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Prediction is a fundamental objective of science. It is more difficult for chaotic and complex
systems like turbulence. Here we use information theory to quantify spatial prediction using exper-
imental data from a turbulent soap film. At high Reynolds number, Re, where a cascade exists,
turbulence becomes easier to predict as the inertial range broadens. The development of a cascade
at low Re is also detected.

I. INTRODUCTION

According to many textbooks, a hallmark of turbu-
lence is its unpredictability [1, 2]. Here we address this
issue using experimental data from a turbulent soap film.
The starting point is Shannon’s information theory [3–
5], where in Neil Gershenfeld’s words, “...information is
what you don’t already know” [6]. Our experiment con-
veys information about the physical state of the system.

The entropy from information theory [4] (and the Lya-
punov exponents from dynamical systems [7]) is a mea-
sure of the limit on our ability to predict. However, the
theory does not tell us how to make a prediction. To fully
address the issue of turbulence’s predictability, we need
to make a choice about how to predict (described below)
[8]. We are looking for the answer to simple questions:
how difficult is it to predict turbulence and how does the
difficulty depend on Reynolds number, Re?

Our main finding is that prediction is sensitive to
whether a turbulent cascade is present or not. Turbu-
lence becomes easier to predict and more predictable
when a cascade develops and then more so as Re in-
creases.

The turbulent cascade envisioned by Richardson and
described mathematically by Kolmogorov is the preva-
lent picture of turbulence [9]. In this picture, energy
(or enstrophy in two dimensions) is transported across
scales from some injection scale until it reaches a dissipa-
tive scale and the cascade ends. A cascade exists in both
three dimensional (3D) and two dimensional (2D) turbu-
lence, which is studied here. The statistical structure of
the cascade has important consequences for prediction.

The central quantity in information theory is the en-
tropy density h [4]. It is the information we receive per
measurement (which in this case refers to a single velocity
value), after already having measured an infinite amount
of previous data. A large h implies that one does not
know what is coming, i.e. the system is unpredictable.
The value of h gives the limit on one’s ability to predict
but does not indicate how to make a prediction.

We could also ask how much we already do know. This
is the excess entropy E, which is the information about
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correlations in the system [10, 11]. It is the reduction of
unpredictability. Accurate prediction requires an amount
of information at least equal to E [12]. Although E fur-
ther characterizes our ability to predict, we still must
decide how to do so.

Now we must decide how to make a prediction.
Our choice is to only use the information contained in
prior measurements (data) and make a statistical model.
There are no specific assumptions made about the sys-
tem. (An interesting example of where a specific model
is used can be found in Ref. [13].) The model consists
of a set of states and the probabilities to transition be-
tween them. Here the states are simply the basis used
to represent the data. The states could be the measured
velocities themselves, i.e., 10 cm/s, -23 cm/s, etc. There
is more than one way to define which states to use and
potential benefits from choosing them cleverly.

Following the work of Crutchfield [8, 12, 14], we choose
the states such that we maximize our ability to predict
(up to the limit set by h) and at the same time minimize
how much information we need to do so. The amount of
information then needed to make the prediction is called
C, the statistical complexity [8]. That is why C is a
measure of the difficulty in making a prediction. Given
the definition of E above, it is clear that C ≥ E, but the
system-specific reasons can vary and are not always clear
[8, 12].

More details on h, E and C can be found in the Appen-
dices A-D. It should be mentioned here, however, that
to calculate the probabilities necessary for estimating h,
E and C, we must bin the data according to some rule.
The main results we show are for a binary rule where we
only distinguish between a velocity above and below the
mean. Other bins were used with qualitatively the same
results.

This study focuses on predicting the spatial variations
of turbulence. A prediction in space means that given
the velocity u at a point x, one anticipates the velocity
at some other point r away. We are making predictions
about the velocity fluctuations in space. Prediction is
normally associated with time [15, 16], but there are sev-
eral reasons for considering the spatial alternative.

We know that the temporal and spatial features of
turbulence are distinct. The fundamental work of Kol-
mogorov dealt only with the spatial structure of turbu-
lence [9, 17]. Kraichnan and others have also shown that
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many of the essential features of turbulence are retained
if one throws away temporal correlations but keeps spa-
tial ones [18–20]. Thus, a treatment of spatial prediction
is arguably of more fundamental interest than temporal
prediction, at least for turbulence.
For a specific application, consider airplane flight. The

typical cruise speed of a Boeing 747 is V ≃ 250 m/s
[21]. Contrast this with the rms velocity fluctuations
σ of “strong” atmospheric turbulence σ ≃ 7 m/s [22].
Since σ/V ≃ 0.03 is small, one must use Taylor’s frozen
turbulence hypothesis when discussing the turbulence the
airplane encounters [2, 23]. In other words, an airplane
flies fast enough to sample only the spatial variations of
turbulence. There is not enough time for the turbulent
velocity field to evolve temporally.
While this is a study of 2D turbulence, the analysis

is not specific to this system. Our work serves as an
experimental test bed for these tools, which can be used
generally for other complex systems.

II. EXAMPLE

As a simple illustration of these ideas, consider a coin
flipping experiment where each subsequent flip will be
the same as the previous one with probability P ∈ [0, 1]
[25]. This is the statistical model for, e.g., correlated
random walks [26].
If P = 0.5 we have the usual fair coin toss experiment,

with h = 1 and C = E = 0, since this system is max-
imally uncertain but statistically simple to predict with
no information being shared between the past and fu-
ture. In this fully random case (P = 0.5) both 0 and
1 predict the same future, so they are combined into a
single causal state. Of course, with only one causal state,
C = 0 automatically (see Eq. D1).
Consider now a slight deviation of P from 0.5. Now

C = 1 since we will always need to know 1 bit of informa-
tion (the previous flip) to predict the future. We can also
calculate h and E (see Appendices B and C), which are
plotted together with C vs. P in Fig. 1. Since P > 0.5
means more predictable, it is clear that h should decrease
with increasing P , while E should increase.
This example highlights the difference between E and

C, the crypticity χ ≡ C − E [12, 48]. Here C = E + h,
which is a unique feature of this system being first-order
Markovian [10]. The extra information needed to predict
beyond E is due to the randomness still intrinsic in the
causal states themselves. There are many examples for
which C 6= E [12, 27], but this is not always so.
An important lesson we learn from this example is that

h, E and C were all necessary to understand this system’s
behavior. For P only slightly different from 0.5, h and
E will still suggest a nearly random system, much like a
slightly biased coin. The fact that C is large and not 0
(its random value), shows that there are important cor-
relations not present in a simple biased coin system. The
system is both unpredictable (large h) and difficult to
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FIG. 1: Plot of the fundamental quantities h (©), E (�) and
C (△) for the simple example given here. Although h and E
are continuous functions of P , C is not.

predict (large C). A similar result will be found for the
low Reynolds number flow in Sec. IV.

III. EXPERIMENTAL SETUP

Now consider a turbulent soap film, which is a good
approximation to 2D turbulence since the film is only
several µm thick [23, 28]. The soap solution is a mixture
of Dawn (2%) detergent soap and water with 4 µm parti-
cles added for laser doppler velocimetry (LDV) measure-
ments. Figure 2 contains a diagram of the experimental
setup as well as thickness fluctuations visualized through
thin film interference using a monochromatic light source.
The thickness fluctuations act as a surrogate for velocity
fluctuations [23, 28].
The soap film is suspended between two vertical blades.

Nylon fishing wire connects the blades to the nozzle above
and the weight below. The nozzle is connected by tubes
to a valve and a top reservoir which is constantly replen-
ished by a pump that brings the spent soap solution back
up to the top reservoir. The flow is gravity-driven. Typ-
ical centerline speeds u are several hundred cm/s with
rms fluctuations u′ ranging roughly from 1 to 30 cm/s.
The channel width w is usually several cm. The Reynolds
number Re = u′w/ν, where ν = 0.01 cm2/s is the kine-
matic viscosity, thus ranges from 10 to 10,000.
Turbulence is generated using several different proto-

cols. We can (1) insert a row of rods (comb) perpen-
dicular to the film, (2) replace on or both smooth walls
with rough walls (saw blades) with the comb removed
and possibly a rod inserted near the top [29], or (3) use
a comb with smooth walls as in (1) but now very near
the top of the soap film where the flow is still quite slow.
The comb teeth are ∼ 1 mm in diameter and several mm
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FIG. 2: Left: Experimental setup showing the reservoirs (TR,
BR), pump (P ), valve (V ), comb (C), blades (LB, RB), LDV
and weight (W ). Middle: Fluctuations in film thickness from
turbulent velocity fluctuations with smooth walls and a comb.
Right: Thickness fluctuations with smooth and rough walls.

apart. The saw blade teeth are ∼ 2 mm tall and wide.
When protocol (1) is used we almost always observe

the direct enstrophy cascade [23, 28]. If procedure (2) is
used, we can observe an inverse energy cascade [23, 28,
29], although this depends sensitively on the flux and w.
When protocol (3) is used, we see no cascade at all.
The type of cascade is identified by calculating the one-

dimensional velocity energy spectrum E(k), where 1
2u

′2 =∫∞

0
E(k)dk. For the enstrophy cascade, E(k) ∝ k−3 and

for the energy cascade E(k) ∝ k−5/3 [23, 28]. A number
of measurements were taken above the blades where the
flow is slower. For protocol (3), E(k) is flat and so appar-
ently there is no cascade, although the flow is not laminar
(u′ 6= 0). See Fig. 3 for some representative spectra. In
Fig. 4 the data for Re < 100 have a flat E(k).
In all cases, we measure the longitudinal (streamwise)

velocity component at the horizontal center of the chan-
nel. The data rate is ≃ 5000 Hz and the time series
typically had more than 106 data points. For this sys-
tem the time series is really a spatial series by virtue of
Taylor’s frozen turbulence hypothesis [2, 9, 23, 28]. This
means that the spatial variations are swept through the
LDV’s measuring point by the mean flow so quickly that
it is as if the LDV were scanning a frozen-in-time veloc-
ity field. This distinction between spatial and temporal
is essential, as discussed above and in Ref. [24].

IV. RESULTS

The quantities C, E and h are plotted vs. Re in Fig.
4. The data are roughly divided in Re into no-cascade
(flat E(k) for Re < 100) and cascade (power law E(k)
for Re > 100) regimes. Although C and E intersect at
finite Re ≃ 7000 in Fig. 4, this meeting point depends
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FIG. 3: Representative one-dimensional energy spectra in a
log-log plot of E(k) vs. k. The enstrophy cascade (△) has
a slope close to -3 while the energy cascade (�) has a slope
close to -5/3. The flat curve (©) has no cascade.

on the analysis. In order to calculate probabilities from
continuous data, one must bin the measurements. For
different binning protocols we find a different meeting
point. However, the Re-dependent behavior of h, E and
C discussed below is the same. See Appendices A and D
for more details on the treatment of the data.

A. Cascade Turbulence

Now consider the behavior of h, E and C in the “cas-
cade regime” of Fig. 4, Re > 100. At these values of
Re, E(k) shows power law scaling as in Fig. 3. Both
energy and enstrophy cascade data are present. We see
from Fig. 4 that the unpredictability (h) is decreasing,
the amount of information needed to predict (C) is also
decreasing, while information about correlations (E) is
increasing (all logarithmically). The opposite trend in
Re for E and C is noteworthy. It is surprising that the
behavior of h, E and C for Re > 100 does not depend on
which cascade is present, only on whether or not there is
a cascade at all.
The increase of E with Re can be understood from the

traditional view that as Re increases, the “inertial range”
of correlated scales broadens [9]. The increase in corre-
lations across spatial scales is reflected by an increase in
E. We can go further to suggest a connection between
E and the broadness of the inertial range. Dimensional
arguments suggest that the turbulent degrees of freedom
go as N ∝ Re for the enstrophy cascade and N ∝ Re3/2

for the inverse energy cascade. In the 3D energy cascade,
N ∝ Re9/4 [30]. Thus the behavior E ∝ log2 Re in Fig.
4 indicates that E is a logarithmic measure of the extent
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FIG. 4: The statistical complexity C (�), excess entropy E
(©) and entropy density h (△) as functions of Re for bina-
rized (A = 2) data (see Appendix A for details on binning).
We plot h on a different scale for better visibility. The maxi-
mum value of h here is log

2
2 = 1, which the no-cascade data

for Re < 100 approach very closely. Here L = 10 and we used
our MATLAB program with the χ2 test to calculate C (see
Appendix D for details). The lines are not fits to the data but
are meant to suggest the behavior of C and E as functions of
Re. For the cascade region, C and h are decreasing functions
of Re while E increases. The vertical line separates the data
according to whether there is a cascade or not.

of the inertial range.
An interpretation of the behavior of C is also suggested

by the traditional picture of 2D turbulence [23, 28]. As
Re grows, the inertial range broadens, and more of the
velocity fluctuations come under the governance of the
cascade. Thus, the randomness h will decrease, and be-
cause the cascade’s structure is dominating, our predic-
tion cost C decreases. This is the result of the general
principle that patterns help us to predict [14]. Here the
pattern is the cascade’s structure.
Turbulence has traditionally been thought of as unpre-

dictable [1, 2], an idea we have tested here with h, E and
C. We see that the spatial predictability of (2D) turbu-
lence is a function of Re. As Re increases we can predict
further and more easily. This is in stark contrast to tur-
bulence’s increasing temporal unpredictability with Re,
at least as evidence by numerical work [15, 16]. This re-
iterates the important difference between time and space
in turbulence, which is of fundamental interest and prac-
tical importance (recall the airplane).

B. Transition to Cascade Turbulence

Next consider the region of Fig. 4 labeled “no-
cascade”. The absence of a cascade is evidenced by a

lack of power law scaling in E(k) as in Fig. 3. Here h,
E and C are relatively constant with respect to Re. It is
notable that h is very near to the random (white noise)
value of log2 2 = 1, which is nothing like laminar flow
where h = 0. When a cascade emerges at Re ≃ 100, all
three quantities begin to change noticeably. This change
in behavior is decidedly different from the laminar to tur-
bulent transition which only involves the onset of fluctu-
ations [1, 30].

Simulations of 3D turbulence have shown that statis-
tics of the velocity derivatives are gaussian (or sub-
gaussian) up until a small value of the Reynolds number
[31, 32]. Below this value of Reynolds number, there is a
“regime which is a complex time-dependent flow rather
than a turbulent one.” They observe a transition similar
to the one described here, evidenced primarily by non-
gaussian velocity derivative statistics. (Recall that non-
gaussian statistics are a general feature of fully developed
turbulence [33].)

We can also use a more traditional tool from turbu-
lence, the correlation function c(r) ≡ 〈u(x)u(x+r)〉x/u

′2

plotted in Fig. 5 [9]. c(r) has typically been thought of
as a tool for determining the range of length scales over
which u is correlated. c(r) is telling us that for small
Re ≤ 100, the range of scales over which u is correlated
is very small.

Figures 3 and 5 both indicate that for Re ≤ 100 the
data is like white noise. The values of h ≃ 1 and E ≃ 0 in
Fig. 4 reinforce this interpretation. On the other hand, if
the fluctuations were truly like white noise, then C should
also be zero in this regime, which it is not. Recall that in
the simple example from Sec. II, C is large when h and
E are close to their random values. The data are nearly
random but have an explicit albeit short dependence on
the past which drives C from zero to its maximum value.
If we were to only look at h (or E), we would miss that
there is nontrivial (non-random) behavior for low Re.

We have yet to understand why self-similar turbu-
lence emerges from this “complex, time-dependent flow”
[31]. One sees from another nonlinear system, Rayleigh-
Benard convection, that there is a lot to be learned even
at modest levels of excitation [34].

The traditional approaches to the laminar-turbulent
transition deal with instabilities of the laminar flow
[1, 35]. Whether it is the quasi-periodicity of Landau [30]
or the nonperiodicity of Ruelle and Takens [36], none of
these approaches deal with the development of a Richard-
son or Kolmogorov cascade [37]. And yet a cascade is al-
ways present in “fully-developed turbulence” [9, 17]. How
does this cascade emerge? New approaches and models
are necessary to understand how cascade behavior devel-
ops out of a “complex, time-dependent flow” [31]. Since
this development is clearly visible in Fig. 4, an informa-
tion theory approach seems promising.

We further suggest an information-theoretic indicator
of a cascade. Based on the above arguments, large E
and 1/C should both indicate a well-developed cascade.
With that in mind, we can also consider the “predictive
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FIG. 5: The velocity autocorrelation function c(r) plotted
vs. r for several values of Re. For small Re, c(r) quickly
decays to zero, indicating little correlation in the velocity u.
For larger Re, where Fig. 3 indicates spatial structure, there
is a wider range of correlated scales. The Re = 300 curve
has a longer correlation length L than the higher Re = 6000
curve presumably because this lower Re curve corresponds
to an inverse energy cascade. The inverse energy cascade is
supposed to involve larger length scales than the enstrophy
cascade [23, 28]. Here L is defined as the distance at which
c(r) decays to 1/e.
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FIG. 6: The predictive efficiency E/C plotted vs. Re using
the same data as in Fig. 4 as well as a quaternary partition
A = 4 with partition walls placed symmetrically with respect
to the mean (see Appendix A for details on binning). We
used L = 10 for both partitions (see Appendix D). Here we
find that E/C is increasing only after a cascade develops.

efficiency” E/C [38], which is an increasing function of

Re, as shown in Fig. 6 for two different binning proto-
cols. The ratio E/C tells us the fraction of the informa-
tion needed to predict C that is due to correlations E.
It is nearly zero when no cascade is present and grows
smoothly after one has emerged. This shows that E/C
is a nice tool for studying the transition to cascade tur-
bulence.
Besides this cascade transition, the laminar to fluctu-

ation transition is also of interest. Unfortunately, we are
not able to access a truly laminar regime with our appara-
tus. For laminar flow and this geometry, h = E = C = 0
[8]. Looking at Fig. 4, and with the reasonable assump-
tion that h and C are continuous functions of Re, one
expects a local maximum in C and h at some low value of
Re. This maximum would correspond to a special tran-
sition in the evolution of the flow between laminar and
turbulent behavior. The observation of this maximum
requires a different experimental setup.

V. CONCLUSION

The approach here is not limited to incompressible
Navier-Stoke’s turbulence. In fact it is useful for any
nonlinear system, even those for which one does not know
the equations of motion. When we think of turbulence
in terms of information and prediction, we can make new
distinctions and draw new insights. We have been able
to highlight a cascade transition and have seen that spa-
tially, turbulence is becoming easier to predict statisti-
cally as Re increases. As for our airplane, Figs. 4 and
6 bring bittersweet news. Although its passengers will
certainly experience a rougher flight as Re increases, at
least they won’t be as surprised.
We would like to thank D. P. Feldman for explaining

several concepts to us and for making his excellent lec-
ture notes available online. C. J. Ellison was kind enough
to explain some of the finer points of the formalism to us.
We are also indebted to M. Bandi for providing numerous
suggestions and insights. The criticisms and suggestions
from several referees have also been beneficial. This work
is supported by NSF Grant No. 1044105 and by the Oki-
nawa Institute of Science and Technology (OIST). R.T.C.
is also supported by a Mellon Fellowship through the Uni-
versity of Pittsburgh.

Appendix A: Data

The approach used here is data driven. We are given
a data stream and use it to say something about the sys-
tem that made it. The main assumption is that the sys-
tem is stationary [4, 8]. We don’t appeal to the Navier-
Stoke’s equation or any of Kolmogorov’s universality as-
sumptions [9, 17]. This method is generally applicable to
many types of systems.
The formalism is now introduced. In the discussion

that follows an uppercase U denotes the data (the ran-
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dom variable, the message) with possible velocity values
U and the lowercase u denotes a particular member of
that set. We can also consider groups of length L de-
noted by the set UL and its particular members uL. We
are interested in treating a group because of the corre-
lations that may exist between its members. Overhead
arrows indicate a direction in the 1D data set relative to

an arbitrary reference point x. For example,
−→
UL refers

to any block of data of size L taken to the right of x. For

example, if L = 3, then a particular block
−→
u3 is as below

...ux−∆x, ux,
−−−−−−−−−−−−−−−−−→ux+∆x, ux+2∆x, ux+3∆x, ux+4∆x, ...

where ∆x is the spatial resolution. If no L is mentioned,
the block is (semi-)infinite.
Let U be a velocity component in the soap film, which

is characterized by the experimental probability distri-
bution P (U). The focus is on the information shared

between different directions
←−
U and

−→
U relative to the ar-

bitrary point x [8, 39]. If we had data with explicit time
dependence, we would talk about the past, future and
present [8].
In order to use this formalism with turbulence, the con-

tinuous experimental data must be converted to symbols
[40]. A partition is defined which assigns data values in
specific ranges to unique symbols [11, 40]. This is usu-
ally referred to as binning the data. All experiments of
continuous systems do this because of limited resolution
ǫ. There are numerous previous studies where even bina-
rizing a turbulent velocity signal has given more insight
than traditional techniques [24, 40–42].
In this work we primarily use a binary partition (al-

phabet size A = 2) with the single partition wall located
at the mean velocity. This smaller alphabet allows us to
use a larger L with confidence and so cover a wider range
of length scales in our analysis. Just as with h in Ref.
[24], we have found that the general behavior of C and E
with respect to Re is independent of the partition size;
partitions of sizes A = 4, 8 gave similar results. Here the
choice was made to use the same alphabet size A for all
Re. This was done so that all data, if random, would have
the same maximum value of h = log2 A. Thus, all data
are treated at the same level of description. Of course,
there are alternative choices for setting the partition size.

Appendix B: Entropy density h

We have already spoken of the entropy density h as a
measure of unpredictability. The definition of entropy we
are most familiar with is [3, 4]

H(U) = −
∑

u∈U

p(u) log2 p(u), (B1)

with units of “bits”. This is the unpredictability of single
data points given no immediate knowledge of any previ-
ous data points. An example of this would be estimating

the unpredictability of letters in the English language
based solely on the frequency of the letters and not on
words.

Consider two examples. First look at a random string
of 1s and 0s where p(0) = p(1) = 0.5. Here H = 1 is the
maximum possible value. Next consider a periodic string
such as “...0101...”. Here again p(0) = p(1) = 0.5, and
so here also H = 1. However, something is wrong since
a periodic string should be perfectly predictable.

Since this definition of unpredictability misses any
structure or correlations extending across scales, it is gen-
eralized to the block entropies [10, 11]

HL = H(UL) = −
∑

uL∈UL

p(uL) log2 p(u
L). (B2)

This is the unpredictability of blocks of data. Of course,
if we want to go back to looking at the unpredictability
of a single data point, we can manipulate the HL. The
unpredictability of a single data point knowing L imme-
diately previous data points is

hL = HL+1 −HL. (B3)

The L-dependence is inconvenient, but if we make L large
enough hL will become L-independent (for most systems)
[10, 11]. We are now ready to introduce the entropy
density

h = lim
L→∞

hL = H(
−→
U1|
←−
U ) (B4)

with an equivalent definition in terms of the conditional
entropy [4]. This says explicitly how unpredictable a sin-
gle data point is given all previous ones.

To further develop intuition for how h is associated
with unpredictability, recall the Lyapunov exponents [7].
If a system is chaotic, its largest Lyapunov exponent λ is
greater than 0 [7]. If our measurement has a resolution
of ǫ and we enforce a tolerance of ∆, then our system is

typically predictable up to a distance of log
2
(∆/ǫ)
λ . Con-

sider an information approach to the same problem. We
choose to (or are forced to) have a particular partition

size ǫ. This will correspond to A = max(U)−min(U)
ǫ . Our

maximum possible uncertainty in bits is log2 A. It will

take n = log
2
A

h steps into the future to add up to this
uncertainty and beyond this our data stream is unpre-
dictable.

We estimate h using the limit of hL from Eq. B3 in
Eq. B4, as discussed in Ref. [24] and elsewhere [10, 11].
The undersampling bias in the H(UL) is corrected using
Grassberger’s method [11], although this did not affect
the value of h very much. The hL typically reached h at
L ≃ 10.
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Appendix C: Excess entropy E

While h tells us about the unpredictability of
−→
U1 given

←−
U , we may also want to know how much we actually

learned about
−→
U from

←−
U . This is the excess entropy E.

It is in some sense the opposite of unpredictability. E

doesn’t ask how much information we get from
−→
U upon

measuring, but how much we don’t get. We already know
it. Stated mathematically [10, 11]:

E = H(
−→
U )−H(

−→
U |
←−
U ) ≡ I(

−→
U ;
←−
U ) (C1)

where I(
−→
U ;
←−
U ) is the mutual information shared between

−→
U and

←−
U [4].

This E is the information we got from
←−
U that reduces

unpredictability. However, just like h, this is a statis-
tical statement that doesn’t tell us how to use that in-
formation. E does provide us with a lower bound on
the amount of information needed to make predictions,
since we need to account for all correlations. No matter
how it’s done, E bits will be necessary [10], otherwise we
ignore some structure in the system.
An alternative expression is used to estimate E [10]:

E =

∞∑

L=1

(hL − h) (C2)

This calculation uses essentially the same quantities in-
volved in estimating h. It turns out that for many chaotic
systems, hL−h ∝ 2−γL (γ is some constant independent
of L) [10]. This empirical relationship has been shown to
improve the estimation of E [10]. This expression will be
used when possible.

Appendix D: Crutchfield complexity C

We now come to prediction using a statistical model.
We must determine a set of special states called causal
states S [8]. These will make up a minimal representation
of our system for predictive purposes. In other words,
we are trying to build the simplest possible statistical
model of our data. For more details see Ref. [14]. There
Shalizi et al. show that within the information theory
framework, the approach described below is maximally
predictive with a minimal amount of information needed.
A statistical model consists of a set of states and the

transition probabilities between them. To determine S
consider all unique blocks of data UL. One would like to
make L large to capture as many correlations as possible,
but the finite amount of data means only finite L can be
statistically reliable. For our data, L ≃ 10 is a good
compromise. This L is also chosen because it is the value
of L at which hL typically reached h.
We now calculate the conditional probability

p(
−→
U L|←−u L) that any particular block ←−u L will give

rise to any other block of the same length. If the
conditional probability distributions conditioned on
two blocks are the same, they are indistinguishable
from a statistically predictive point of view. Thus
block 1 and block 2 are equivalent, uL

1 ∼ uL
2 , if

p(
−→
U L|←−u L

1 ) = p(
−→
U L|←−u L

2 ). This process incorporates
pattern recognition by construction, which is why C was
originally introduced as a complexity quantifier [8, 43].
All equivalent blocks are then combined and organized

into a set of predictive causal states S. For example,
suppose there are only three states u1, u2, and u3 (forget

about L here). If p(
−→
U |←−u 1) = p(

−→
U |←−u 2) 6= p(

−→
U |←−u 3),

then u1 ∼ u2 ≁ u3 and we have two causal states s1 =
(u1, u2) and s2 = (u3). Refer back to the example in Sec.
II. It is apparent that if P = 0.5 (or 1) there is only one
causal state, but if P 6= 0.5 (or 1), there are two causal
states.
The Shannon information (entropy) contained in S is

the statistical complexity [8, 44]

C = H [S] = −
∑

s

p(s) log2 p(s). (D1)

This is the total amount of information needed to statis-
tically reproduce the data, as we shall soon see.
Here is how this prediction work in practice: we find

the causal states S as just described and so we also have
the transition probabilities between the states S. Start
out in some state u belonging to a particular s. Deter-
mine the next s′ statistically using the known transition
probabilities p(s′|s) (the ′ means the next step). Then
determine a particular u′ belonging to this s′ according
to p(u′|s′). This is symbolically represented by

u
u∈s
−−→ s

p(s′|s)
−−−−→ s′

p(u′|s′)
−−−−−→ u′.

Then repeat. In this way the data is reproduced in a
statistical sense. In summary, we can write down the
probability of any u starting from any other u. This is
statistical prediction.
We needed to know an amount of information C =

H [S] to carry out the above prediction program. That
is, we need to ask (on average) C “yes” or “no” questions
in order to find the current state of the system, and then
predict from there. By design, this connects with the sys-
tem’s predictability, since organizing the message’s parts
into causal states will affect the value of C.
We can appreciate the distinction between C and h by

considering an unbiased coin flip. The system is maxi-
mally unpredictable with h = 1, since one has no clue as
to what will come next. In contrast, C = 0 since no infor-
mation is needed for statistical prediction. There is only
one causal state. This may strike the readers as strange,
since random data is supposedly impossible to predict.
This is only true if we insist on a prediction that has
absolute certainty. Here we are predicting statistically.
When actually handling real data to identify S, one

must deal with imperfections. These may be due to ex-
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ternal noise or the finiteness of the amount of data. Re-
gardless of the origin, one must set some sensible thresh-
old to determine if two conditional probability distribu-
tions are the same, since they will never be identical. An
example of some conditional probability distributions is
shown in Fig. 7. Two of the distributions are similar,
indicating that the two states belong to the same causal
state. The third distribution is entirely different. The
task is to choose a sensible metric to make this distinc-
tion objectively.
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UL

p(
U

L
|u
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uL  = 0 0 0 0 1

uL  = 0 0 0 1 1

uL  = 0 0 0 1 0

FIG. 7: An example of three conditional pdfs used to deter-
mine the causal states. The data used here is binarized tur-
bulence data with L = 5 (giving a total of 32 possible states)
and Re = 3300 (© = 00001, + = 00011, △ = 00010). The
horizontal axis features all the possible future states while the
vertical axis is the conditional probability that given a certain
past state, any of those possible future states will occur. Here
the distribution for states © and � appear similar while that
for state △ is quite different.

We wrote a MATLAB program that uses a χ2 test to
compare conditional probability distributions [45]. We
use a 0.95 confidence level, but the results are not sen-
sitive to this choice. Results from our method are in
good agreement with another frequently used algorithm
[46, 47]. In the end, of course, the choice has an element
of subjectivity to it.

Note that alternative expressions for h and E are [8, 27]

h = H [
−→
U1|
←−
S ] (D2)

and

E = I[
−→
S ;
←−
S ] = H [

−→
S ]−H [

−→
S ;
←−
S ] = C−H [

−→
S ;
←−
S ]. (D3)

Equations D2 and D3 say that the causal states serve as
a sufficient representation. Equation D2 also serves as a
check on our determination of S by comparing h calcu-
lated with Eq. D2 with our previous method from Eqs.
B3 and B4. From Eq. D3 we see that C may be different
from E. Actually, it can be shown that C ≥ E. The
difference between these two has various interpretations.

The interpretation of Crutchfield and coworkers is that
a system may have some “hidden” information, or cryp-
ticity χ = C − E [27, 48]. One might think that looking

at the correlations in the infinite
←−
U would be enough to

know how to predict, but we actually need a little more

χ for prediction. This still comes from the data (
←−
U )

but one needed to build this statistical model to get it
out. Wiesner and coworkers have interpreted χ as the
information erased at each step in the system’s evolution
[38]. If we were to simulate this system on a computer,
kBTχ (where kB = Boltzmann’s constant and T is the
computer’s temperature) would be the minimum thermo-
dynamic cost. This is an extension of Landauer’s work
on computation. He was the first to suggest that the
erasure of information has a thermodynamic cost [49].
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