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This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze
the effect of network structure on diffusive dynamics such as the spread of infectious disease. We
exhibit a representation for the reliability polynomial in terms of what we call structural motifs that
is well suited for reasoning about the effect of a network’s structural properties on diffusion across
the network. We illustrate by deriving several general results relating graph structure to dynamical
phenomena.

I. INTRODUCTION

Characterizing networks in a way that is directly rele-
vant to diffusion phenomena on the network is important,
but difficult. We argue that the Network Reliability Poly-
nomial introduced by Shannon and Moore [1] is a charac-
terization that folds together static measures like degree,
modularity, and measures of centrality into precisely the
combinations that are most relevant to the dynamics. [2]
Conversely, knowledge of reliability can be used to in-
fer structure, in the sense of network tomography. [3]
Furthermore, reliability is a useful concept for reason-
ing more generally about the consequences of structural
changes. Colbourn [4] gives a comprehensive introduc-
tion to network reliability, while Youssef [5] provides a
brief derivation of the form of the reliability polynomial.

A network’s reliability is the probability that it contin-
ues to function after sustaining damage to its component
edges and/or vertices. Reliability depends on a parame-
terized damage model D(~x), which specifies the probabil-
ity of damaging a particular set of components, and a pa-
rameterized property P(~α), which specifies what it means
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for the network to function. Canonical problems in diffu-
sion over fixed networks can be cast in terms of reliability.
For example, a damage model D(x) under which edges
(respectively, vertices) fail independently with probabil-
ity 1− x represents bond (respectively, site) percolation.
The choice of P then selects the dynamical phenomenon
of interest. For example, the property “contains a con-
nected component including at least a fraction α of the
vertices” is appropriate for studying the existence of a
giant component. For ease of notation, we often express
P in terms of a corresponding reliability rule rP , a binary
function indicating whether property P holds for a given
graph. We say that the rule accepts a graph g if and only
if r(g) = 1, that is g has the property P.

Here we introduce four different reliability rules. The
first three are the most commonly used rules, followed
by the last one that could be of use to study percolation
problems. To make it easier to understand, we refer to
real world problems like designing reliable communica-
tion networks and epidemiology which benefit from each
of these rules:

1. Two-Terminal: a graph is accepted if it contains at
least one directed path from a distinguished ver-
tex S (the source) to another distinguished ver-
tex T (the terminus). Reliability under this rule is
the probability that the specified source can send
a message to the specified terminus in a damaged
network. [6]
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2. K-Terminal: a graph is accepted if every vertex
is in a connected component that includes at least
one of K specified vertices. For example, consider
a set of K nodes as service centers. Then reliability
under this rule is the probability that every oper-
ational site in a damaged network is connected to
at least one service center. [7]

3. All-Terminal: a graph is accepted if it consists of
a single connected component. The reliability un-
der this rule, also known as system reliability is the
probability that every pair of nodes in a damaged
network can communicate with each other, or al-
ternatively, that any vertex in a damaged network
can broadcast to all the other vertices. [8]

4. EAR-α: To understand this rule we discuss the ap-
plication of bond percolation for the study of the
spread of infectious diseases on networks. Such a
bond percolation disease model was explained by
[9] . The probability that an edge does not fail
represents the transmissibility, i.e., the conditional
probability of transmitting infection from one per-
son to another, conditioned on the source being in-
fectious and the destination being susceptible. One
of the most important properties of disease dynam-
ics is the attack rate, defined as the fraction of the
population infected in an outbreak. Most models of
infectious disease exhibit a sharp transition in the
attack rate at a critical value of transmissibility. In-
deed, this is a percolation phase transition. Using
reliability we can find the relationship between crit-
ical transmissibility and all structural information
of a network contained in its edge list. In this case
the reliability is the probability that the expected
attack rate for an outbreak seeded in a single person
chosen uniformly at random from the population is
at least α. Hence, we call this rule EAR-α.

These rules are all coherent. That is, any graph formed
by adding an edge to an accepted graph is also accepted.
In a companion to this paper [5], we have shown how the
concept of network reliability together with an efficient,
scalable estimation scheme can shed light on complicated
dynamical trade-offs between local structural properties
such as assortativity-by-degree and the number of trian-
gles. Here we introduce a different representation of the
reliability polynomial that highlights the role certain net-
work structures play in dynamical phenomena. We show
how coefficients of the reliability polynomial can be in-
terpreted in terms of topological motifs in the network
and their overlaps. Conversely, we illustrate how knowl-
edge of these motifs and their overlaps can be used to
infer important constraints on the dynamics of diffusion
processes on the network. The representation in [5] is
well-suited for computational analysis of networks with
up to 108 edges, but is analytically tractable only for
small networks; the representation presented in the cur-
rent work is analytically tractable, but computationally

feasible only for small networks because of its combina-
torial complexity. Thus the results of this paper exactly
complement those of the previous paper.

II. RELIABILITY POLYNOMIALS

We use the common notation of G(V,E) for a graph
with V vertices and E edges. The graph may be directed
or undirected, and it is possible to have multiple edges
between two vertices.

The vertices and edges may be labeled. The general
case of directed edges and labeled vertices and edges
is powerful enough to represent extremely complex net-
works such as interdependent infrastructure networks.
Here, without loss of generality, we restrict ourselves to
homogeneous networks represented as undirected, unla-
beled graphs.

A. Definition and a common representation

The reliability R(G,P(~α), D(~x)) of a network G with
respect to the property P under damage model D is the
probability that a subgraph of G chosen with probability
given by D has property P, the binary rule rP examines
whether subgraph has property P or not, if it has then:

rP(~α)(g) = 1,

otherwise

rP(~α)(g) = 0.

i.e. , reliability can be interpreted as the expected value
of the reliability rule operator over different subgraphs
of G. We will explicitly include the dependence on
the network G and the property P in notation such as
R(G,P(~α), D(~x)) only when we wish to distinguish the
reliability of two different graphs or two different prop-
erties. Moreover, we will not include the damage model
itself, but only the values of its parameters ~x. Finally,
for a homogeneous network in which all edges (or all ver-
tices) fail with the same probability, ~x is a scalar, x. Thus
we can write the reliability simply as R(x).

R(x) ≡
∑
g⊆G

rP(~α)(g)pD(~x)(g) (1)

For the independent-edge damage model, in which the
probability of selecting a subgraph g ⊆ G depends only
on the number of its edges, |g| = k, and is xk(1− x)E−k,
we have:

R(x) =
∑
g⊆G

rP(~α)(g)xk(1− x)E−k (2)



3

We can re-write 2in terms of sum over subgraphs of
different sizes, introduced by Alon et al.[10] as motifs:

R(x) =

E∑
k=0

Rkx
k(1− x)E−k. (3)

Rk is the number of subgraphs of G with exactly k
edges that are accepted by the rule. For computational
convenience, we often prefer to work with normalized co-
efficients

Pk ≡ Rk/
(
E

k

)
. (4)

Pk is the fraction of subgraphs of kG with exactly k edges
that are accepted by the rule. Pk ≤ Pk+1 for a coherent
rule. Pk can be estimated efficiently via monte Carlo
simulation. [5]

Substituting Rk coefficients in Equation 2 with Pks
from 4, we can see the resemblance to binomial distri-
bution, since Pk ≤ 1 it is clear that

R(x) =

E∑
k=0

(
E

k

)
Pkx

k(1− x)E−k

≤
E∑
k=0

(
E

k

)
xk(1− x)E−k ≤ 1 (5)

Therefore, R(x) : [0, 1] → [0, 1] is a continuous polyno-
mial with only a finite, but possibly large, number of
coefficients Rk, k ∈ {0, . . . , E}. That is, the reliability
can be thought of as a vector in an E + 1-dimensional
vector space, and the Rk’s as the components of the vec-
tor in the basis xk(1−x)E−k. There are, of course, many
other bases we could choose for this space. An orthogo-
nal basis, such as the first E + 1 Legendre polynomials,
might have useful estimation properties. Here we use an-
other non-orthogonal basis – the functions xk ı.e. the
Taylor series expansion – because of its simplicity and
its attractive interpretation. There is a unique mapping
from coefficients in one basis to those in the other, which
can be derived by expanding the factor (1 − x)E−k in
Equation 3:

R(x) =

E∑
k=0

Rkx
k
E−k∑
m=0

(
E − k
m

)
(−1)mxm

=

E∑
k=0

Rk

E∑
l=k

(
E − k
l − k

)
(−1)l−kxl

=

E∑
l=0

(−1)lxl
l∑

k=0

(−1)kRk

(
E − k
l − k

)

=

E∑
l=0

Nlx
l (6)

where

Nl ≡ (−1)l
l∑

k=0

(−1)k
(
E − k
l − k

)
Rk. (7)

The Nl coefficients are signed integers. In section II C
we will explain how we can interpret these coefficients.

B. Structural motifs

We can express the reliability polynomial in terms of
overlaps among certain distinguished subgraphs. These
subgraphs are the P-minimal subgraphs of G. A graph
g is P-minimal if and only if:

1. g has property P; and

2. there is no proper subgraph g′ ⊂ g that has prop-
erty P.

Obviously, whether a graph is P-minimal or not depends
on the property P, or equivalently here, the reliabil-
ity rule. For example, P-minimal graphs under a Two-
Terminal rule are paths from S to T with no extraneous
edges, i.e., no loops or dead ends; under the All-Terminal
rule, they are spanning trees. In general, the rule se-
lects a distinctive topological pattern (e.g. path, span-
ning tree) that may occur many times in a given graph,
i.e., if we consider all subgraphs of a distinctive pattern
to be the motifs introduced by Alon et al.[10] then reli-
ability rule selects a subset of these motifs that has the
property P. We refer to subsets generated by a particu-
lar rule as structural motifs because, as we will demon-
strate, they are the structural elements of the network
that completely determine the occurrence of dynamical
phenomena of interest, as specified by P. One advantage
of using this representation is that the contribution of
the structural motifs to the reliability is known exactly
for all P and all D, as is shown below.

To describe this, we apply two terminal reliability rule
with source and terminus nodes as its parameters on a
small toy network, depicted in Figure 1. For this rule
structural motifs are simple paths (including but not lim-
ited to shortest paths) connecting these two nodes. The
structural motifs and their overlap can be seen in Fig-
ure 1.

In another example, we consider the two-terminal re-
liability rule on a two dimensional grid with 4 nodes in
each dimension. For a given source node we look at two
different terminus nodes to illustrate the dependence of
structural motifs on parameters of the reliability rule.
Several structural motifs of different sizes for each set of
selected sources and termini are shown in Figure 2.

C. Contribution of structural motifs to R(x)

The sizes of each motif and their unions completely
determine a network’s reliability. We demonstrate this
using an Inclusion-Exclusion argument motivated by a
series of straightforward examples. A detailed proof and
more examples are provided in Appendices A and B.
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FIG. 1. Example calculation of two-terminal reliability in the
toy network in the left panel. The second panel from the
left shows the four motifs; the third shows all unions of two
motifs. There are

(
4
3

)
= 4 unions of 3 motifs, all of which give

the entire graph as shown on the top of the right panel; there
is one union of all motifs, which is also the entire graph. The
number next to each union of motifs gives its size.

S

T1

S

T2

FIG. 2. Structural motif for the two-terminal reliability rule
are shown for same source node S and two different target
nodes T1 and T2. We can see that structural motifs of the
same network varies with the parameters of property P. In
the left grid three structural motifs of sizes 6 are shown: note
that black dashed path and gray line have all but two edges
in common. For the grid on the right, black normal, black
dashed and gray paths represent motifs of sizes 3, 5, 9 respec-
tively. The last two have two edges in common.

1. Example 1: A single structural motif

Suppose the network G contains only one structural
motif and that it is a set of k0 edges. For example, for
Two-Terminal reliability, suppose that there is exactly
one path between S and T , and that it has length k0.
Then the motif will occur exactly once among all sub-
graphs of size k0. For k > k0, we must “use up” k0 edges
to build the structural motif. This leaves E − k0 other
edges from which, because the rule is assumed to be co-
herent, any set of k−k0 produces an acceptable subgraph

of size k. Hence for this case

Rk =

{
0 k < k0(
E−k0
k−k0

)
k ≥ k0

(8)

2. Example 4: N disjoint structural motifs

Suppose the graph has exactly N structural motifs,
that all have k0 edges, and that the N edge sets are dis-
joint. Arguing as above, with the convention that

(
a
b

)
= 0

∀b < 0, gives:

Rk =

N∑
i=1

(−1)i+1

(
N

i

)(
E − ik0

k − ik0

)
(9)

3. Example 5: Two overlapping structural motifs

Suppose the graph has exactly two structural motifs,
that both have k0 edges, and that the number of edges in
the union of the two is k0 + ∆. Arguing as in Example 1,
we get a similar result, with 2k0 replaced by k0 + ∆:

Rk =


0 k < k0

2
(
E−k0
k−k0

)
k0 ≤ k < k0 + ∆

2
(
E−k0
k−k0

)
−
(
E−k0−∆
k−k0−∆

)
k0 + ∆ ≤ k

(10)

4. The general case

Suppose the graph has exactly N structural motifs. As
above, its reliability polynomial will be determined by
the size of each structural motif and the overlaps among

them. Define N
(l)
k as the number of combinations of l

structural motifs whose union contains exactly k edges.
Also, define

Nk ≡
N∑
l=1

(−1)l+1N
(l)
k . (11)

Then arguing as above gives

Rk =

k∑
k′=0

Nk′

(
E − k′

k − k′

)
. (12)

In Appendix C, we present constraints on Nk. Using
Equation 11 and 12 we can determine the reliability coef-
ficients for the two-terminal reliability rule, by analyzing
the four motifs as shown in Figure 1. Results of this
computation is shown in Table I.

For two dimensional grid, we study only the left case of
two cases in Figure 2. For two terminal reliability from
S to T there exist 184 structural motifs of sizes 6 to 14,
thus it is not trivial to draw all structural motifs and
their overlap. We provide computation for Nk and Rk
for k ≤ 10 in Table II.
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TABLE I. By inspection, we have the values for N
(l)
k given in

the table on the right, and the values of Nk and Rk as given
by Equations 11 and 12.

l k N
(l)
k Nk Rk

1 3 3 3 3
4 0 12

1 5 1
2 5 2 -1 17
2 6 3 -3 7
2 7 1
3 7 4
4 7 1 2 1

D. Reliability in terms of structural motifs

Given the rather complicated relationship between Rk
and Nk in Equation 12, it is somewhat surprising that
R(x) can be expressed very simply in terms of Nk. Con-
sider the contribution of a single structural motif of size
k0 to R(x). Using Equation 12, Rk =

(
E−k0
k−k0

)
. This set

of coefficients determines R(x)

R(x) ≡
E∑
k=0

Rkx
k(1− x)E−k

=

E∑
k=0

(
E − k0

k − k0

)
xk(1− x)E−k

= xk0
E∑

k=k0

(
E − k0

k − k0

)
xk−k0(1− x)E−k0−(k−k0)

= xk0
E−k0∑
k′=0

(
E − k0

k′

)
xk

′
(1− x)E−k0−k

′

= xk0 (13)

Since the effect of each structural motif, and each motif
overlap, is additive on Rk, we can reduce the general case
to sums like the above, so we immediately find:

R(x) =

E∑
k=0

Nkx
k (14)

Thus the Nk defined in Equation 11 are indeed the same
coefficients as those introduced in Equation 7.

E. Alternative damage models

The reasoning above is all done in the context of the
usual edge damage model introduced by Moore and Shan-
non. This damage model is appropriate for studying
bond percolation. An entirely analogous set of arguments
applies to a vertex damage model, in which a set of k ver-
tices is chosen uniformly at random, producing a unique
subgraph containing all the edges whose endpoints are
both in the selected set of vertices. This damage model

TABLE II. Number of structural motifs and their overlap for
the two terminal reliability rule on the left grid in Figure 2.

k N1
k N2

k N3
k Nk Rk

5 0 0 0 0 0

6 20 0 0 20 20

7 0 0 0 0 360

8 36 -30 0 6 3066

9 0 -84 0 -84 16332

10 48 -146 144 10 60670

is appropriate for studying site percolation. Coefficients
analogous to Pk and Nk can be derived (substituting the
number of vertices V for the number of edges E wherever
it appears) and structural motifs can be defined in terms
of vertex removal instead of edge removal. The physical
interpretation of Nk in terms of these structural motifs is
the same. It is likely that there are many other damage
models with these properties. Here, we consider only the
edge damage model, because it serves to illustrate the
role of structural motifs and its analysis is simpler.

III. ESTIMATES AND BOUNDS ON
RELIABILITY FOR SPECIAL CASES

In this section, we illustrate how the study of struc-
tural motifs and their overlaps helps understand network
reliability under several different rules.

A. Exact expressions

If the network contains m structural motifs that are
disjoint, and they all have the same size k0, the only

non-zero coefficients are N
(l)
lk0

= (−1)l+1
(
m
l

)
, yielding

R(x) = 1− (1− xk0)m. (15)

If the network contains m structural motifs, every pair
overlaps in all but one edge, and they all have the same

size k0, the only non-zero coefficients are N
(l)
k0+l−1 =

(−1)l+1
(
m
l

)
, yielding

R(x) = xk0−1[1− (1− x)m]. (16)

We can use the identities given in Eq. C4 and C5 to
evaluate Nk for the following case: there are f structural
motifs; they all have the same size k0; and all unions of
structural motifs have one of only one or two other sizes.
Although this case is somewhat artificial, note that the
first two conditions are satisfied for any network under
the AR-α rule. It seems likely that the last restriction
can be relaxed if additional combinatorial identities are
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brought to bear on the problem. First suppose that the
only nonzero coefficients Nk are for k0 and k1. Then we
must have the following:

Nk0 = m;

m+Nk1 = 1; (17)

m+ |Nk1 | = 2m − 1.

These simultaneous equations admit a solution only for
m = 2, for which Nk1 = 1−m and hence

R(x) = xk0
[
2− xk1−k0

]
. (18)

Note that k1 is not determined by this argument; how-
ever, it is easy to see that k0 + 1 ≤ k1 ≤ mk0. Now
consider the above case, but with three nonzero coeffi-
cients instead of two. We have:

Nk0 = m;

m+Nk1 +Nk2 = 1; (19)

m+ |Nk1 |+ |Nk2 | = 2m − 1.

If we look for solutions with Nk2 ≥ 1, we must have
m ≥ 3. Then the solution is

Nk1 = 1− 2m−1; Nk2 = 2m−1 −m. (20)

This gives

R(x) = m(xk0 − xk2) + xk1 + 2m−1(xk2 − xk1). (21)

B. Perturbative estimates of reliability

Since R(x) is defined for x in the interval [0, 1], it is
tempting to think that the lowest-order term in x that
appears in the reliability polynomial, i.e., Nkmin

xkmin , is

a good estimate of its value. Note that Nkmin = N
(1)
kmin

,
since any union of 2 or more structural motifs must con-
tain more than kmin edges. Moreover Nkmin = Rkmin .
Unfortunately, because the coefficients Nk may grow
combinatorially and may be either positive or negative,
the leading order coefficient may not be sufficient to de-
termine behavior of the reliability polynomial far from 0.
For example, if there are very few different structural mo-
tifs with kmin edges (specifically, if Nkmin

� N1+kmin
x),

the contribution of Nkmin
may be overwhelmed by larger

structural motifs. Nevertheless, evaluating the lowest-
order term provides insight into the relationship between
graph structure and reliability.

• All-Terminal reliability: Recall that the struc-
tural motifs for the All-Terminal rule are spanning trees.
Each such tree has exactly V − 1 edges. NV−1 is thus
the number of spanning trees, so the lowest-order term
in the reliability polynomial is NV−1x

V−1. The (Kirch-
hoff) Matrix Tree Theorem [11] gives NV−1 in terms of
a cofactor of the graph Laplacian matrix.

• AR-α reliability: The structural motifs for the AR-
α reliability rule are trees that contain at least αV ver-
tices. Letting t be the number of such trees, the leading
order term in R(x) is txαV−1. Higher-order terms depend
on how the trees overlap. We can use this to establish a
tight lower bound on R(x) for one particular choice of α.

The lower bound is generated by graphs that minimize
the coefficient of the next higher order term xαV . This
in turn requires that as many as possible of the motifs
overlap in all but one edge. For example, beginning with
a single tree, we can change one edge to any other edge
that is not already in the tree and does not create a loop
in the tree. There are at most E − (αV − 1) ways to do
this, depending on the graph. Thus there is a graph with
t trees, each of which contains α vertices, each of which
differs from any other by exactly 2 edges, if and only if
t ≤ E + 2 − αV . In this case, R(x) = xαV−2(1 − x)t.
As far as we know, this particular tree structure occurs
only for αV = E − 1. The graph in which it occurs has
a central vertex of degree t connected to t linear chains
of length E/t (thus t must divide E evenly). The trees
contain every edge except the last edge on one of the
chains.

• EAR-α reliability: Satisfying the EAR-α rule de-
mands that the sum of squared component sizes equals
or exceeds αV 2. What are the structural motifs for this
rule? Consider a partition Π of V , i.e., a set of pos-
itive integers πi whose sum is V . The number of ele-
ments in Π varies from one partition to another. Then
πi could represent the number of vertices in the ith con-
nected component. Furthermore, if each component is a
tree, the number of edges in the ith component is just
πi− 1, hence the number of edges in the entire subgraph
is
∑
i(πi − 1) = V − C, where C = |Π| is the number

of components. There are many ways to assign vertices
to components, even for a single Π. Each will generate a
different structural motif, as long as the reliability con-
dition

∑
i π

2
i ≥ αV 2 is satisfied. The smallest number

of edges results from a subgraph with the largest num-
ber of components. The result is that kmin, the size of
the smallest structural motif, is the size of a subgraph
with all isolated vertices except for one large tree with v
vertices. kmin can be determined by the constraint

∑
i

π2
i = v2 + (V − v) ≥ αV 2, (22)

or

v >
√
α

[
1− 1

αV
(1− 1

4V
)

]−1/2

V. (23)

Thus kmin = V − (V − v + 1) ≈
√
αV − 1, and Nkmin

is the number of different trees that can be made with
kmin edges.
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IV. STRUCTURAL MOTIFS TO FIND EDGE
IMPORTANCE

In section II B we demonstrated how structural motifs
for 2 dimensional grid depend on parameters of the two
terminal reliability rule i.e. S and T . Here we explain
how this fact can effect edge importance based on reli-
ability rules. We computed reliability for two-terminal
reliability rule for two case on two dimensional grids in
Figure 2. It is clear that grid is more reliable for the reli-
ability rule parameters in the rightı.e. it is more probable
to have a path from S to T2 than to T1. This can be seen
in Figure 3. Next we remove two out of three edges on
the shortest path connecting S and T2 and we compute
the reliability for both cases again. We see that relia-
bility of the grid decreases more for the left case as ex-
pected. This result suggests to employ structural motifs
for finding most important edges in a way that reflects
the choices of parameters for the reliability rule.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

R
(x
)

FIG. 3. Reliability polynomial for two terminal reliability
black curve represents reliability for S − T1, gray curve for
S−T2 and dashed curves represent the reliability polynomial
after removing two edges.

S T1 2

3 6

4

5

FIG. 4. Toy graph illustrating the possible x-dependence of
an edge’s importance.

The reliability polynomials of different graphs may in-
tersect multiple times. [12] This means that, for different

values of the damage model’s parameters ~x, the relative
reliability of the two graphs switches signs. If both graphs
are subgraphs of the network of interest with the same
number of elements removed, then clearly the Birnbaum
importance ranking of the elements is different for differ-
ent parameter values. This is perhaps surprising, but it
is an important feature of this approach compared to, for
example, a graph statistic that is independent of ~x.

For example, consider the graph in Figure 4 under S−
T reliability for the indicated S and T . First, we write
down the reliability for the graph by inspection from its
structural motifs. There are three motifs, A ≡ S12T ,
B ≡ S354T , and C ≡ S364T . The first has size 3; the
second and third, size 4. The second and third overlap in
two edges, but are disjoint from the first. There are no
edges that do not appear in any structural motif. Taken
together, this gives:

R(x) = x3 + 2x4 − x6 − 2x7 + x9. (24)

(Note that R(x) satisfies the constraints
∑
Nk = 1 and∑

|Nk| = 2m − 1, where m = 3 is the number of struc-
tural motifs.) By symmetry, we expect the three edges
S1, 12, and 2T to be equally important, and also the
pair S3 and 4T , and finally the four edges 35, 36, 54,
and 64. Which edge is most important? A moment’s
thought shows that any edge from the last four is less
important than any other edge. The real choice is be-
tween S1, which is part of a single structural motif of
size 3, and S3, which is part of two structural motifs of
size 4. We consider the reliability R1(x) of the graph after
removing edge S1, leaving motifs B and C, and the reli-
ability R2(x) after removing edge S3, leaving only motif
A. Again by inspection, these are:

R1(x) = 2x4 − x6 (25)

R2(x) = x3. (26)

By definition, the importance of the edges is IS1(x) ≡
R(x)−R1(x) and IS2(x) ≡ R(x)−R2(x). Hence, the rank
of the edges switches if the polynomial IS1(x)− IS2(x) =
R2(x)−R1(x) changes sign. In fact, this polynomial has
a zero in the interval [0, 1]. That is,

R2(x)−R1(x) = x3(1− 2x+ x3)

{
> 0 for x < 0.618...
< 0 for 0.618... < x

(27)

V. APPLYING RELIABILITY CONCEPTS TO
OTHER NETWORK ANALYSIS PROBLEMS

The representation of the reliability polynomial in
terms of structural motifs provides a convenient orga-
nizing principle for thinking about general network anal-
ysis problems. As one example, consider the tradeoffs
between two systems: one with only a few completely re-
dundant reliable subsytems and another with more, but
only partially redundant, ones. To study this we consider
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two extreme cases of overlap. One contains r1 structural
motifs of size k1, any two of which differ by only two
edges. They are thus built using a total of 2r1 + k1 − 2
edges. The reliability of this combination can be written
as:

R1(x) =

r1∑
i=1

(−1)i+1

(
r1

i

)
xk1+r1(i−1). (28)

Using the same number of edges we can construct r2 =
2r1+k1−2

k2
motifs of size k2 that are completely disjoint.

The reliability of this combination of motifs is:

R2(x) =

r2∑
i=1

(−1)i+1

(
r2

i

)
xik2 . (29)

Knowing the reliability for these two cases, we are able
to compare the reliability of networks with different con-
figurations of structural motifs of different sizes. As an
example we compared the reliability of a network com-
posed of 20 motifs with 18 edges that are different from
one another only in two edges with a network of 4 com-
pletely disjoint motifs of size 6. Figure 5 shows the reli-
ability curves for these two networks and their difference
as a function of x. The analysis shows that the network
of disjoint motifs is more reliable for smaller values of x
while the opposite is true for larger x values.

This approach could also be used to estimate the num-
ber of spanning trees in a graph. A spanning tree is a
subgraph of the network that includes all vertices [13–
15]; the number of spanning trees can be estimated by
evaluating the All-Terminal reliability. Another problem
that can be addressed using this method is to identify
chordless loops of various sizes in a network. A chordless
loop is a sequence of vertices with more than three ver-
tices if for all i = 1, · · · , k there is exactly one link from
vertex vi to vi+1 and there is no other link between any
two of the vertices in this sequence [16]. Recent stud-
ies on ecological networks have discovered the existence
of many chordless cycles in these networks [17], therefore
enumeration of all chordless cycles can make a significant
impact on understanding the structure of these networks.
An appropriately-designed reliability rule can be used to
count the number of chordless cycles of different sizes.

VI. CONCLUSION AND FUTURE WORK

In this paper we focused on the representation of the
reliability polynomial in terms of structural motifs. We
have shown that network reliability is simply related to
the number of edges in unions of structural motifs Nk
(14). Whereas the coefficients Pk of xk(1 − x)E−k are
easy to estimate numerically but hard to work with ana-
lytically, the coefficientsNk of xk are hard to estimate nu-
merically but easy to work with analytically. To demon-
strate this, we have derived closed-form expressions for
Nk for several types of graphs. The resulting expres-
sions were confirmed by numerical estimation. We an-
ticipate that this approach can lead us to a measure of

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

R
(x
)

 

 

R1(x)
R2(x)
R1(x)−R2(x)

FIG. 5. Comparing the reliability of a network with many
overlapping structural motifs with that of a network with a
few disjoint motifs.

edge centrality that relates the importance of an edge
to the frequency of its appearance in different structural
motifs [18]. While we can use numerical simulation to
study specific large, realistic networks – including epi-
demiology on social networks [19–21] – we can use the
notion of structural motifs to understand the differences
between networks that are discovered in simulation. We
expect this approach to be particularly useful in studying
the stability and robustness of interconnected networks
[22–27].
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Appendix A: Inclusion-Exclusion proof of reliability
polynomial

We begin by rewriting the expansion

R(x) =

E∑
k=0

Rk x
k (1− x)E−k , (A1)
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as the following,

R(x) =
∑
A⊆E

r(A)xA (1− x)E−A ; (A2)

here xA is short for x|A| where |A| refers to size of the sub-
set A ⊆ E that characterizes the edge-induced subgraph
A. (1 − x)E−A, then, has a similar interpretation. We
note that (A1) is equivalent to (A2) simply because Rk is
counting the number of edge-induced subgraphs A ⊆ E
of size k that satisfy the reliability rule r; for these sub-
graphs r(A) = 1 and the equivalence follows –for those
that do not, r(A) = 0.

If the reliability rule is coherent, there is a unique fam-
ily of minimal subgraphs A ⊆ E such that for every sub-
graph A′ that is a proper subgraph of either one of them,
r(A′) = 0. This means that every subgraph that is ac-
cepted by the reliability rule r, contains at least one of
these minimal subgraphs (entirely). Therefore, we can
see that every reliability rule is in 1-1 correspondence
with a certain family of (edge-induced) subgraphs A of
E. As a result, we can now define the reliability rule in
terms of the very family of minimal subgraphs that were
obtained from this rule,

r(B) =

{
1 ; ∃ A ∈ A : A ⊆ B
0 ; otherwise

; (A3)

here A represents this family.

We now show that R(x) stands for the probability that
at least one of these minimal subgraphs is operating in
the sense that all of its corresponding edges function. Put
differently, we show that

R(x)
?
= Pr

(∨
i

{Ai operates}

)

= Pr

(∨
i

Ai

)
, (A4)

where Ai’s are different members of the above family of
minimal subgraphs indexed by i; the second line is un-
derstood as a shorthand notation for the first.

Let 〈A1 ∨A2 〉 stand for the family of all subgraphs
that contain all of the edges in at least one of the sub-
graphs A1 or A2. Also let 〈A1 ∨A2 〉 denote the family
of all subgraphs that lack at least one edge from each of
the subgraphs A1 and A2. Next, we define 〈A1 ∧A2 〉 as
the family of all subgraphs that contain all of the edges
in both A1 and A2. And finally, let 〈A1 ∧A2 〉 represent
the family of all subgraphs that contain all of the edges in
subgraph A1 and lack at least one edge from A2. We also
utilize unambiguous generalizations of these notations at
a later inductive step.

Now suppose that the reliability rule r is such that only
one minimal subgraph, namely A1, is accepted and, as a

result, R(x) becomes

R(x) =
∑

A1⊆A⊆E

xA (1− x)E−A

=
∑

A∈〈A1 〉

xA (1− x)E−A

= xA1 (A5)

= Pr
(
A1 operates

)
; (A6)

where equation (A5) can be easily obtained by induction
on the edges in subgraph E − A1. We can take (A6) as
the base case for an inductive proof of the equivalence of
expressions (A2) and (A4) and proceed to the induction
step. However, to break in the notation we introduced
above, we also prove the case of two minimal subgraphs,
and then proceed to the inductive step. Therefore, sup-
pose that we have two minimal subgraphs A1 and A2 and
we want to prove the following,

Pr

 ∨
i≤2

Ai

 ?
=

∑
A∈〈A1∨A2 〉

xA (1− x)E−A . (A7)

The right hand side of this euqality is precisely the ex-
pansion of R(x) for a reliability rule that is in 1-1 corre-
spondence with the family of two minimal subgraphs A1

and A2; therefore our claim is proved for this case if the
above equality holds. We start from the left hand side
and note that

Pr

 ∨
i≤2

Ai

 = Pr (A1) + Pr (A2)−Pr (A1 ∧A2) .

(A8)

Now, we make the following observations,

Pr (A1) =
∑

A∈〈A1 〉

xA (1− x)E−A

=

 ∑
A∈〈A1∧A2 〉

+
∑

A∈〈A1∧A2 〉

 xA (1− x)E−A ,

(A9)

Pr (A1 ∧A2) =
∑

A∈〈A1∧A2 〉

xA (1− x)E−A . (A10)

From these expansions, it immediately follows for (A8)
that

Pr

 ∨
i≤2

Ai


=

 ∑
A∈〈A1∧A2 〉

+
∑

A∈〈A1∧A2 〉

+
∑

A∈〈A1∧A2 〉

 xA (1− x)E−A

=
∑

A∈〈A1∨A2 〉

xA (1− x)E−A . (A11)



10

This proves the base case of a family with only two min-
imal subgraphs A1 and A2. The inductive step is quite
similar,

Pr

 ∨
i≤n

Ai


= Pr

(∨
i<n

Ai

)
+ Pr (An)−Pr

((∨
i<n

Ai

)
∧An

)

=

 ∑
A∈〈

∨
i<n Ai ∧An 〉

+
∑

A∈〈
∨

i<n Ai ∧An 〉

(A12)

+
∑

A∈〈
∨

i<n Ai ∧An 〉

 xA (1− x)E−A (A13)

=
∑

A∈〈
∨

i<n Ai 〉

xA (1− x)E−A (A14)

=
∑
A⊆E

r(A)xA (1− x)E−A ,

where r is the reliability rule that corresponds to the
family of minimal subgraphs {A1, · · · , An}. In (A13),
〈
∨
i<nAi ∧ An 〉 represents the family of all subgraphs

that contain all of the edges in at least one of the sub-
graphs A1 through An−1 and lack at least one edge

from the subgraph An. Next, 〈
∨
i<nAi ∧ An 〉 stands

for the family of all subgraphs that contain all of the
edges in subgraph An and lack at least one edge from
each and every subgraph A1 through An−1. Lastly,
〈
∨
i<nAi ∧ An 〉 refers to the family of all subgraphs

that contain all of the edges in both An and at least on of
the subgraphs A1 through An−1. Equation (A14), then,
follows from the fact that the combination of these three
possibilities is precisely what 〈

∨
i<nAi 〉 stands for.

So far, we have established that

R(x) = Pr

(∨
i

Ai

)
, (A15)

and now we proceed to prove a final equivalent expansion,
namely

R(x)
?
=

E∑
k=0

Nk x
k (A16)

Nk ≡
E∑
l=1

(−1)l+1N
(l)
k , (A17)

where N
(l)
k denotes the number of combinations of l min-

imal subgraphs whose union contains exactly k edges. To
show that the above holds, we appeal to equation (A15)
which can be now, by account of inclusion-exclusion prin-

ciple, expanded as

Pr

 ∨
1≤i≤n

Ai


=

n∑
i=1

(−1)i+1
∑

1≤j1<···<ji≤n

Pr (Aj1 ∧ · · · ∧Aji)

=

n∑
i=1

(−1)i+1
∑

1≤j1<···<ji≤n

xAj1
∪···∪Aji ;

(A18)

this clearly coincides with the expansion (A16).

Appendix B: Additional examples of contribution of
structural motifs to R(x)

a. Example 2: Two disjoint structural motifs

Suppose the network G contains exactly two structural
motifs, that both have k0 edges, and that no edge is
in both. Arguing as in Example 1, for k < 2k0, Rk is
simply twice what it is for the case of a single structural
motif. But when k = 2k0, the subgraph that consists
of the union of the two structural motifs will have been
counted twice instead of once. Similarly, for k > 2k0,
the number of graphs overcounted is given by assigning
2k0 of the edges and choosing the remaining k − 2k0 in
the subgraph from among the remaining E − 2k0 in the
graph G. Hence:

Rk =


0 k < k0

2
(
E−k0
k−k0

)
k0 ≤ k < 2k0

2
(
E−k0
k−k0

)
−
(
E−2k0
k−2k0

)
2k0 ≤ k

(B1)

b. Example 3: Three disjoint structural motifs

Suppose the network contains exactly three structural
motifs, that all three have k0 edges, and that the three
edge sets are disjoint. Again, when k0 ≤ k < 2k0, each
motif generates

(
E−k0
k−k0

)
different reliable subgraphs, and

for 2k0 = k, three of these subgraphs are counted twice.
But in this case, when k reaches 3k0, the subgraph con-
sisting of all three motifs is first included three times
(once for each motif), then excluded three times (once
for each pair of motifs) with the net result that it must
be included again:

Rk =


0 k < k0

3
(
E−k0
k−k0

)
k0 ≤ k < 2k0

3
(
E−k0
k−k0

)
− 3
(
E−2k0
k−2k0

)
2k0 ≤ k < 3k0

3
(
E−k0
k−k0

)
− 3
(
E−2k0
k−2k0

)
+
(
E−3k0
k−3k0

)
3k0 ≤ k

(B2)
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Appendix C: Constraints on coefficients

Several constraints apply to Nk. A union of l motifs
can have size k only if all possible unions of l − 1 of the
same motifs have size less than k. This leads to a set of
constraints of the form

N
(2)
k ≤

(∑k
k′=0N

(1)
k′

2

)
. (C1)

In addition, a union of l motifs can have size k only if
all possible unions of l − 1 and l − 2 of the same motifs

have size less than k. For instance, N
(3)
k has the following

upper bound

N
(3)
k ≤ (

k′=k∑
k′=0

N
(1)
k′ )(

k′=k∑
k′=0

N
(2)
k′ ) +

(∑k′=k
k′=0 N

(1)
k′

3

)
. (C2)

Overall, since all unions of l structural motifs must be

included in G, we have

E∑
k=0

N
(l)
k =

(
f

l

)
, (C3)

where f is the total number of structural motifs. Finally,

the facts that
∑f
l=0

(
f
l

)
= 2f and

∑f
l=0(−1)l

(
f
l

)
= 0

imply that

E∑
k=0

Nk =

E∑
k=0

f∑
l=1

(−1)l+1N
(l)
k

=

f∑
l=1

(−1)l+1

(
f

l

)
= 1; (C4)

and

E∑
k=0

|Nk| =
E∑
k=0

f∑
l=1

N
(l)
k

=

f∑
l=1

(
f

l

)
= 2f − 1; (C5)
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