] for lower branch states and by Deguchi et al. [58] for upper

branch states via continuation in Lz. This fact is significant since there is no guarantee

that continuation in Lz will identify the same states as continuation in Re. In both systems

the lower branch critical layer deforms into a sinusoidal surface through the action of the

rolls, while the deformation corresponding to the upper branch states is both stronger and

bimodal. Particularly intriguing is our discovery that along the upper branch the width

of the critical layer is no longer uniform and that the bimodal structure of the rolls and

streaks concentrates the critical layer forcing in regions of maximum departure from the

unperturbed critical layer. Current asymptotic approaches do not take this possibility into

account. However, the intrinsic self-consistency of our reduced equations implies that this

new critical layer structure is likely a property of upper branch states in the full system at

large Re.

We have also used numerical continuation to continue our solutions in the spanwise do-

main length Lz and in the streamwise wave number α. The former determines the existence

region for the solutions we have found and shows that the lower branch solutions at small Lz

bifurcate from a period two spatially periodic state but undergo a saddle-node bifurcation at

larger Lz that connects the lower and upper branch states. The solutions near this fold are

stretched in the spanwise direction relative to O(1) domains but are not spatially localized

in the conventional sense, in contrast to the suggestion made by Deguchi et al. [55], since

they cannot be continued to larger Lz and hence to larger separations. The continuation

in the streamwise wave number α leads to simpler results – this time the lower and upper

branch states are connected by folds at either end and the solutions lie on an isola. As a

result they do not extend to either very small or very large values of α. We believe that these

states, as well as those obtained via continuation in Re, will prove of great value in further

explorations of the full set of reduced equations, including studies of spatial modulation and

possible localization in the streamwise direction. We hope to report on these explorations

in a future publication.

The approach described here has been used with considerable success to derive reduced

descriptions of other strongly anisotropic flows, including convection in a strong magnetic

field [35] and rapidly rotating convection [59–61]. In all these cases the mean field adjusts on

a slower timescale than the timescale on which the fluctuations evolve. As a result the mean

flow can be taken to be quasistatic and the fluctuations can be computed at fixed values of

this field. The mean can then be updated based on the fluctuations computed on this basis,

and the process repeated. Alternatively the reduced system can be treated as a dynamically

coupled system for the fluctuations and the mean, and the combined system time-stepped

together. The latter procedure has been used successfully in the context of rapidly rotating

convection [59–61] and we anticipate that time-stepping Eqs. (29)–(34) for transition values
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of the Reynolds number could lead to similar insights. This, too, is a topic for future study.

ACKNOWLEDGMENTS

CB acknowledges support from the Geophysical Fluid Dynamics Program at the Woods

Hole Oceanographic Institution for his 2012 fellowship where the first results were obtained.

The work was supported by the National Science Foundation under grants DMS-1211953

and DMS-1317596 (CB & EK), OCE-0934827 (GPC) and OCE-0934737 and DMS-1317666

(KJ). E.K. wishes to acknowledge additional support from the Chaire d’Excellence Pierre

de Fermat de la région Midi-Pyrénées (France).

[1] M. Nagata, J. Fluid Mech. 217, 519 (1990).

[2] F. Waleffe, Phys. Fluids 9, 883 (1997).

[3] J. F. Gibson, J. Halcrow, and P. Cvitanović, J. Fluid Mech. 611, 107 (2008).
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