
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Three-equation model for the self-similar growth of
Rayleigh-Taylor and Richtmyer-Meskov instabilities

Brandon E. Morgan and Michael E. Wickett
Phys. Rev. E 91, 043002 — Published  6 April 2015

DOI: 10.1103/PhysRevE.91.043002

http://dx.doi.org/10.1103/PhysRevE.91.043002


Three-equation model for the self-similar growth of Rayleigh-Taylor and

Richtmyer-Meskov instabilities

Brandon E. Morgan and Michael E. Wickett
Lawrence Livermore National Laboratory

Livermore, California 94550

In the present work, the two-equation k-L model [G. Dimonte and R. Tipton, “K-L turbulence
model for the self-similar growth of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys.
Fluids 18 (2006)] is extended by the addition of a third equation for the mass-flux velocity. A set
of model constants is derived to satisfy an ansatz of self-similarity in the low Atwood number limit.
The model is then applied to the simulation of canonical Rayleigh-Taylor and Richtmyer-Meshkov
test problems in one dimension and is demonstrated to reproduce analytical self-similar growth and
to recover growth rates used to constrain the model.
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I. INTRODUCTION

The k-L model [1] is a two-equation Reynolds-
Averaged Navier-Stokes (RANS) model developed specif-
ically for its application to the prediction of Rayleigh-
Taylor (RT) and Richtmyer-Meshkov (RM) instabili-
ties. Since its development, the k-L model has been
demonstrated to provide good agreement with theoret-
ical growth rates of RT- and RM-induced mixing [1, 2]
and has been applied to a wide range of applications in-
cluding prediction of astrophysical phenomena [3] and
simulation of inertial confinement fusion (ICF) targets
[4]. To close the pressure work term in the turbulence
kinetic energy equation (sometimes referred to as the
buoyancy source or buoyancy production term), the k-
L model relies on a gradient diffusion approximation to
model the mass-flux velocity, ai. Of course, it is expected
that such an approximation should break down for flows
with significant counter-gradient transport [5]. An alter-
native approach which is utilized by the Besnard-Harlow-
Rauenzen (BHR) family of models [6–8] is to instead
solve a transport equation for the mass-flux velocity.

One common issue that often arises in RANS model
development is the determination of certain model con-
stants that appear as scaling coefficients on turbulence
closures. In the BHR family of models, separate sets
of model constants are prescribed for the simulation of
RT and RM flows [7, 8]. For complex flows which may
involve combined fluid instabilities, such an approach is
likely to be unsatisfactory. It is therefore desirable to de-
velop a single model which may be applied consistently
in the prediction of both RT- and RM-type flows. In the
present work, an extension to the traditional k-Lmodel is
presented with the addition of a transport equation for ai
(henceforward referred to as the k-L-a model). Similar-
ity analysis used by Dimonte and Tipton [1] to determine
k-L model constants is then extended to encompass the
ai equation, and constraints on model constants are de-
rived based on expected self-similar growth rates for RT
and RM flows. Later, the expected self-similar growth is

confirmed through application of the k-L-a model to the
simulation of RT and RM flows in one dimension.

II. THE k-L-a MODEL EQUATIONS

The k-L-a RANS model is derived from the compress-
ible Navier-Stokes equations for a multi-component, non-
reactive gas mixture. In the present work, an overbar is
used to denote Reynolds averaging, and a tilde is used to
denote mass-weighted (Favre) averaging. Decomposition
of an arbitrary scalar, f , may therefore be written

f = f + f ′ = f̃ + f ′′ (1)

where the Favre average is related to the Reynolds aver-
age through the density, ρ, according to

f̃ =
ρf

ρ
. (2)

Utilizing this notation, we introduce the Reynolds stress
tensor, τij , the mass-flux velocity vector, ai, and the
density-specific-volume correlation, b, in terms of the ve-
locity vector, ui, and the specific volume, v ≡ 1/ρ

ρτij ≡ −ρu′′

i u
′′

j (3a)

ai ≡ −u′′

i (3b)

b ≡ −ρ′v′ . (3c)

Equations 4 through 10 summarize the model. In these
equations, t is time; xi is the spatial dimension vector; gi
is the gravitational acceleration vector; p is static pres-
sure; e is the specific internal energy; Yα is the scalar
mass fraction of component α; k is the turbulence ki-
netic energy; L is the turbulence lengthscale; and µt is
an eddy viscosity. b is closed in equation 13 in terms
of component partial densities, ρα, and volume fractions,
Vα. Cµ, Ca, CB, CD, CL, Na, Ne, Nk, NL, NY , and c are
undetermined model constants which will be set through
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similarity analysis. Cdev is a multiplier on the deviatoric
component of the Reynolds stress. For now, we follow
the approach of Sinha et al. [9] by setting Cdev = 0 to
avoid pathological over-amplification of turbulence in the
presence of shocks.

Dρ

Dt
= −ρ

∂ũi

∂xi
(4)

ρ
DỸα

Dt
=

∂

∂xi

(
µt

NY

∂Ỹα

∂xi

)
(5)

ρ
Dũj

Dt
= −

∂p

∂xj
+

∂

∂xi
(ρτij) + ρgj (6)

ρ
Dẽ

Dt
=− p

∂ũi

∂xi
− aj

∂p

∂xi
+ CD

ρ (2k)3/2

L

+
∂

∂xj

(
µt

Ne

∂ẽ

∂xj

)
(7)

ρ
Dk

Dt
=ρτij

∂ũi

∂xj
+ aj

∂p

∂xi
− CD

ρ (2k)
3/2

L

+
∂

∂xi

(
µt

Nk

∂k

∂xi

)
(8)

ρ
DL

Dt
=

1

3
ρL

∂ũi

∂xi
+ CLρ

√
2k +

∂

∂xi

(
µt

NL

∂L

∂xi

)
(9)

ρ
Daj
Dt

=C2
Bb

∂p

∂xj
− Caρaj

(2k)
1/2

L
+ τij

∂ρ

∂xi

+
∂

∂xi

(
µt

Na

∂aj
∂xi

)
(10)

where

D

Dt
≡

∂

∂t
+ ũi

∂

∂xi
(11)

µt = CµρL
√
2k (12)

b = ρ

(∑
α

Vα

ρα+cρ∑
α

Vαρα

ρα+cρ

)
− 1 (13)

Sij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
−

1

3

∂ũk

∂xk
δij (14)

ρτij = Cdev

(
2µtSij

)
−

2

3
ρkδij . (15)

Although addition of an equation for the mass-flux ve-
locity is similar to (and indeed inspired by) the BHR k-S-
a model [7], our approach in the present work is to start
with the 2006 Dimonte and Tipton model [1] and to ex-
tend it in such a way that additional model constants may
be closed through similarity analysis. Although Baner-
jee et al. [7] have utilized limited similarity analysis of a
low-Atwood number RT flow to constrain a subset of pa-
rameters in the k-S-a model, the present approach is to
apply similarity analysis in a broader sense to all model
constants, limiting parameterization to a few experimen-
tally observable characteristics of RT and RM flow as
Dimonte and Tipton have done for the 2006 k-L model
[1]. As a result, the present model differs from the BHR
k-S-a model in the following ways: firstly, production
terms that scale like L/k are neglected in the transport
equation for L as these terms and do not appear in the
2006 model, and they can be sensitive to unphysical tran-
sient oscillations when appearing in concert with terms
scaling like k/L (as in the e, k, and a equations). Sec-
ondly, only shear and Reynolds stress production terms
are included in the ai equation, as the additional pro-
duction terms which appear in the BHR k-S-a model are
generally small for RM and RT flows [8]. Additionally, in
the present model, closure for the velocity-pressure gradi-
ent correlation in the internal energy equation is chosen
to exactly equal the buoyancy production term in the
k equation; this choice again derives from the 2006 k-L
model and imposes a symmetric exchange between tur-
bulence kinetic energy and internal energy. Finally, the
algebraic closure for b in the present model is generalized
for an n-component mixture and includes an added-mass
correction factor, c.

III. SIMILARITY ANALYSIS

We now utilize an ansatz of self-similarity to determine
values for the model constants listed in the previous sec-
tion. Constants are chosen to satisfy the self-similarity
ansatz and reproduce the expected self-similar growth of
one-dimensional RT- and RM-induced mixing layers. In
this section, the overbar notation to indicate Reynolds-
average quantities is dropped for simplicity yet remains
implied. Analysis is further simplified by assumptions
of incompressible flow at low Atwood number. These ap-
proximations together allow us to drop spatial derivatives
of velocity and to divide out factors of ρ. Mean convec-
tive terms arising from the material derivative and the
second production term in the L equation, ρL ∂ũi

∂xj
, are

therefore not included in the similarity analysis; a model
coefficient of 1/3 is assumed for the second L production
term based on the original argument of mass conservation
under compression given by Dimonte and Tipton [1].
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A. Self-Similarity of the L Equation

To begin, a change of variable is introduced in terms
of the self-similar mixing width, h(t). Let χ ≡ x/h. It is
then assumed that the analytic functions k and L are sep-
arable in space and time such that k(χ, t) = K0(t)f(χ)
and L(χ, t) = L0(t)f

1/2(χ). By applying the simplifying
assumptions and substituting into equation 9, the one-
dimensional L equation can be reduced to

D

Dt

(
L0f

1/2
)
=

∂

∂x

[
Cµ

NL
L0f

√
2K0

∂

∂x

(
L0f

1/2
)]

+ CLf
1/2
√
2K0 . (16)

The self-similarity ansatz is then applied by assum-
ing that the spatial function f is self-similar such that
f(χ) = 1 − χ2 and L0(t) = βh(t). Equation 16 is then
transformed further to equation 17, where a dot indicates
differentiation with respect to time.

L̇0 =
√
2K0

(
CL −

Cµ

NL
β2

)

+
√
2K0

(
2
Cµ

NL
β2 − CL

)(x
h

)2
. (17)

In order to satisfy the self-similarity ansatz, equation 17
must be satisfied for all x. Since the left-hand side is a
function of time only, it is required that the terms pro-
portional to x2 must vanish. This requirement is satisfied

if β = [CLNL/(2Cµ)]
1/2

. Inserting this constraint back
into equation 17 then gives

L̇0(t) =
CL

2

√
2K0 . (18)

B. Self-Similarity of the a Equation

Consider an RT-unstable configuration of two fluids in
hydrostatic equilibrium with gravitational acceleration.
This permits transformation of equation 10 to

ρ
Da

Dt
=

∂

∂x

(
µt

Na

∂a

∂x

)
− C2

Bρgb

− ρCaa
(2k)1/2

L
−

2

3
k
∂ρ

∂x
. (19)

Recall, b is the density-specific-volume correlation. It
is defined exactly by b ≡ −ρ′v′ = (ρ) (v) − 1. Let us
assume that the mean density profile is given in terms of
the density of the heavy fluid, ρH , and the density of the
light fluid, ρL. Then, the self-similar form of the density
profile is given by

ρ = ρ0

(
1 +AT

x

h

)
, (20)

where ρ0 indicates the density at x = 0, and AT is the
conventional Atwood number:

ρ0 =
ρH + ρL

2
and AT =

ρH − ρL
ρH + ρL

. (21)

Applying the closure for the mean specific volume used
in equation 13 gives the specific volume profile

v =
(1 + c) ρ0 +AT (c− 1)ρ0

(
x
h

)

(1 + c−A2
T ) ρ

2
0 + 2cρ20AT

(
x
h

)
+ cρ20A

2
T

(
x
h

)2 . (22)

Then, the self-similar form of the density-specific-
volume correlation, given in equation 23 can be obtained.
To eliminate the x/h dependence in the denominator, it
is required that c = 0, which reduces the expression fur-
ther.

b =
A2

T

[
1−

(
x
h

)2]

(1 + c−A2
T ) + 2cAT

x
h + cA2

T

(
x
h

)2

=
A2

T

1−A2
T

f . (23)

Let us also define the k-L-a Atwood number,

A(x) ≡
CA

1−A2
T

L

ρ0

∂ρ

∂x
= CAβ

AT

1−A2
T

f1/2 . (24)

Since the self-similar function f has a maximum value
of 1 at x = 0, it is convenient to define the k-L-a
Atwood number such that it has peak value equal to
AT /

(
1−A2

T

)
at x = 0. This constraint requires CA =

1/β. The following self-similar form of a is then assumed:

a = −CBA(x)
√
2k

= −CB
AT

1−A2
T

√
2K0f . (25)

Substituting equations 20, 23, and 25 into equation 19
yields equation 26 after collecting terms and rearrang-
ing. For the similarity ansatz to hold, it is required that
equation 26 is satisfied for all values of x. The only way
this can happen is if both the zero and second moments
simultaneously go to zero, which requiresNa = 2NL. Ap-
plying this condition reduces both moments to the same
result, given by equation 27, where a change of variable
has been introduced in terms of the turbulent velocity
V0 ≡

√
2K0, and the low-Atwood number approximation

has been utilized to drop terms scaling like A2
T .
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[
K̇0√
2K0

+
CLNL

Na

(2K0)

L0

− CBAT g +

(
Ca −

β
(
1−A2

T

)

3CB

)
2K0

L0

]

︸ ︷︷ ︸
zero moment

−

[
K̇0√
2K0

+

(
3CLNL

Na
− CL

)
(2K0)

L0

− CBAT g +

(
Ca −

β
(
1−A2

T

)

3CB

)
2K0

L0

]

︸ ︷︷ ︸
second moment

(
x2

h2

)
= 0 . (26)

V̇0 = CBAT g −
V 2
0

L0

(
Ca −

1

3CACB
+

CL

2

)
. (27)

C. Self-Similarity of the k Equation

If we again consider the RT-unstable problem in hy-
drostatic equilibrium, equation 8 may be transformed to
the following form of the k equation in one dimension.

Dk

Dt
=

∂

∂x

(
CµL0f

√
2K0

Nk

∂k

∂x

)

+ g

[
CB

AT

1−A2
T

√
2K0f

]
− CD

(2k)
3/2

L
. (28)

After substituting for k, expanding the material deriva-
tive, and collecting terms, equation 28 is reduced to a
more useful form,

[
K̇0 +

CLNL

2Nk

(2K0)
3/2

L0

− CB
AT

1−A2
T

g
√
2K0 + CD

(2K0)
3/2

L0

]

︸ ︷︷ ︸
zero moment

−

[
K̇0 +

(
3CLNL

2Nk
−

CL

2

)
(2K0)

3/2

L0

− CB
AT

1−A2
T

g
√
2K0 + CD

(2K0)
3/2

L0

]

︸ ︷︷ ︸
second moment

(x
h

)2
= 0 . (29)

Following the usual procedure, the zero and second mo-
ments must simultaneously to go to zero, which requires
Nk = 2NL. With this constraint, both moments of the
k equation are reduced to a second equation in terms of
V0,

V̇0 = CBAT g −
V 2
0

L0

(
CD +

CL

4

)
. (30)

In order to simultaneously satisfy equations 27 and 30,
we require

Ca = CD +
1

3CACB
−

CL

4
. (31)

D. Richtmyer-Meshkov Growth Rate

Experimental observations are now utilized to provide
further constraints. In an RM configuration, after the

shock has passed, the acceleration term in equation 30
will vanish. Then substitution of equation 18 into equa-
tion 30 gives

2

CL
L̈0 = −2

L̇2
0

L0

(
CD

CL
+

1

4

)
. (32)

Integrating this equation for L0 requires initial values
of L0(0) and L̇0(0). Anticipating the result, we try a
solution of the form

L0(t) = L0(0)

[
L̇0(0)

θL0(0)
+ 1

]θ
. (33)

Substituting this equation and its derivatives into equa-
tion 32 gives a simple expression, which may be rear-
ranged to provide a constraint on the ratio CD/CL in
terms of the RM growth rate, θ:
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CD

CL
=

2− 3θ

4θ
. (34)

E. Rayleigh-Taylor Growth Rate

In an RT configuration, the acceleration term in equa-
tion 30 cannot be dropped. In this case, we assume a
solution of the form L0 = BAT gt

2. Substitution into
equation 18 gives V0 = 4

CL
BAT gt. Then, substituting

the trial solutions into equation 30 provides a relationship
between the RT constant B and the model constants,

B =
CBCL

8
(
1 + 2CD

CL

) . (35)

For small Atwood number it is expected that the bub-
ble height will be h(t), and it is expected that bubble
height should grow according to h(t) = αbgAT t

2. Utiliz-
ing this relationship, one can derive the following expres-
sion for CB :

h(t) =
L0(t)

β
=

√
CµCL

NK

CB

4
(
1 + 2CD

CL

)AT gt
2,

CB =
4αb

(
1 + 2CD

CL

)

√
CµCL

NK

. (36)

The turbulence kinetic energy generated within an RT
mixing layer is given by

EK =

∫ h

−h

ρK(x, t)dx

= K0

∫ h

−h

(
ρ0 +

∂ρ

∂x
x

)(
1−

(x
h

)2)
dx

= K0

∫ h

−h

[
ρ0

(
1−

(x
h

)2)
+

∂ρ

∂x

(
x−

x3

h2

)]
dx .

(37)

By symmetry, the integral over odd powers of x will van-
ish, leaving EK = 4

3
h(t)ρ0K0(t). Since K0/L0 is con-

stant, K0/h should also be constant, which allows further
reduction:

K0

h
= β

K0

L0

=
2αbAT gNK

CLCµ
(38)

and

EK =
8

3

(
NK

CLCµ

)
αbATρ0gh

2 . (39)

The gravitational potential energy within an RT mix-
ing layer can also be derived by imagining a material
interface at x=0 and integrating over a distance 2d,

PE = −g

∫ d

−d

ρ(x)xdx

= −g

∫
−h

−d

ρLxdx− g

∫ h

−h

(
ρ+

∂ρ

∂x
x

)
xdx− g

∫ d

h

ρHxdx

= −
g

2
(ρH − ρL) d

2 +
g

6
(ρH − ρL)h

2 . (40)

Since we are only interested in the change in poten-
tial energy over the mixing width, we consider the term
proportional to h, ∆PE = g

6
(ρH − ρL)h

2. Thus, the
fraction of potential energy converted to kinetic energy
is given by

EK

∆PE
=

8

3

NK

CLCµ
αbAT

ρH+ρL

2
gh2

g
6
(ρH − ρL)h2

=
8NKαb

CLCµ
. (41)

F. Self-Similarity of the Scalar Equation

Conservation of species mass fraction in one dimension
is given by equation (42), where the species subscript on
the mass fraction has been dropped for simplicity,

DY

Dt
=

∂

∂x

(
CµL

√
2k

NY

∂Y

∂x

)
. (42)

It is assumed that the self-similar solution for the
light fluid must look like Y (x, t) = 0.5 [1− x/h(t)], with
derivatives

∂Y

∂t
=

xḣ

2h2
and

∂Y

∂x
= −

1

2h
. (43)

It is additionally useful to write

√
2k(x, t) =

√
2K0(t)

√
1−

(x
h

)2

=
2

CL
L̇0(t)

√
1−

(x
h

)2
. (44)

Substituting equations 43 and 44 into equation 42 gives

Ẏ =
xḣ

2h2
=

2Cµ

CLNY

L0L̇0x

h3
. (45)

Finally, we utilize L0 = βh and L̇0 = βḣ and substitute
into equation 45, which gives

Ẏ =
xḣ

2h2
=

NL

NY

xḣ

h2
. (46)

Inspection reveals that this equation can only be sat-
isfied if NY = 2NL.



6

TABLE I. Summary of model constants and the equations that constrain them.

Cµ Ca CB CD CL Na Ne Nk NL NY c

Value 0.204 0.339 0.857 0.354 0.283 0.060 0.060 0.060 0.030 0.060 0.000

Equation - 31 36 54 34 26 51 29 41 45 23

G. Self-Similarity of the Internal Energy Equation

Applying the simplifying assumptions and substituting
into equation 7 gives

De

Dt
=

∂

∂x

(
CµL

√
2k

Ne

∂e

∂x

)
+ CD

(2k)3/2

L
. (47)

It is assumed that the self-similar solution takes form
e(x, t) = e0+ e1f(x, t). After some algebra and substitu-
tion, one obtains

e1CLV0

L0

(x
h

)2
=−

NL

Ne

e1CLV0

L0

[
1− 3

(x
h

)2]

+ CD
V 3
0

L0

[
1−

(x
h

)2]
. (48)

Again, it is required that the reduced equation must
be satisfied for all x, which requires that the zero and
second moments must be true simultaneously. We start
by considering the zero moment equation,

−
NL

Ne

e1CLV0

L0

+ CD
V 3
0

L0

= 0 (49)

which can be rearranged to give

CDV 2
0 =

e1CLNL

Ne
. (50)

Utilizing equation 50, we can then write the second mo-
ment equation,

e1CLV0

L0

=
2NL

Ne

e1CLV0

L0

. (51)

In order to satisfy the second moment equation, it is
required that Ne = 2NL.

H. Decay of Homogeneous Isotropic Turbulence

In the absence of mean velocity or pressure gradients,
equations 8 and 9 reduce to ordinary differential equa-
tions

dk

dt
= −CD

(2k)
3/2

L
and

dL

dt
= CL

√
2k . (52)

These equations are solved in terms of a reference time,
t0, and a decay constant, n:

k = K0

(
1 +

t

t0

)
−n

, (53a)

L = L0

(
1 +

t

t0

)1−n/2

. (53b)

By substituting equations 53a and 53b into equation 52,
the following expression is obtained for the decay con-
stant

n =
2CD

CL + CD
. (54)

I. Summary of Constraints

To complete the set of model constants, experimental
observations are used to set the RT growth rate α = 0.060
[10, 11], the RT energetics ratio EK/∆PE = 0.5 [11, 12],
and the RM growth rate θ = 0.25 [10, 13]. The value for
Cµ is something of a free parameter when Cdev = 0 be-
cause its scaling can essentially be accounted for by the
diffusion constants NY , Ne, Nk, NL, and Na; indeed Di-
monte and Tipton [1] take Cµ ≡ 1 for this reason. How-
ever, in future incarnations of the present model which
may include the deviatoric stress tensor, it will be useful
to take Cµ < 1 to better account for shear instabilities. In

the present work, we take Cµ

√
2 = 0.288 for consistency

with experimental RT work by Banerjee et al. [14]. The
constant CD is set by the decay of homogeneous isotropic
turbulence (HIT), as given by equation 54. Experimen-
tal measurements of the decay constant n range between
1.15 and 1.45 [15], while standard k-ǫ [16] and k-L mod-
els [1] have historically arrived at lower values of 1.09 and
1.11, respectively. By selecting CD = 2−3/2 ≈ 0.35, we
arrive at a decay constant n ≈ 1.11. Table I summarizes
the complete set of model constants and the equations
that constrain them.

A fully constrained model has now been developed
that satisfies the ansatz of self-similarity laid out in sec-
tion III A. It is worth noting, however, that although
a particular form of self-similar profiles is assumed, this
set is not necessarily the only set that will satisfy self-
similarity. Indeed, as a consequence of the assumed pro-
files, the specific dissipation rate (sometimes referred to
as the turbulent frequency), ω, should be independent of
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space. That is,

k1/2

L
=

K
1/2
0 (t)f1/2(χ)

L0(t)f1/2(χ)
= ω(t) . (55)

Although this constraint is close to physical for a range
of canonical turbulent flows including grid turbulence,
homogeneous shear flows [15], and low-Atwood number
Rayleigh-Taylor mixing layers [17], the present model
may prove to be too constraining for more complicated
flows with spatially varying ω.

IV. COMPUTATIONAL RESULTS

Having derived a set of model constants that satisfy the
self-similarity ansatz, it is now desired to apply the model
to canonical one-dimensional RT and RM test problems.
The k-L-a model is implemented in the Ares code, which
is a second-order arbitrary Lagrangian/Eulerian (ALE)
hydrodynamics code developed at Lawrence Livermore
National Laboratory (LLNL). In this section, basic units
of mass, length, time, and temperature are those used
in Ares : grams, centimeters, microseconds, and degrees
Kelvin.
Self-similar growth is first probed in a simple problem

meant to approximate a hydrostatic RT configuration
in equilibrium with an acceleration equal to 100 times
Earth’s gravity. The initial density ρ0, temperature T0,
and pressure p0 are summarized by equation 56 in terms
of the gas constant R and the acceleration g.

ρ0(y) =

{
1.0 y ≥ 0
1−AT

1+AT
y < 0

,

T0(y) =
g

R
y + 293,

p0(y) = ρ0RT0 . (56)

We consider two ideal, monatomic gases subject to con-
stant acceleration in a unit domain with 1600 uniformly
spaced computational volumes, or zones. L is initialized
to zero everywhere except for the two zones bordering
the interface at y = 0, where L = λ0 = 4.0e-6. We ad-
ditionally initialize k = ay = 0 everywhere; however, to
ensure production occurs at early time, b is taken as the
maximum of 1.0e-4 and the value given by equation 13
in the interface zones. Figure 1 illustrates that excel-
lent self-similar growth is obtained by plotting normal-
ized profiles of k, L, µt, ay, b, and Yheavy against the ex-
pected analytic profiles for AT = 0.05. Figure 2 further-
more illustrates that magnitudes of K0, L0, and bubble
height hb are well converged, and the bubble growth rate
αb = hb/AT gt

2 also converges to the model constraint,
0.060. In this case, bubble height is defined at the 99%
contour of heavy mass fraction, spike height hs is defined
at the 1% contour, and h = 0.5(hb + hs).
Application of the model at higher Atwood numbers is

tested in figure 3, which plots normalized profiles of k, L,

and ay for the same RT test problem at AT = 0.05, 0.20,
0.40, 0.60, and 0.80. As the Atwood number is increased,
the profiles become offset and skewed towards the spikes,
which is consistent with observations made by Dimonte
and Tipton[1]; however, the magnitude of the normalized
ay profile is additionally seen to decrease with increasing
Atwood number, which might be expected given the At-
wood number dependence in equations 23 and 25.
Finally, the k-L-a model is applied to the simula-

tion of three different air/SF6 shock tube experiments
(AT = 0.67) to test its ability to predict RM growth
rates. In each of the experiments considered [18, 19], a
shockwave is driven from air into SF6 and is reflected. In
the Vetter and Sturtevant experiments [19], a rarefaction
wave additionally interacts with the mixing zone shortly
after the reflected shock. Solutions are found to be well
converged for all cases with 2560 zones in the SF6 test
section, 3840 zones of shocked air (157 cm), and 80 zones
of ambient air (6.0 cm). An initially diffuse interface of
width h0 is assumed and imposed as initial conditions,
as summarized in equation 57. Initial k and ay are taken
to be 0 everywhere.

YSF6
(y) =

1

2

[
1 + tanh

(
y

h0

)]
,

L(y) = 4h
1/2
0 YSF6

(y) [1− YSF6
(y)] . (57)

As illustrated in figure 4, computed mixing width pro-
files compare favorably with experiment across a range
of Mach numbers. Additionally, it is expected that
the mixing width should grow according to h(t) =

h0

[
ḣ0t/(h0θ) + 1

]θ
. Using this equation, it is possible to

fit a curve to the computational profiles after both shock
interactions to extract the realized RM growth rate, θ.
For the Mach 1.2 case [18], the realized growth rate
θ ≈ 0.251, which is very close to the model constraint,
0.25. For the higher Mach number cases, θ ≈ 0.262,
which is consistent with values between 0.258 and 0.264
observed by Dimonte and Tipton [1].

V. SUMMARY

In the present work, an extension of the k-L model
[1] has been presented in which an additional transport
equation is solved for the mass-flux velocity. Detailed
similarity analysis was conducted to derive a set of model
constants which satisfy an ansatz of self-similarity for RT
and RM unstable flows in the limit of low Atwood num-
ber. The properly constrained model was then applied
to several one-dimensional test problems, and realized
growth rates were found to compare favorably with both
experiment and the expected theoretical growth rates
used to constrain the model. Favorable comparisons with
shock tube data up to AT = 0.67 and Mach 1.98 demon-
strate model flexibility at least comparable to the stan-
dard k-L model.
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FIG. 1. Normalized profiles obtained for a one-dimensional RT mixing layer of AT = 0.05 at non-dimensional time τ =

t (AT g/λ0)
1/2 = 324 (�), 648 (©), 972 (△), and 1296 (♦): (a) K∗ = k/K0, (b) L∗ = L/L0, (c) µ∗

t = µt/(CµρL0

√
2K0), (d)
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√
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∗ = (1− A2

T )b/A
2

T , and (f ) Y ∗ ≡ heavy fluid mass fraction.
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history of αb = hb/AT gt

2.

Although the present work has focused on validation
exercises for which the standard k-L model has already
been shown to be effective, the k-L-amodel is expected to
better capture multi-dimensional turbulent mixing prob-
lems which may have significant counter-gradient diffu-
sion, particularly at early time [5]. Further work must
be done to apply the k-L-a model to these types of prob-
lems, to extend the model to include the effects of the
deviatoric stress tensor, and to assess the accuracy of the
model when applied to the simulation of turbulent fields

with spatially varying specific dissipation rate.
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