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The generation of directed movement of cellular components frequently requires the rectification of Brownian
motion. Molecular motor enzymes that use ATP to walk on filamentous tracks are typically involved in cell
transport, however, a ’track-altering’ motor can arise when an enzyme interacts with and alters its track. In
Caulobacter crescentus and other bacteria, an active DNA partitioning (Par) apparatus is employed to segregate
replicated chromosome regions to specific locations in dividing cells. The Par apparatus is composed of two
proteins: ParA, an ATPase which can form polymeric structures on the nucleoid, and ParB, a protein that can
bind and destabilize ParA structures. It has been proposed that the ParB mediated alteration of ParA structures
could be responsible for generating the directed movement of DNA during bacterial division. How precisely
these actions are coordinated and translated into directed movement is not clear. In this paper, we consider
the C. crescentus segregation apparatus as an example of a track altering motor that operates using a so called
’burnt-bridge’ mechanism. We develop and analyze mathematical models that examine how diffusion and ATP-
hydrolysis mediated monomer removal (or cleaving) can be combined to generate directed movement. Using
a mean first passage approach, we analytically calculate the effective ParA track cleaving velocities, effective
diffusion coefficient, as well as other higher moments for the movement a ParB protein cluster that breaks
monomers away at random locations on a single ParA track. Our model results indicate that cleaving velocities
and effective diffusion constants are sensitive to ParB induced ATP hydrolysis rates. Our analytical results are
in excellent agreement with stochastic simulation results.



I. INTRODUCTION

Many processes at the single cell level require the rectification of Brownian motion. Such a feat can be achieved in a mul-
titude of ways and for a variety of cell processes. A so-called “biased-diffusion” principle often emerges as a force generating
mechanism at the core of many cellular nano-machines [1, 2]. A fundamental and nontrivial question is how the bias is gener-
ated and maintained, and importantly, what are the relations that connect fundamental microscopic interaction rates with more
mesoscopic scale quantities, such as drift velocity and effective diffusion constant.

Here we distinguish two main classes of biased diffusion force-generating mechanisms. In the first class, we have track-
independent machines, such as ATP fueled molecular motors (i.e, dynein, kinesin etc) that use microtubule or actin filaments
as tracks on which they *walk’ against a load by extracting energy from ATP hydrolysis [3]. This class of motors has received
significant attention in the literature. In the second class, there are track-altering machines that can be broadly classified as
particles that interact with and alter a substrate, or track; this reaction in turn changes or biases the particle motion. There
are many processes that can be categorized as track altering motors, however, very few of them have received attention in the
modeling literature. A well-studied example of this second class of motors occurs for collagenase transport along collagen fibrils,
where directed movement is achieved as a result of proteolysis, or cutting of fibrils, by collagenase [4, 5]. Theoretical models
that address various aspects of collagenase cleaving have been proposed in the literature [6-8]. This class of track-altering
motors can be naturally extended to include the propagation of hydrolysis/autocatalytic reaction waves [9, 10], as well as the
dynamics of molecular DNA biped constructs [11, 12]. Most of the mathematical models on track altering motors fall into the
category of so called "burnt-bridge’ mathematical models.

Burnt-bridge models are simplified theoretical constructs used to understand the dynamic properties of track-altering molecu-
lar motors [5-9, 13, 14]. In the standard burnt-bridge model (BBM), a protein complex is viewed as an unbiased random walker
that hops around a one-dimensional discrete polymer lattice. The lattice is composed of strong and weak links. The random
walker does not affect the strong links, but the weak links can be destroyed with probability 0 < p < 1 when the walker passes
them. The key assumption in BBM is that once a bridge is burnt, the walker cannot cross it again; this allows for the walker
to remain associated with the track. Depending on the rules imposed for bridge-burning, BBM models are classified into two
categories: 1) forward BBM, where bridges can be burnt if passed by the walker in one direction only, 2) forward-backward
BBM where the bridge is burnt if passed from either direction. The forward and the forward-backward BBM models are indis-
tinguishable if the probability of bridge destruction is p = 1, however random walker dynamics show some difference for these
two models for the more general case where the bridge breaking probability is less than one. In the one dimensional lattice case,
where the protein walks on a single track, systematic theoretical studies have been proposed, however, these studies are often
limited in scope. Limiting cases have been studied for a continuous-time, continuous-space model with p << landp = 1
[5, 9]. Discrete-time approaches have also been applied to calculate mean drift velocities and dispersion coefficients (dispersion
was only given for p = 1) [15]. Continuous time models have been used to study one dimensional burnt-bridge lattice [7, 13].

In this study, we describe a biological process where models of track-altering motors can be useful. Specifically, we are
concerned with a class of path-modifying molecular motor constructs that appear in bacterial cell division. DNA segregation
in some classes of bacterial cells is a well controlled process involving a set of ATPase proteins that dynamically interact with
a chromosome and facilitate its movement to specific locations in the cell [16, 17]. In these cells, Plasmid associated proteins
(Par) form dynamic assemblies that guide the segregation of a replicated chromosome copy to specific locations in the cell. In
the case of Caulobacter crescentus bacterium, ParA proteins are slow ATPases that can form linear polymeric assemblies that
dynamically assemble and disassemble inside of the cell, reminiscent of cytoskeleton dynamics of eukaryotic mitotic cells [16].
Similar Par cytoskeletal-like systems work in E. coli bacterium to dynamically reposition plasmids inside cells [18, 19]. In
Crescentus, ParA filament assembly first requires a dimerization reaction between two ParA monomers and two ATP molecules,
and subsequently the resulting dimers can be combined into filaments [16], or continuous nucleoid-associated patches [20].
On the other hand, ParB proteins associate and cluster on a specific chromosomal site and also have binding affinity for ParA
dimers. ParB proteins can hydrolyze ATP and in doing so they cause the breaking of the ParA track that they associate with (we
refer to this action as track-cleaving). Directed chromosome segregation in these cells is achieved by biasing the diffusion of
chromosome-associated ParB protein clusters that interact with and alter ParA structures [16, 17, 20, 21]. While ParA filaments
have been visualized in vitro [16], the structure of ParA clouds has not been clearly established in vivo due to the small size of
the bacterial cells. Independent of the underlying ParA filament structure, the hydrolysis of ATP has been shown to be a key step
for chromosome segregation [16, 20]. An important open question that we study here is how ATP hydrolysis can contribute to
biasing ParB cluster diffusion during cell division.

A simple mathematical model that uses specific ParB binding on ParA filament ends can reproduce directed chromosome
movement in these cells [22]. In [23] Brownian dynamics simulations of interactions between ParB fibers and ParA polymer
bundles showed that ParA hydrolysis-driven depolymerization can be used to bias the diffusion of chromosome-associated ParB.
These previous models require ParA depolymerization at the end of the fiber, independent of ParB hydrolysis in order to achieve
proper ParB bias. However, it is not clear that this requirement is supported by data [20]. Furthermore, the structure of the
ParA bundle has not been established in vivo, so it is important to provide a general modeling framework that focuses on the
biasing effects of Par ATP-hydrolysis reactions without making too many assumptions about the properties of ParB or ParA



structures. There are two key components that need to be considered for models of ParB translocation: a) ParB protein diffusion,
b) ATP hydrolysis of ParA dimers. Further, we make two key simplifying assumptions that allow us to more easily track this
problem mathematically. First, we suppose that ParA is arranged into continuous tracks either due to filament formation [16]
or continuous ParA nucleoid association [20, 21]. Next, we assume that the ParA ATP hydrolysis due to ParB is a track cutting
or “cleaving” reaction, equivalent to *bridge-burning’ in a forward-backward BBM with p < 1. In previous modeling work of
ParA/ParB interactions, the relationships between ATP hydrolysis rates and free diffusion coefficients with effective segregation
velocities and diffusion constants could not be obtained analytically. One of the primary contributions of the present work is
to provide a simplified modeling framework where we can study the velocity and effective diffusion of the Par segregation
machinery.

The models we propose here share a few common features with BBM models, however there are also some fundamental
differences between our approach and previous BBM models. First, the analytical results obtained for velocities of BBM models
are obtained by extending the periodic hopping model initially proposed by Derrida in 1983 [24] and subsequent extensions
in [7, 13]. In these models, a walker moves randomly on a discrete one-track lattice with prescribed probability of burning
a discrete part of the track; weak and strong links are typically assumed to be the same length. In contrast, here we take a
fundamentally continuous approach for our models. As such, we consider the evolution of probability densities for the position
of the cleaving enzyme that acts as a random walker in an infinite continuous track that contains periodically spaced cleaving
reaction sites. A cleaving event here can take place independent of the direction of the approach of the random walker (equivalent
to the forward-backward BBM). Our models can be studied beyond the asymptotic limits discussed by [5, 9] and our approach
for the one-track scenario is tractable enough so that we can obtain explicit solutions for effective bias velocities using mean
first passage time calculations. Second, by working in a moving frame of reference, we are able to recast the problem as a
renewal-reward stochastic process and thereby gain additional information about the statistics of this process, information that is
not available from previous work. Finally, our mean first passage approach can be extended to a model where the random walker
hops between two tracks, studied in a future paper [25].

This paper is organized as follows. In Section II, we specify our basic modeling assumptions for the system and present a
simple discrete space model for ParA cleaving that permits explicit calculation of relevant velocities, effective diffusion coeffi-
cient and corresponding numerical simulations. In section III, we develop a partial differential equation model with continuous
space and time variables. This model can also be directly solved to obtain velocities of track cleaving as a function of cleaving
rate and enzyme diffusion constant; two important limiting regimes are examined and explicit solutions are derived. Finally, in
Section IV we compare the discrete and continuous models.

II. DISCRETE SPACE MODEL

Our modeling strategy is to view the ParB complex as a particle that hops on an infinitely long track with which it can
interact and cleave with prescribed rates. We take two modeling approaches, one in which the track is an infinite lattice, for
which complex effective bias and diffusion can be computed explicitly. In the second approach, we treat the track as an infinite
continuous line on which the ParB complex experiences simple diffusion and cleaving reactions. We start by listing the modeling
assumptions that we use for all our modeling approaches and then use the assumptions to develop a discrete space model for Par
track cleaving.

i) ParA arrangement in cells. The structure of ParA in C. crescentus has not been definitively established, so we suppose
a simple scenario for the ParA positioning in which the dimers are located along the long axis of a bacterial cell, as
diagrammed in Fig.1-(a). We next assume that ParA is arranged into a continuous track along the nucleoid that spans
the entire length of a cell. This arrangement of ParA can arise either due to spontaneous filament formation, observed in
vitro and high resolution in-vivo imaging [16], or due to continuous ParA nucleoid association along the length of the cell
[20, 21, 26]. A ParA track is necessarily of finite length in a cell, however for our calculations we assume that the ParA
track can be represented by a semi-infinite line. The reason for this assumption is that the size of ParB is much smaller
than the length of a typical ParA track in cells, and further we are only interested in characteristics of the ParB directed
movement away from the edge of the cell.

ii) ParB arrangement in cells. ParB proteins assemble onto the bacterial chromosome and form a reactive cluster (referred
to as Cleaving Agent or CA in this paper) capable of interacting with a ParA track [16, 26], Fig. 1-(a). We ignore the
structure of a chromosome in our model and view the ParB complex as located at a point, corresponding to the center of
mass of an ideal spherical ParB cluster.

iii) Cleaving reaction. A ParA dimer in the track can react with a ParB protein if the two overlap [16, 20, 21]. In this reaction,
ParB hydrolyzes the ParA-associated ATP and breaks the ParA dimer [16, 21], which results in the removal of the dimer
from the track (referred to as a “cleaving reaction’ here). Each ParA dimer on the track has length Az and is assumed to
have one site where ParB binders can interact with ParA and cause ATP hydrolysis. In the interest of simplicity, we ignore
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FIG. 1. (Color online) Diagram of the components of the ParA/ParB machinery. a) A track of ParA dimers extends between the two cell
poles. Each ParA dimer has one reactive site for the ParB complex, whereas the complex contains several binding sites that can react with
a single ParA dimer. The ParB complex has affinity to bind anywhere on the surface of the ParA track however a subset of the ParB binder
sites (small spheres) are considered reactive proteins (dark spheres). Reactive ParB binder sites cleave the connections between consecutive
ParA dimers. When a dimer ¢ reacts with the ParB complex, the connection between the ¢ — 1 and i-th site is broken, thus a cleaving reaction
occurs. The ParB complex is assumed to stay attached and ahead of the ¢-th reactive site due to multivalent connections, in a burnt-bridge
model fashion. If the i-th ParA dimer reacts, then all the ParA dimers with index < ¢ — 1 are removed from the nucleoid. b) Model diagram
for the process. A one-dimensional semi-infinite axis represents the ParA track. The ParB complex and corresponding ParA sites are both
represented by uniformly distributed locations of length L (black squares) on the semi-infinite track axis. Only the center of the ParB complex
is tracked through a position variable = in the model. x = 0 corresponds to the most recently cleaved ParA dimer site. ¢) Diagram comparing
a ParA dimer with our model track subunit. The black section of a model ParA track subunit is referred to as reactive site for each dimer and
it encapsulates both the ParA binding site and the ParB binders.

the dynamics of each ParB binder and instead assume that all the ParB complex binders and the ParA hydrolysis site can
be represented by a single ParA track location of finite size that we call a cleaving site, corresponding to the black ParA
track components diagrammed in Fig. 1-(b)-(c). Thus, the cleaving reaction sites on each ParA dimer are indexed with
1 and extend from z; to x; + L on the semi-infinite track, see Fig. 1-(a)-(b). ATP hydrolysis depends on the density of
ParB binder proteins present in the ParB cluster ( or equivalently cluster size), supported by observations in [26]. The size
of the cluster is implicitly introduced in the model by allowing for variations in the widths L. < Az of the ParA cleaving
sites for each dimer; a larger cleaving site is taken to represent a CA with larger reactive domain (or a ParB complex with
more reactive binders). Each cleaving site can then be cleaved by the ParB cluster through a hydrolysis reaction with rate
g corresponding to the ATP hydrolysis or cleaving reaction rate per binder.

iv) ParB/ParA binding. Besides cleaving, a ParB cluster can also make multivalent binding connections with ParA [16, 20],
thus the cluster may have to overcome a significant energy barrier to fully detach from a ParA track. Alternatively, the
small spacing between the nucleoid and the cell membrane in C. crescentus can force the ParB cluster to stay engaged
with a ParA structure, an idea that is supported by confined chamber experiments in [26]. For both scenarios, we assume
that a significant amount of energy is required to completely dissociate a ParB cluster from a ParA structure and thus the
complex stays associated with the track at all times. This assumption is also aligned with the experimental observations
which report continuous tracking of a degrading ParA edge by ParB [16, 17]. In addition, we assume that an attached
ParB structure can easily rearrange position on the ParA track, potentially due to weak specific binding affinity between
individual ParB binder proteins and ParA sites on the track, in agreement with the observations in [26]. As a result, we
suppose that a ParB cluster experiences one dimensional random motion on the surface of the ParA track, with discrete
diffusive hopping rate d for a discrete ParA lattice track, or diffusion coefficient D for a continuous ParA track.

v) Burnt-brdige assumption. We now specify the assumptions on the positioning of a ParB complex on the ParA track during
a hydrolysis event at a cleaving site. Specifically, we make the BBM-type assumption that requires the ParB cluster be
found ahead of the cleaved site, so that the CA does not fall off the track following a cleaving reaction, Fig. 1-(a)-(b).
A simple possible working hypothesis for this arrangement is that there is a built-in asymmetry in the organization of
the sites of a ParB cluster, such that a sequence of ParB multivalent attachments can hold on to the track, while trailing
reactive ParB sites actively hydrolyze ATP and break a ParA dimer. As a consequence, the reactive ParB binders can
wedge between dimer ¢ — 1 and ¢ and cause track cleaving at this track juncture; note that we refer to this cleaving event



as occurring at position x; in the track. We highlight that in this treatment we omit specific ParB binder details, since
conclusive data is lacking on the geometry of ParB complex arrangement. Instead, we simply assume that at each cleaving
reaction site x;, the ParB complex remains engaged with the ParA track with position z > x;. We refer to ParB positions
with z > x; as being ahead of the cleaving site and positions with z < z; as being behind the cleaving site.

vi) ParA track removal. Finally, we assume that when a ParB cluster cleaves at x;, then all the ParA sites with index <17 — 1
are also removed from the nucleoid, Fig. 1-(a)-(b). This assumption is based on two potentially related scenarios. First,
if the ParA is assembled into a linear actin-like fiber, then this assumption could indicate that a short ParA track with
two free ends is unstable and quickly disassembles, a scenario explored in [18]; further, lost free ParA monomers become
quickly sequestered at the new cell pole making it less likely for the track to become re-established on the nucleoid once
released in the cytoplasm [27]. Second, track removal behind ParB agrees with the observation of ParA-free patches that
follow a moving ParB complex in confined artificial assays in [26]. For a single ParA track case that we discuss in this
paper, the assumption of ParA removal(or path clearing) during site hydrolysis is not immediately relevant since the burnt-
bridge assumption keeps the ParB complex ahead of all cleaved sites at all times. In a multi-track ParA bundle scenario,
disconnected ParA tracks behind the last cleaving site could be accessed by the CA traveling on a neighboring continuous
track or patch, potentially trapping the CA in isolated ParA islands and creating a loss of directionality. Our ParA patch
clearing assumption prevents ParB trapping from occurring and is further explored in another paper [25].

Based on the assumptions above, we develop a simple model of ParB cleaving and hopping on the ParA track. In this section,
we use a discrete space assumption for the infinite ParA track. For this purpose, following assumption i7), the cleaving agent
is represented as a point particle hopping on a semi-infinite discrete ParA lattice with regular spacing Az, and we index each
ParA cleaving site by j. Cleaving reactions at a particular site can occur with rate g. Each discrete point of the lattice track is a
potential cleaving site, so that explicit use of the reactive site length is nor employed in this setup, but will be explored later in a
continuous space model, see diagram in Fig 2-(a)-(b).
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FIG. 2. (Color online) Comparison of discrete vs continuous space models. (a) In the discrete model, we assume the CA is a random walker
that hops between discrete space points on a lattice with regular spacing, Az. Any point on the lattice, j can trigger a cleaving reaction so
the width of the reactive region length L is not explicitly included in the model. (b) In the continuous model, the position of the CA, x is a
continuous variable. Further, each reactive site has a prescribed non-zero width L(black rectangles), corresponding to regions in space where
a cleaving reaction can be triggered with the rate g. In this model, the locations z; + L < = < x;41 are not reactive and the CA experiences
simple diffusion between cleaving sites.

The movement of the CA on the ParA track is affected by two factors: a) cleaving reactions that cause the CA to stay ahead
of the ParA cleaving site (assumptions 4i7) and v)), b) diffusive motion of the CA on the ParA track (assumption iv)). For
our model we track a single discrete variable j corresponding to the location on the lattice of the CA. For convenience, we
formulate the problem here in a moving frame of reference, so that the edge’ index 7 = 0 is always located at the most recently
cleaved site, and is updated each time a cleaving reaction occurs (i.e., if the next cleaving reaction takes place on site k then
j =k — j = 0 and all other index points are shifted by & units). Note that in a relative frame of reference, if the CA is at
position indexed by j, the index j is always the location of the CA away from the most recently cleaved site.

Let p;(t) be the probability of the CA being at site j at time ¢, then the differential equation for p;(¢) is given by

dpj

pra d(pj—1—2p; +pj-1)—gp;, j=>1 1L.1)
dp >

0
20— dpy — > ;. 1.2
o7 (p1 —po) + gj:1pg (IL.2)

We highlight two important features of these equations. First, the CA can undergo both diffusion or cleaving at sites j with rates
d and g, respectively. Second, since we are in a moving frame of reference, immediately upon a cleavage event at site j, the CA
is repositioned to site j = 0 (i.e., the coordinate system is shifted). Thus, the reactive terms are added to the py equation to mark
the movement of the cleaved sites following each cleaving reaction, reflecting that this is a discrete jump process.



In steady state, the track edge 7 = 0 is moving relative to a fixed frame of reference with the velocity

oo
v = gAx ij;f, (I1.3)

j=1

where pj is the steady state solution of eq. (IL.1)-(IL.2). The steady-state equations can be solved explicitly and we obtain the
simple expression

A

T (IL4)

v = gAx

where A < 1 is a root of the polynomial A2 — (2 4+ )X + 1 = 0, and @ = g/d is a non-dimensional constant.

Two state model: mean first passage time approach. A second approach to this problem is a model in which we examine the
cleaving reaction one reaction step at a time. To do so, we distinguish two possible states for all the CA conformations in the
cleaving process, one in which the CA is hopping but it has not cleaved, and one in which it has cleaved at some track position.
The probability for entering and exiting these two states is then tracked in model equations. For this purpose, we let p;(t) be the
probability that a CA particle located at some point j at a time ¢ has not cleaved a track site (note that this p; is different than the
one defined previously). In this case, a particle is able to diffuse on the track and it has a probability per unit time g of exiting
this state, if it undergoes a cleaving reaction. Next, we define a new quantity for the process ¢;(t) to be the probability that the
particle has undergone a cleaving reaction at position j.

For each population of walkers vs. cleavers, we write the system of equations

dap;

pr d(pj-1—2p; +pjv1) —gpj, =1, (IL5)
dpqo
—- =d(p1 — 1.6
a (p1 — po), (IL.6)
dq; )

. 1.7
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In the p; equation there are two terms, one representing diffusive hops with rate d and the other representing removal of the CA
from the not-yet-cleaved state to the cleaved state. The ¢; equation has a single reactive term corresponding to cleaving events.
Because of the assumption for the cleaving process (assumption 4i%)) which allows site breaking only between two consecutive
dimers, the CA can be absorbed into a site j provided j > 1. This also means that at the boundary we do not allow cleaving,
hence go(¢) = 0O for all time. We start the process with the CA at site j = 0 (or at the track edge) so the model initial conditions
are that po(0) = 1, and p;(0) = ¢;(0) = 0 for j > 0.

It is convenient to write these equations in matrix notation

dp dq
= = — —=¢gB 1.8
dt P, dt gbp, (11.8)

with initial conditions written as p(0) = e¢ and q(0) = 0.

We are now ready to formulate questions about CA movement. The first is to know the time it takes for the CA to find a
cleaving site j. This is a question of the mean first passage time of the CA walker cleaving at a particular site j. To calculate
these times we must first calculate the total probability of the walker to cleave at some site j (referred to as the splitting probability
[28]). The splitting probabilities are defined as m; = lim;_, q; (t) = q;?o which can be calculated using vector-matrix notation
as

oo d o0
Q< = / 90— g8 / pdt (11.9)
0 dt 0
g _1 * dp -1
==BW —dt = —aBW . 11.10
d /0 dt ¢ @ €0 ({-10)

In addition, the expected splitting time is given by

t°°:7-q°°:/ t(fi—qdf aBW~ / fd—pdt (ILT1)
0

BW / d—pdt —BW . (IL12)



Similarly, we obtain T72q>° = 72d—2BW*3e0. Thus, the conditional mean first passage time to exit from a particular cleaving
site, T, is given by

T =t%./q%, (IL13)

where ./ stands for component-wise division (note that 7 is a vector quantity). We are now able to explicitly calculate the first
moments (see Appendix for details) and obtain

1 e Ax

where 0 < A < 11is aroot of the quadratic polynomial A2 — (2+a)A+ 1 = 0. The non-dimensional quantity o = g/d reappears
here. The parameter « can be interpreted as the effective cleaving rate, measuring the rate of cleaving reactions compared to the

D
rate of diffusive hopping d. Thus, we take d to be d = A where D is the diffusion coefficient for the CA particle.
x

We use the first moments to determine the expected velocity for this system

()  gAz
=\ , I.15
(t) 1—A ( )
which is the same as (I1.4). Relative to the diffusional velocity Agm, this is
vAz
v = =1-—-2A I1.16
t=""75 ; (I1.16)
with asymptotic expansions for the limiting behavior of the velocity for large and small « as
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The velocity we compute here is the velocity of removal of the ParA track due to cleaving, which we refer to as cleaving
velocity hereafter, and should not be confused with the velocity of CA movement. A comparison of this calculated velocity with
estimates from numerical simulations of the cleaving velocity is shown in Fig 3-(a). The numerical simulation was performed
on a discrete track using a Gillespie simulation algorithm [29]. Using a large number of nodes allows us to obtain good statistics
for average velocities since finite domain effects are unlikely to affect our computations. Fig. 3-(a) shows excellent agreement
between the numerical simulations and the expression in eq. (IL.16) when the CA cleaves on the discrete track.

An interesting feature of the cleaving velocities is that the velocity of cleaving does not increase linearly with the non-
dimensional cleaving rate «. Instead, the cleaving velocity limits to a constant value for large cleaving rates . This makes sense
since the velocity of cleaving depends not only on how fast each cleaving reaction takes place at a specific site, but also on the
time to find cleaving sites. The time to find cleaving sites depends on the diffusive hopping time of the CA between consecutive
track sites for large cleaving rates i.e., the velocity is diffusion limited with v ~ % for a >> 1. Thus, a very high cleaving rate
cannot overcome the fact that it takes time for the CA to travel from one cleaving site to the next. On the other hand, if there are
no cleaving reactions on the lattice (i.e., @ = 0), then the ParA edge cleaving velocity is also zero with no track edge movement,
as expected.

A. Renewal-reward approach and higher moments

The mean first passage time analysis in the previous section allows us to calculate how fast, on average, the track is cleaved.
While this velocity is an important quantity, it does not tell us much about other statistics of the CA, such as higher moments for
CA displacement. For example, higher order statistics can be used to define the effective diffusion coefficient for the CA. There
have been previous definitions of such quantities in [13]. In this section, we provide an analysis that allows us to compute the
CA effective diffusion coefficient as a function of the cleaving rates.

For this analysis, it is convenient to write a model that tracks the position of the CA as it transitions between consecutive
cleaving events. For this purpose, we define Py (4,t) as the probability of the k" track-cleaving event taking place at position
1Az, in a fixed frame of reference, at time ¢ (note that the k£ — 1 cleaving event takes place at position with index j < 7). Then,
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FIG. 3. (Color online) Discrete model results. a) Comparison between non-dimensional analytical velocity results in eq. (I.16) and simulation
results. Numerical simulations were performed using a Gillespie algorithm for a discrete lattice track. Numerical results are in excellent

agreement with calculated velocities. b) Effective diffusion coefficient, The analytical effective diffusion is computed using eq.(I1.32)
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The probabilities p, q are defined as in the previous section as the one-cleavage step probabilities, and obey the eq. (I1.5)-(I1.7).
The mapping tracks the transition of the CA between consecutive cleaving events; the summation of probabilities indicates that
a CA can reach and cleave at position ¢, in a fixed frame of reference, from any track position 7 < ¢ — 1. In eq. (IL.20), we use
the definition of dg/dt from Sect. II, with ¢ — j being the size of the cleavage step. These probabilities are then integrated over
time to account for all possible times when cleaving can occur for this process.

Casting the problem in terms of this one-step process has several advantages, the primary one being that we can compute
higher order moments for cleaving distances of the CA. We define the first moments in both independent variables for this
process as

M:vk—/ Z PP (i, t)dt, Mt,ﬁ:/ Z tPy(i,t)d 11.21)

i=—00 i=—00

Upon substitution of eq. (I1.20), the respective moments, M}, Mt;. are found to obey the recursive relations

oo d L
Mz} = Mz}, + Mz9_,(z), where Z/ q (.22)
and since M), = [ 5% Py_1(i,t)dt = 1, the mapping simplifies to
Mz}, = Mz}, + (z), (11.23)
and similarly we obtain
Mt = Mt} + (t). (I1.24)

These calculations indicate that the moments for this process are additive and can be obtained recursively; this feature is
extremely useful in computing higher moments from the process given that we already know (z), (¢) from the discrete model in
the previous section. The second moments follow in the same way (see Appendix), for example
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oo 00
Mz} = Mzj_, +2Mz;_,(z) + (z*), where (2°) = Az? Z/ o dt. (I1.25)
=170

In a similar way, one calculates equations for the second order cross-moments (see Appendix). For example

Maty = Maty_q + (x)Mt), | + (t)Mzx}, | + (xt), (I1.26)

where we define
Maxty, = it P (i, t)dt xt) = it—dt. 11.27
ik /oo;cxf ), (o) ;/07& w.27)

Framing the model in this way allows us to think of random site cleaving through a stochastic process. Specifically, we define
the continuous-time stochastic process {z(t),¢ € [0, 00]} with z(¢) denoting the position of the most recent cleavage event at
time ¢. This process is regenerative since there is a random time ¢, corresponding to the time of the k' cleaving reaction
with the property that the cleavage distance, x(¢)) — x(tx_1), is independent of previous cleavage distances. This is because,
immediately following a cleavage event, the underlying diffusion process starts anew until the next cleaving event. Next, we
define the random variables T}, = ), — t—1 with tg = 0 corresponding to times between cleaving events. The sequence {7} }
defines a renewal process with 0 < E(T}) < oo provided a@ > 0. A reward structure can be imposed on this regenerative
process. We let X}, = xj, — xj,_1 corresponding to the distance between cleaving positions; X () is defined to be the cumulative
reward earned up to time ¢ and the process { X (¢),¢ > 0} is called a renewal-reward process [30]. The probability densities for
these random variables are described by the recursion in eq. (I1.20).

An important feature of renewal-reward processes is that the long-run behavior of the process can be determined in terms of
the behavior of the process during a single regeneration cycle [30]. Further, the long-run behavior for this process is known by
means of a central limit theorem (CLT)(see [31] for details), which states that for large ¢, the process X (¢) is approximately
normally distributed with mean 7t and variance v%t/puy, where p1 = (T1), n = (X1)/(T1) and v? = (X1 — nTy)?) are mean
and variance quantities that are computed from a single step of the process. The term 7 is exactly the average cleaving velocity,
so we have that 7 = v. The quantity ©? is the variance for this process, and it depends on both the reward random variable and
renewal cycle random variable. Based on this limiting distribution, we define the dispersion for our process to be

V= (X, —vT1)? (I1.28)
= (z?) — 2v(at) 4+ v (t?). (11.29)

where we have used that (X?2) = Mx? = (22) (eq.I1.25), (XT) = Mxt; = (xt) (eq. 11.26), and (TZ) = M3 = (t?).
We can compute 2 using the second moments which are obtained explicitly and are

2 1+A2 I+ Az A+ A+1
t?) = _— %) = Ax? — rt) = — ——————. 11.30
= ety P =AET =T 0 o (11.30)
which yields the simple expression for v/
1+ A2
P= A .31
S FRD VI Sy (30
The quantity v/ is given by
2 1 2
Yo ang? 111 , (1132)
H1

and is the effective diffusion constant of the CA. Asymptotic expansions readily reveal the limiting behaviors of these quantities

vl +O(a ) v - Yt ow@ (I1.33)
—_— = — [0 —_— = — -\ @] .
Ar?  « T pupdAg? 2 ’
for o << 1, and
v2 1 2 1
=14-0(3?), ——=1-=40(a?2 11.34
Az? + a (@™, p1dAz? o +0(™), (IL.34)
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for o >> 1. A comparison between the effective dlffusmn ird A > and the diffusion obtained from stochastic Gillespie simu-

A2 _ 0
lations of this process, uldA:ﬁ o = ;lesz var(n I tn), where n is the amount of cleaved track in a ¢,, interval, is shown

n
in Fig. 3-(b). The predicted effective diffusion from our model is in excellent agreement with the simulation statistics. The
effective diffusion also shows some interesting properties. When a = 0 the effective diffusion becomes ird e = MLD =1

or E = D corresponding to the free diffusion coefficient of the CA, which is expected since D is the diffusion coefficient
corresponding to reaction-free regimes. For a — oo, the effective diffusion also limits to D, the free diffusion coefficient; one
way to interpret this is that in the fast cleaving regime the CA the reactions become almost instantaneous thus the CA spends no
additional time in cleaving reactions as it diffuses between cleaving sites. In an intermediate o regime, interestingly we observe
that the effective diffusion coefficient of the CA is smaller than free diffusion coefficient D (approx. 20% reduction), and this
is most likely connected to a slow down due to time spent for each cleaving reaction in this o range. This range of lowered

diffusion is an interesting result from our model that we discuss later.

III. A CONTINUOUS SPACE MODEL WITH FINITE SIZE CLEAVING SITES

In this section, we let the position of the CA be a continuous variable, generalizing the work of [5, 9] for autocatalytic reaction
waves and collagenase cleaving. With a continuous position assumption, the cleavage model can be described in terms of
differential equations which can be analyzed to compute relevant properties of the CA.

For this second model, we again use a moving frame of reference with position z = 0 located at the leftmost edge of the
one-dimensional lattice, corresponding to the edge of the last cleaved site. Thus, as in the discrete space model, we follow the
evolution of a continuous position variable, z that gives the distance between the polymer track edge and the center of the CA,
as shown in Fig 2-(b). The CA diffuses on the ParA track and also reacts with the track at specific cleaving sites indexed by
1 =1,2,3.... We assume a regular distribution of cleaving sites with z; 1 — x; = Az, however, in contrast with the discrete
model, on a particular ParA dimer the cleaving site extends from z; to x; + L, so the distance between consecutive sites is
Ax — L. The site positions are given by the relation x; = iAx.

We write a differential Chapman-Kolmogorov (CK) equation [32] to describe the evolution of the probability density, p(x, t),
of finding the CA at position z at time ¢

op(z,t) _ D02p(x, t)
ot 0x2

+ /_00 dz[W (z|2)p(z,t) — W(z|z)p(x,t)]. (IL.1)

The two components in this model are the diffusive term with diffusion constant, D, and the cleaving reaction jump terms. An
important idea to highlight here is that the reactions cause the CA to move on the track each time a cleaving reaction occurs
due to the moving frame of reference; every time a reaction occurs the zero position is moved to the most recently cleaved site,
Fig 1. The reaction terms in the CK are given by the time independent jump transition probabilities W (x|y) that depend on the
cleaving reaction rate function ¢(z), which is in turn defined as

0% $ if0<z<L
=1L = 1.2
¢(x) x(@) {0 otherwise, ( )

where ~ is the absorption rate into a track cleaving site and x () is an indicator function. For simplicity, we assume that all the
cleaving reaction rates are the same, -y for all ¢ positions on the track.

We obtain the following CK equation that describes the evolution of the conditional probability density, p(z, t) of finding the
CA at position x at time ¢

op(z, t) 0 p(z,t)
ot 0z?

Zp T+ xi,t) — Z o(x — x;)p(x, t). (111.3)
i=1

The resulting reactive terms in the CK are dictated by the moving frame of reference in this model and can be interpreted as
follows. In the moving frame, each cleaving reaction results in the instantaneous movement of the most recent cleavage site, x;,
to the zero point, thus the z position of the CA moves to position z — z;. The the sink terms represent cleavage at position x;
and the source term represent repositioning of the CA in the moving frame of reference.

The boundary conditions are p’(0,t) = 0 and lim,_,~ p(z, t) = 0. The reflective condition at the z = 0 boundary is imposed
to contain the complex on the ParA track, since we assume that the CA has high non-specific biding affinity for the ParA track.
Note that the terms in eq. (IIL.3) are such that there are no cleavage reactions in the interval 0 < x < L.
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The cleaving velocity of the track by the complex is calculated as the net sum of all the possible cleaving steps (or reactions)
catalyzed by the CA on the ParA track. Accordingly, the velocity is

’UE/Z(ﬁCE—LIZI ps */szxx_x ps( )d (HI4)

where ps(x) is the steady state distribution of eq. (II1.3), marking the steady state distribution of the CA position relative to the
track. We note that this velocity is the track shortening velocity caused by a diffusing hydrolysis-inducing element that can react
with the track at arbitrary sites, not to be confused with the velocity of the CA itself. The steady state distribution solutions of
the CA position, ps(z), can be readily obtained from eq. (IIL.3) using the assumed rate functions, ¢(x). The main steps of the
steady-state calculations for this model are given in the Appendix.

An explicit expression for v as a function of the cleaving rate and cleaving site length can be readily obtained and its derivation
is outlined in the Appendix. As in the discrete case, we use the rescaling ¢ = v42, a = Lgm and k = A%c corresponding to
non-dimensional velocity, cleaving rate and cleaving site length, respectively. The velocity in two limiting cases of reaction site
lengths can be readily computed to be

vAx 2\

—a—. L 111,
5 =ar—5s L0, (I1L5)

where X < 1 satisfies A2 — (2 + @)X + 1 = 0, and

vAz _ 2V/a . L — Az, (111.6)
D 2+ a
Aac

We show a plot of the rescaled velocity © = v55* as a function of the parameter o = % for several site lengths k = é >0
in Fig. 4-(a). The velocity solutions show orderlng for varying cleaving site lengths, as measured by the non-dimensional
parameter k. Moreover, velocity ordering is particularly prominent for small «, however as & — o0, all the velocities limit to
the same constant value which corresponds to the diffusive transition velocity across Ax segments, since the CA cannot move
faster than the diffusive rate, vp = D/Az. The cleaving velocity responses can be readily seen with the help of asymptotic
expansions in two different o regimes for the non-dimensional velocity expression

Ax 1
b= “DT = Va - gka+ 0(*?), a<<1, 0<k<1, (11.7)
A k k
D « «
andfork =0
A 1
@:”DT: a— 2040, a<<1, (LIL9)
A 1 1
p="20 29 4- +12— +0(@?), a>>L (111.10)
D «a a?

All the expansions have the same limiting behavior with « given by lim,_,o 9 = 0 and lim,,_,, ¥ = 2, respectively. The reason
that ¥ limits to the same constant value, independent of k, as e — 00, can be understood by noting that each cleaving event can
contribute at most Ax removal from the track independent of & in this model (i.e., a ParB can at most remove a single dimer). On
the other hand, when oo = 0, there are no cleaving events and the system is necessarily static, since the track cannot be cleaved.
These model results are in agreement with corresponding BBM model velocities results [7, 9]. The steady-state probabilities
versus the non-dimensional position variable y = x/Axz in Fig. 4-(b) show that the CA is more likely to be found near to the
edge of the lattice as the cleaving rate increases. These results agree with what we expect for this process, since a faster cleaving
rate should not give the CA enough time to diffuse far from the edge of the track between consecutive cleaving events.

Next we study two limiting cases for this model, where expected velocities and many other movement statistics can be
explicitly obtained.

A. Point cleaving rates: the L — 0 limit

We start with a special case for the cleaving rate functions ¢(z) in the limit where the length of the reactive site becomes
infinitely small, corresponding to L — 0. This rate function corresponds to the idealized case in which the target for CA
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FIG. 4. (Color online) Continuous model results. (a) Non-dimensional velocity, ¥ plotted as a function of o with varying trap length measured
by the non-dimensional parameter k. For high cleaving rates « velocities limit to the same constant values independent of the size of the
cleaving sites on the track. If cleaving does not occur i.e., &« = 0, then the cleaving velocity is zero and the CA is not reacting with the track.
(b) Steady-state probability density solution, ps(y) with Az = 1 and k = 0.4, & = 0.5, 2, 6. The peaks on the distributions show that the CA
is more likely to be found at the edge of the track if the cleaving rate increases, since there is less time to diffuse away from x = 0 in each
reaction cycle.

cleaving on the ParA track is infinitesimally small, however, the rate of hydrolysis once there is sufficiently high to make up for
the diminished target size; for this reason we refer to this scenario as a point cleaving rate model. In this limit we have

ap (92]) 3] 0o
Bt :D@ - E 0(z — x;)p +vé(z) E p(x + ;). (TL11)
i=1 i=1

For this problem we can find the velocity directly since the model equation is relatively easy to solve in steady state, so the
velocity is given by

vAx 2\

where ) satisfies the characteristic equation A — (a+2)A + 1 = 0. We note that the expression obtained here is the same as the
one obtained in the limit of . — 0 cleaving site lengths in the continuous space model. Further, the characteristic polynomial
used to determine A here is similar to the one for the discrete space model, indicating similarities between the two models; we
discuss this in more detail later. Asymptotic formulae for the velocity can be readily obtained

vAx

1
5 :f;:\/a—goz% +0(a?), a<<l, (IIL.13)
A 4

P20 _b=2-240(?), a>>L (IL.14)
D «

As expected, the velocity obtained in this limit case is in full agreement with the continuous model velocity as L — 0, indicating
that the () rate function approach is appropriate for this limit case.
Two state model: mean first passage approach. Instead of solving the PDE model at steady-state we can compute times for
cleaving events and the expected position where the cleaving takes place. The ratio between expected cleaving distance and the
expected time it takes to exit through the cleaving site is the expected velocity for the process; this is a mean first passage time
problem, similar to the discrete model case. To apply this approach, we present a new modeling approach that allows us to easily
leverage mean exit time calculations. A simple calculation along these lines was given in [9], but only for two special BBM
limiting cases @ — 0 and @ — oo. Here we demonstrate a more general approach that permits direct velocity calculations for
varying « regimes. We expect that this approach can easily extend to other BBM type models. Furthermore, in another paper
[25] we show that the mean first passage approach can be applied to a more general model where the CA can move along two
parallel tracks.

For the mean first passage approach we write the following system of differential equations following the same ideas of the
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discrete model; the quantities p, ¢ are now given by the following system of differential equations

dp

o D— —725 T —2)p (I1L.15)

da

% = (). (IL.16)
where §(z — x;) specifies the rate of cleaving at position z;. Similar to the previous section, we impose reflecting boundary

. op(z,t’ L . o . .
condition at x = 0, M |o—0 = O for the partial differential equation in the state p; this condition prevents the CA from

€Z
leaving the track due to diffusive flux. We obtain three relevant equations for the exit probabilities and times (see Appendix for
more details) as follows

d27'('7;
T2 70— zj)m = —18(z — z4), (I1L.17)
7>0
PG,
D d; —7) bz —2)Gi = —mi(2), (IL.18)
7>0
2T2
dda,2 —7) be—z)T} = —2Gi(v), (I11.19)
7>0

where the quantity 7;(z) gives the probability of the CA exiting through site ; given that the starting position is z, T;(z) is the
corresponding conditional mean first passage time (MFPT), and G; = T;(x)m;(x).

(a) 1

0.5¢

Position (x)

—~
(@)
~
N

Velocity, ©

o w

0 4 16 36 64 100
o Position x

FIG. 5. (Color online) Model results for the point-cleaving rate limit. (a) Exit probabilities, 7; (z) with Az = 1, ¢ = 2, 4, 6 and three cases of
cleaving rates o = a) 0.25, b) 4, ¢) 36. The probabilities peak at the index site ¢ with higher probabilities occurring for higher cleaving rates c.
(b) Mean first passage times, T;(z) for three exit sites indexed i = 2,4, 6, « = 0.25,4, 36, and Az = 1. The mean exit times are the lowest
at the exit site positions z = ¢. (c) The non-dimensional track cleaving velocity, ¥ is shown as a function of the parameter c. The velocity
shows qualitatively similar saturating behavior to the discrete model velocities.

Plots of representative solutions for 7;(z) and T;(x) are given in Fig. 5-(a)-(b). The exit probabilities, ;(z) peak when the
initial positions are close to x;, indicating that the likelihood of exiting through a particular site increases if the process is started
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with positions close to z;. Also, we note that the likelihood of exiting (or cleaving) at a site increases as the cleaving rate

increases, as should be expected. On the other hand, the mean exit times, T;(z) dip around the cleaving point position x;, since

the CA is almost instantaneously absorbed at the site if it starts close enough to it. As expected, the exit times increase with

increasing distance of the initial position  from the cleaved site . On the other hand, as the non-dimensional parameter « is

increased, the relative cleaving rate is also increased, which results in an overall shortening of exit times for all starting positions.
The hitting probabilities and the MFPT can be used to obtain the following moments for the problem

(H)=> Gi(0), (7)) =) T(0), (111.20)
>0 >0
and
(@) = Az imi(0), (@) =AY iPmi(0),  (wt) = Az iGi(0). (II1.21)

Upon solving the above equations, the z moments can be explicitly computed and they are

Az A2 At
() = = (x%) = Az CESYEL (1.22)

which are exactly the same as the moments we derived for the discrete space problem. To find (¢), we note that (¢) = G(0),
where G = ), G satisfies

d’G
Do = Sz —x;)G =1, (I11.23)
o j>0
since ), m;(x) = 1. Then, we obtain
(t) = %. (IT1.24)
v

Finally, average cleaving velocities are calculated using the following expression

(x) 29\

=-——== \ II1.25
@ 1N (IL.25)

which agrees with the equation (III.12). Using the same non-dimensionalization as before we obtain

2\

0= . 111.26
0] al o ( )
The cleaving velocity, @, as a function of the non-dimensional parameter o = % for this model is given in Fig. 5-(c). As

before, we see that the effective track cleaving velocity saturates as the relative hydrolysis rate, measured by «, is increased, as
we saw in the previous section. This indicates that the model we consider here gives qualitatively similar results to the previous
PDE model.

The other moments can also be obtained after some work (see Appendix) and we have

Az M+ 2X0% 43007 +2)0 413 AzZ2XN3 11N -8\ -3

(t2) 27 YRSy . (wt) = o o (111.27)

Finally, we calculate the variance of the renewal-reward process to be
v? = (2?) — 2u(wt) + v (t?) (111.28)
_ 2A3x2 (,\4 4—(12/\_3)4\-)26(/;:4')\2)/3\ +1 ), (I11.29)

and the effective diffusion coefficient to be

21 4 241
v :3(1—2)‘(A+). (I11.30)
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Asymptotic expansions give

vl .1 24 0(a®) (IL31)

MlD_ 48a a”), .
for a <« 1 and

21 4 81

== —Z40(a? 11.32

D3 3g (a™%), ( )

for a > 1.

B. Continuous cleaving: the . — Ax limit

In this limit, the model becomes the continuous binding model,

Dppw — —-p=0, Az<z< oo, (I11.33)
Az
and
Dpas + & ;p(m +iAz) =0, 0<z<Ax, (I11.34)

with boundary condition p,, = 0 at x = 0. Explicit solutions can be easily obtained in this case for the steady state distributions.
The velocity is then found to be

Az 00
5 5
_ i = — 11.35
v A:E/O ;”(x”) * = BAz(1+ LpAq) (L3

_ ~ _ o e . . . . e
where 8 = /x5 = /A5~ In non-dimensional terms, we obtain a simple expression for the velocities in this limiting case

A 2
oo VAT _ 2o (111.36)
D  2+a
Asymptotic expansions give
Az 1
! DT = Va - sa+ 0(a*?), a<<1 (I11.37)
VAT 1 1
=2 =92-4— 48> +0(a%?), 1. I11.38
5 N +8—+ (@™%?), a>> ( )

These results are in agreement with the calculations of the full continuous model velocity in the limit limg_,o © (see Appendix).

IV.  COMPARISON OF MODELING APPROACHES

We have discussed two modeling approaches for CA track cleaving; for both cases we took a moving frame approach coupled
with a two state model to compute average velocities and movement statistics. An important question is to examine in what limit
the two modeling approaches correspond to one another. The non-dimensional parameter « is useful for this purpose. Recall
that for the discrete space case, velocities were expressed in terms of A, which is the root A < 1 of the characteristic polynomial
A2 — (2+ @)X+ 1 = 0 with @ = gAz?/D. On the other hand, for the continuous space case, solutions were expressed in
terms of the quantity A\ < 1 that satisfies the characteristic polynomial A2 — [2 cosh(ak) + (1 — k)& sinh(ak)]A + 1 = 0 with
a = yAz/D. The intuitive limit where the continuous and discrete model should agree is the case where L — 0 or k — 0.
Indeed, in the limit & — 0, the characteristic polynomial for the continuous model reduces to the familiar discrete polynomial
A2 — (2+ @)X + 1 = 0, which is equivalent to the discrete model provided we define o appropriately for the continuous case.
Thus, to appropriately compare the discrete and continuous model results it is reasonable to set v = gAz. Using this v we have
a uniform « parameter definition for all our results so that proper comparisons can be made.
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FIG. 6. (Color online) Comparison of all model results. a) Plot comparing all the average velocity results for each model. b) Comparison of
the effective diffusion constant for the discrete model and the continuous model with point cleaving rates L — 0.

Plots of the velocities and effective diffusion coefficients for the two models (continuous and discrete) plotted as a function of
« are shown in Fig. 6.

In Fig. 6-(a) we see that the velocities for the two models and the different parameter choices show the same qualitative
behavior, namely that v — 0 as @ — 0 and that v approaches some constant value as &« — oo. The constant approached by the
velocity of the discrete and continuous models is different; in the continuous model, v — 2 for any k (including £ — 0), whereas
in the discrete model v — 1. The discrepancy is due to the fact that in the limit of large «, the reaction at the first reactive site on
the track is almost instantaneous so that the velocity is determined entirely by the time it te21kes the CA to reach the first site. For

Az

the continuous model, the expected time to diffuse a distance Az is the diffusive rate 55 - On the other hand, for the discrete

model, since the movement is by a Poisson process with rate d, the expected time to reach the first site is 1/d = %”2, which
is twice the amount of time for the continuous model. This discrepancy is not apparent in the case where « is small since for
slow reactions, diffusion on a discrete lattice and the continuous line are the same. This point is also demonstrated by the plots
in Fig.6-(b), where it is seen that the effective diffusion coefficients for the discrete and continuous model with point cleaving
rates agree at a ~ 0. The qualitative behavior of the effective diffusion coefficient for both models remains the same, however
the difference is most prominent in the fast cleaving reactions, or when a >> 1. Differences between continuum and discrete
stochastic model results have been reported in other studies. For example, in [33] sources of discrepancies in mean first passage
times of continuous and discrete models are discussed in detail.

V. DISCUSSION

In this paper we have presented models that describe the removal of a one dimensional track by a cleaving enzyme that
interacts with the track components via the hydrolysis of ATP. Our main question, based on the C. crescentus chromosomal
segregation apparatus, is how bias can be generated in the movement of a cleaving enzyme and subsequently how fast the track
edge moves due to the cleaving enzyme action. To answer this question two models, one discrete space and one continuous
space, were developed and analyzed. These two models are related to one another in the limit that the size of the cleaving site
for the continuous model approaches zero. Using mean first passage time methods for both models, we are able to analytically
compute dynamic properties such as track cleaving velocities, and higher moments of cleaving enzyme movement.

We highlight a few results from our models. A key parameter for track cleaving velocities in our models is the non-dimensional
variable a = 9AD5”2, which specifies the ratio between track cleaving and diffusion rates. When the rate of cleaving reactions
exceeds the rate for diffusive transitions between ParA sites (o« >> 1), the system shows that cleaving velocities cannot exceed
simple diffusion driven movement between consecutive cleaving sites. This somewhat counterintuitive result indicates that once
cleaving reactions are faster than some basal level, the energy of ATP hydrolysis released during a cleaving reaction does not
significantly contribute to track cleaving velocities. Second, using a renewal-reward model, we calculated an effective diffusion
coefficient for the CA, which is a measure of effective diffusion of ParB on a ParA track. We find that this diffusion is sensitive to
the cleaving rate. For low and high cleaving rates, the effective diffusion limits to the free diffusion coefficient of the CA on the
track, indicating that for very slow reactions or very fast reactions the CA is effectively diffusing as a free particle on the track.




A Moment calculations for the discrete model 17

For intermediate values of the cleaving rate, however, we find that the effective diffusion coefficient is smaller. This indicates that
the ATP hydrolysis energy for these intermediate cleaving rates partially goes toward reducing ParB movements away from the
track edge, corresponding to lower diffusion coefficients. Our computations of the higher moments of the CA are in qualitative
agreement with dispersions previously calculated in [7, 13]; however in these previous works dispersion is only computed for
forward BBM models and we are not aware of results in the forward-backward BBM, which more closely corresponds to our
models. The reduced effective diffusion coefficient we found for intermediate cleaving rates is supported by the observed slower
diffusion of ParB structures when they come in contact with artificial ParA carpets in [26]; these experimental data might indicate
that the cleaving rates for ParB lie in the intermediate range in vivo.

A key assumption that facilitated the development of our model was to view the ParB/ParA complex as a dynamic track
altering motor that uses hydrolysis of ParA track components to bias Brownian motion. An important aspect of this modeling
is that it allows us to investigate the connection between hydrolysis rates and ParB track-cleaving velocities. In contrast to
previous modeling [22, 23] for ParB/ParA interactions, in the models discussed here the ATP hydrolysis rate of a ParB cluster
that diffuses on a ParA track is the only source of bias for ParB movement and ParA track cleaving. We find that the rate of
hydrolysis of ATP is a key factor when predicting the velocities of the movement of the cleaved edge of a linear filament inside
these cells. Specifically, we found that if the ParB cluster has a high hydrolysis efficiency then the cleaving velocity approaches
a constant value, corresponding to the diffusive rate of the complex between consecutive sites. These results are in agreement
with the simulations of [23]. Our computed effective diffusion also shows that the position of ParB clusters can show a high
degree of variability corresponding to free diffusion if the hydrolysis rate is severely weakened; this finding is supported by
observations of stalled segregation in ATP hydrolysis mutants [16]. An important contribution of this work is that our simplified
modeling framework allows for the calculation of explicit relationships between ParB velocities, ParB diffusion and hydrolysis
rates, which has not been previously investigated.

Burnt-bridge models are useful beyond the context of C. crescentus segregation. The model proposed in this work can be
categorized as a generalization of depolymerization models for bio-polymers. In the cases where the cleaving enzyme is an
efficient ATP-ase it will work by removing track components from the ends of the polymer. On the other hand, when ATP
hydrolysis rates are lowered, the track experiences shortening by the removal of multiple monomers at a time and the cleaving
enzyme positions can experience significant deviation from the track edge. For microtubules, depolymerization is caused by
changes in the polymer lattice through GTP-GDP transitions of microtubule tubulin monomers at the polymer ends. However,
many proteins that are reported to alter biopolymer depolymerization rates are also found to localize at microtubule ends-the
specific role of these proteins in depolymerization velocities is often difficult to discern. For example, the kinesin-13 MCAK
[34] interacts with microtubule tip regions and significantly increases depolymerization speed, and katanin proteins (’cellular
samurai”)[35] literally sever Mts in order to regulate their lengths. The biased diffusion mechanism studied here can have
applications in understanding depolymerization models in a more cohesive framework, which allows for the inclusion of the
action of “track-cutting” enzymes in depolymerization speeds.

An important question remains open for C. crescentus cells, and it has to do with the nature of the ParA structures. Two
hypothesis are proposed for ParA organization: an actin-filament based structure [16], where ParA are organized as continuous
independent actin filaments inside cells, or a diffusion ratchet setup[20] where ParA forms contiguous dynamic patches on the
surface of the nucleoid. In all our models we have assumed that the ParAs form a single continuous track, however, based on
these two hypothesis it is possible that ParA arranges into multi-track bundles on the bacterial nucleoid [16]. In an another paper
[25], we extend one of our models to a scenario where ParB moves along two parallel filament or tracks. We conclude by noting
that the key characteristics of a burnt-bridge model are a continuous structure of ParA proteins, and random site hydrolysis
reactions coupled with ParA clearing in the anti-poleward direction. Independent of the details of ParA track structure, our
model shows that directed ParB movement can occur when hydrolysis induced cleaving is allowed along the ParA track. Indeed,
we propose that the control of this hydrolysis rate might be an important control parameter for these systems.
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VI. APPENDIX

A. Moment calculations for the discrete model

To calculate the moments, we first solve

Wz =eg. (VL.1)



B Calculations for the continuous model

The solution has

and 1 — xg = 1, so that

which gives that

Second, solve

For this, we try

and find

1
and y1 — Yo = To = 53

Thus,

TJ:b)\j,
a(A—1) =1,
Y . .
ij:)\_la]ZOa q]’ _7O[xja‘721-
Wy==z

y; = aX +bjN,

b A
(=M1 =22
implies
1
a =

(1=2)21=x%)

1 N .
— \J+1
i (1—)\)(1—)\2)(1—)\4_‘7)\ ):

Now we can calculate all the means. First, an easy check verifies that

as it should. Then,

and the second moments are

(t?)

174> = —aZ:cj =1,
Jj=1

2 142

_ L+ Az N+
PN 14N

(z?) = Ax?

B. Calculations for the continuous model

The steady-state equations for each space interval are

(o)
0:ng(x)+'y¢(x)2pj(x+mj,t), 0<z<L,
j=1

0=Dpj(z), zj1+L<z<z; j=1,2,...
0= Dpj(z) —vp(x)pj(x), zj<z<z;+L, j=1,2,....
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(V1.3)

(V1.4)
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(VL9)
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(VI.12)
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(V1.14)
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We normalize the area under the curve of the rate function ¢(z) such that fOL ¢(x)dx = 1. Since we pick ¢(z) to be proportional

to x(z), it follows that ¢(z) = @ Rescaling space, z = Azy, the problem can be written as

a — .
0=pg(W)+ 5 D pily+it) 0<y<k (VL16)
R
0=pi(y), j—1+k<y<yj, j=12... (VL.17)
« . . .
0=pj(y) — 2P, J<y<j+k j=12... (VL18)
A L
where o« = u, k = —. Direct integration of eq.(VI1.17)-(VI1.18) gives,
D Az
a; + bj(y — ) j—1+k<y<j,
i\Yy) = Aly—j N VI.19
p](y) {cjea[y—_j] +dj€—a[y—]—k} j< y < j +k, ( )

for & = \/a/k and j = 1,2,.... Recursive relations for all the coefficients are established by applying appropriate continuity
and differentiability conditions aty = 7,7 + k
aj\ (1 ek Cj
< b; ) o (d —Getk ) (dj ’ (V1.20)

1 k-1 aji1) _ ik q ¢
<0 1 )(bﬂl)_(@edk a)<dj - (VI.21)

The above linear equations can be reduced to a system for only a, b coefficients

aj+1 a;
=A , (V1.22)
bj1 bj
and
inh(&k osh(&k
cosh(@k) + ky sinh(ak) SEAR) L cosh(@h)
A= a « , (V1.23)
asinh(ak) cosh(éak)
where k1 = (1 — k)&. The eigenvalues of A are roots of the characteristic polynomial
A — [2cosh(ak) + kq sinh(ak)]A + 1 =0, (V1.24)
and eigenvectors are
A — cosh(éak)
V= G sinh(&k) . (VI.25)

1

We construct solutions using the root A < 1 of eq. (V1.24) and the corresponding eigenvector V. The resulting solutions are
< 4 ) — NI, (V1.26)
J

where the coefficient C is scalar parametrized by a, k.
For the source terms, appearing in 0 < y < k interval, we compute

hE

h(y) = Xjo<y<k1(¥) > py+7) (VL.27)

1

.
Il

=y [A cosh(ay) — cosh(a(y — k))]. (VI1.28)
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The equation for the first interval 0 < y < k is

0=pg(y) + h( ) (V1.29)
with p}(0) = 0 and po(k) = a1 + b1 (k — 1). The coefficient C is then obtained by applying the normalization condition
0 Y applying
oo
1= / p(y)dy (VL30)
0
which gives
1
2 (1=k) (‘cosh(ak)—A _ (1—k) A (Vi3b
1— cosh(ak)— 1—k
(fo pO dy+ ( (1=X)) ( asinh(ak) 2 >> B d2>

where po(y) = po/Cs. Finally, the (dimensional) velocity of track cleaving is calculated using
o [e%s}
Y
v=T Z/o zix(x — zj)p(x)de. (V1.32)
j=1

We rescale the velocity v = N where ¢ is non-dimensional velocity. This allows us to write
€T

itk
b= VA”Z / (V1.33)

>\
=C. . VI1.34
1 (VL34)
Two limiting cases for the velocity & — 0 and £ — 1 can now be calculated explicitly to obtain
2\
5= 20 k—1 (L— Ax) (VL.36)
0= 1 a’ x). .

These limit calculations agree with our velocity calculations for the limit cases of the continuous model as shown in the
manuscript.

C. Moment calculation

The one step-process model reads

X j=—00

We calculate various moments for this process by applying the recursive map to the moment expressions.

= > iP(i,s) (VL38)
1=—00
=g Z / Z Pr_1(4, $)p(i — j, t — s)ds (VL.39)
i=—00 X j=—00
o0
:gz T—l—]/ ZPk 1@ —r s)p(r,t—s)ds, r=i—j (VI1.40)
i=—00
Y’
=g Z/ (1 —7r)Pr—1(i —r,s)+r Z Pi_1(i — 7, 8))p(r,t — s)ds (V1.41)
X j=—00 i=—00

oo t
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C Moment calculation

We define

M:ck—/ ZzP”tdt Mtk—/ ZtP”t

1=—00 1=—00

which gives the following relation

Maxy, =M M —dt
wp = May_y + M Z/ ar
Similarly,
mty, = Z tP(n,s)
n=—odo
:gz / ZP/» 1]5 Zﬁjatfs)ds
i=—00 j=—o0
=g Z / tZPk 1(i—rt—u)p(r,u)du, r=i—ju=t—s
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Thus,

Mt;, = Mt} + Mt _,(t), Z/ up(r,u)d

Further, we note that Mz9_, = Mt) |, = 1.
The second moment follows from

(o)
may = Z 2Py (i, s)
1=—0

0 t i—1
—g > [ Y PGt s)ds
i=—00 —0o0 j=—00
thus
d
Ma} = Mz} | +2Ma}_(z) + (a? Z/ 2 q

In a similar way one calculates equations for the mixed second order moments. For the cross-moments
Mat), = Mty 1 + (x)Mt) | + ) M) | + (xt)
To calculate the variance
or; = Mz} — (Mx})?
= op_y +(2%) = ((2))?

For the cross-variance we follow a similar approach
pr = Mzt — M Mt;,
= g1+ (at) — () (D).
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D. Moment calculations for delta function rates

For the continuous problem formulation,

N
E_Da 7257“77‘ )p + 7(x ZpT—{—Tz).

the first exit formulation, using the p, q probabilities, is

815 8&6
dg; o
E ’Yp(xz)

E = va
Jq; i
ot VP(iEz)a

where

82
W:DW —726(3:—@-).

Then, using the same approach as in the discrete model section we obtain the relevant probabilities and exit times

¢ = fﬁ/egVV*T(S(x —x;), Tq¢° = ”/60TW72T5(JU — ), Tquo = — /QegWﬂg’T(s(x — ;).

Since the PDE operator W is self-adjoint W = W7, the object 7; = —yW ~16(z — z;) satisfies
W = —vd(x — x;),
and G; = YW 21 §(x — x;) satisfies
WG, = —m;.
Further, T? = —72W ~3T§(x — z;) satisfies
WT? = —2G;.
Therefore, we have three equations that are relevant for moment calculations for the continuous problem

d27T7;
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’ J>0
el
D 72 —726(1‘ —x;)G; = —m(z),
3>0
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- 3>0

The moments we want can be computed using

t) = ZGiw), (t?) = ZTE(O)
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and

(x) = Az Z im;(0), (z?) = Az? Z i*m;(0), (xt) = Ax Z iG;(0).

To find ;(x), set

mi(x) = 71'; + s;(x - zj),

i _ i i

siAx =7 — 7,

for z; < x < x;41. Then, the governing equation (VL. 71) reduces to the linear system
i — (24 o)) + T = —ady,

2 . .
where o = 222 and i = 7t Try a solution
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We find
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e e Sk we Vi
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i a\ .
Ty = m, 1> 0,

which is the same as the discrete space problem. Then, some moments are

B i A o A2 AT
<x>—A:r;z7r0—ﬁ, (%) = Az YR

which are exactly the same as for the discrete space problem.
To find (t), we note that (t) = G(0), where G = ) _, G satisfies

d*G
DW - 72(5(:1: —z;)G = -1,
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since ), m;(z) = 1. So,

It follows that
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with the initial condition hy = 0, which simplifies to
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It follows that

1 a A
9i_§(1+§1f>\>’ (V&%)
so that
1+ A
£ = gy = ) VI.90
{t) = g0 T ( )
Notice that
(x) 2y
= . VI1.91
S T 1o (VL1

which agrees with the equation (III.12).
Now to determine (¢?) = T2(0) where T?(z) = Y, T?(x) satisfies

d*T*?

Dy = > 6z —a;) 17 = —2G(x). (V1.92)

3>0
We solve this equation in the same way as above and obtain

1 A 4+8X 422202 + 120+ 5
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() 1242 A2(A+1) (VL.93)

To calculate (zt) = X (0), we must solve the differential equation for X (z) = Az ), iG;(x),

d’X

D5 - ng 8z —1)X = —Ax ; imi(x). (V1.94)
which gives
3 2
(o) = % A *;a _*AZ)A +3 (VL95)
Now we can calculate the variance of the renewal-reward process to be

v = (2?) — 2v(xt) + v*(t?) (VL.96)
_ 2A3x2 (,\4 Jr(lz/\_ra;)f(,;2++)\2)/3\ +1 ), (VLOT)

and consequently the relative effective diffusion is
ﬁlzé)\4+2)\3+6)\2+2)\+1. (VL98)
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