Role of protein fluctuation correlations in electron transfer in photosynthetic complexes
Alexander I. Nesterov and Gennady P. Berman
Phys. Rev. E 91, 042702 — Published 6 April 2015
DOI: 10.1103/PhysRevE.91.042702
The Role of Protein Fluctuation Correlations in Electron Transfer in Photosynthetic Complexes

Alexander I. Nesterov*
Departamento de Física, CUCEI, Universidad de Guadalajara,
Av. Revolución 1500, Guadalajara, CP 44420, Jalisco, México

Gennady P. Berman†
Theoretical Division, T-4, Los Alamos National Laboratory,
and the New Mexico Consortium, Los Alamos, NM 87544, USA
(Dated: March 12, 2015)

We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates, and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes, and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.

PACS numbers: 03.65.Yz, 05.60.Gg,05.40.Ca,87.15.ht,87.18.Tt
Keywords: Electron transfer, photosynthesis, noise, correlations

I. INTRODUCTION

In a photosynthetic organism, sunlight is absorbed in the light-harvesting complex (LHC) or antenna, by a light-sensitive (chlorophyll or carotenoid) molecule. This is the first step in transforming solar energy into electron energy in the form of the exciton. This exciton travels through many connected sites (pigments) of the antenna complex, and finally reaches the reaction center (RC), where charge separation and chemical reactions take place. (See, for example, [1, 2], and references therein.)

The timescale of the primary processes of electron (exciton) transfer (ET) and charge separation are very fast, \(t_{\text{prime}} \approx 1 \div 3 \text{ps} \). There are two major theoretical challenges in describing these primary processes. The first problem is that the constant of interaction, \(\lambda_n \), between the electron site, \(n \), and the protein environment is usually not small. Indeed, the well-known Marcus formula for the ET rate, \(k_{da} \), between the donor and the acceptor, under the influence of the collective protein thermal fluctuations, has the form [3, 4]:

\[
\frac{k_{da}}{(2\pi|V_{da}|^2)\sqrt{4\pi\varepsilon_T T}} \exp[-(\varepsilon - \varepsilon_r)^2/4k_B T\varepsilon_r]
\]

Here \(\varepsilon \) is the difference between the donor and the acceptor site energies; \(V_{da} \) is the matrix element of the donor-acceptor interaction, \(T \) is the absolute temperature; \(k_B \) is the Boltzmann constant; and \(\varepsilon_r \) is the so-called reconstruction energy, \(\varepsilon_r \propto \lambda^2 \). As one can see, the interaction constant, \(\lambda \), occurs in the denominators of both the pre-exponential factor and in the exponent. This result cannot be obtained by using standard perturbative approaches by expanding the initial expressions in a power series in the interaction constant, \(\lambda \).

It is known that the Marcus formula is derived in the high-temperature limit, but can also be used for room temperature [4]. A significant development of the Marcus theory was achieved in [5, 6], where the extension for a wide range of temperatures and for different properties of a solvent were incorporated. Note, that in [3–6], a single protein environment was used which acts on both donor and acceptor, but with different coupling constants. However, the important question remains: What modifications for the ET process will occur if a combination of correlated and independent (uncorrelated) protein environments act on different electron sites?

In [7, 8], the stochastic models, with uncorrelated noises acting on different sites, were used to elucidate the unidirectionality of the primary charge separation process in the bacterial
reaction centers with two symmetric ways of ET, starting from the common electron donor. These papers addressed a well-known problem of the highly asymmetric ET in the photosynthetic reaction centers.

Note, that in the real photosynthetic organisms, uncorrelated protein fluctuations can act on their neighboring pigments as well as on other pigments. Experimentally, this can be verified by measuring the corresponding correlation functions of the protein fluctuations between different donor-acceptor sites. The correlation properties of protein fluctuations at different electron sites can also be modeled and simulated numerically using the standard molecular dynamics (MD) approaches.

In [9, 10], we introduced a quantum mechanical nonperturbative model to describe multi-level donor-acceptor system. The model was used to describe multi-scale ET dynamics and nonphotochemical quenching by a charge transfer state in photosynthetic bio-complexes. In our approach the protein environment is modeled by a random telegraph process (RTP).

In this paper, we extend our model to the case in which the random protein environment can act both collectively and independently on all light-sensitive electron sites (pigments). Namely, for all electron sites, we introduce both collective (correlated) and independent (uncorrelated) protein fluctuations, modeled by RTP’s. We apply our model to determine the quantum ET dynamics of the simplest donor-acceptor system. Our main goal is to clarify the similarities and differences in actions of correlated and uncorrelated protein environments on the ET processes. Under some conditions, we derived analytic expressions for the ET rates, that are a generalization of the Marcus-type expression for noisy protein environment. We compared analytic expressions, in the wide range of parameters, with the results of exact numerical simulations. We demonstrated numerically that the uncorrelated fluctuations of the protein environment can either increase or decrease the ET rates.

In spite of, protein environments modeled by random processes and by the thermal bath usually produce different long-time asymptotic behavior for the ET dynamics, we believe that our approach is appropriate for the problems when the stationary states are realized before the thermal equilibrium is approached [8, 10]. Note also that protein environments in living organisms, have both noisy and thermal components [3, 4, 7, 8, 11–21].

The structure of the paper is the following. In Section II, we describe our model, and derive the closed system of differential equations for the averaged density matrix elements and for their moments. In Section III, we apply our approach to a specific “donor-acceptor” system, introduce the characteristic parameters, and present the results of the numerical simulations for both exact and approximate solutions. In the Conclusion, we summarize our results and formulate some challenges for future research. In the Supplementary Material (SM), we present mathematical details of our approach, and additional illustrations on the action of correlated and uncorrelated protein environment on the ET.

II. DESCRIPTION OF THE MODEL

Consider a quantum system which is described by a time-dependent Hamiltonian, \(\mathcal{H}(t) \). We assume that this Hamiltonian depends on some control parameters, \(\lambda_a \). The noise associated with fluctuations of these parameters is described by the functions, \(\delta \lambda_a(t) \), that depend on the random variables, \(\xi_a(t) \). Expanding the Hamiltonian to first order in \(\xi_a(t) \), we have,

\[
\mathcal{H}(t) = \mathcal{H}_0 + \sum_a \mathcal{V}_a \xi_a(t),
\]

where, \(\mathcal{H}_0 \), is the Hamiltonian of the system under consideration, and \(\mathcal{V}_a \) is a matrix that describes the interaction with noise. Using (1), we obtain the following equations of motion for the density matrix (\(\hbar = 1 \)),

\[
\frac{d\rho}{dt} = i[\rho, \mathcal{H}_0] + i[\rho, \sum_a \mathcal{V}_a \xi_a(t)].
\]

For the density matrix averaged over noise this yields,

\[
\frac{d\langle \rho \rangle}{dt} = i[\langle \rho \rangle, \mathcal{H}_0] + i \sum_a \langle \rho \xi_a(t) \rangle \mathcal{V}_a,[
\]

where the average, \(\langle ... \rangle \), is taken over the random processes.

To close this system of differential equations (3), we assume that the fluctuations are produced by the independent random telegraph processes (RTPs),

\[
\langle \xi_a(t) \rangle = 0,
\]

\[
\langle \xi_a(t) \xi_b(t') \rangle = \delta_{ab} \sigma^2 e^{-2\gamma_\tau}.
\]
III. TWO-LEVEL “DONOR-ACCEPTOR” SYSTEM

For a simplicity of consideration, we apply our approach to the TLS, with the following Hamiltonian:

\[\hat{H} = \sum_n \varepsilon_n |n\rangle \langle n| + \sum_{m \neq n} V_{mn} |m\rangle \langle n| + \sum_{m,n} \lambda_{mn}(t) |m\rangle \langle n|, \]

where the functions, \(\lambda_{mn}(t) \), describes the influence of noise. When the matrix elements, \(V_{mn} \), are absent, the diagonal matrix elements, \(\lambda_{nn}(t) \), are responsible for decoherence – the decay of the non-diagonal density matrix elements. When \(\lambda_{nn}(t) = 0 \) \((m \neq n) \), relaxation in the system occurs only if \(V_{mn} \neq 0 \). When \(V_{mn} = 0 \), the off-diagonal matrix elements, \(\lambda_{mn}(t) \) \((m \neq n) \), lead to “direct” relaxation processes.

In what follows, we restrict ourselves to diagonal noise effects produced by two independent (uncorrelated) protein environments described by the RTPs, \(\xi_{a}(t) \). Then, one can write, \(\lambda_{mn}(t) = \delta_{mn} \sum_{a=1}^{2} \lambda^{a}_{n}(t) \xi_{a}(t) \), where, \(\lambda^{a}_{n}(t) \), is the interaction constant with the a-th environment, \(\xi_{a}(t) \), at the site, \(n \) \((a,n = 1,2) \). Note, that in our approach, each noise can act on both donor and acceptor sites. (See Fig. 1.) The limit of a single collective noise, acting on both the donor and acceptor sites, corresponds to: \(\lambda^{(1)}_{1,2} \neq 0 \) and \(\lambda^{(2)}_{1,2} = 0 \), or \(\lambda^{(1)}_{1,2} = 0 \) and \(\lambda^{(2)}_{1,2} \neq 0 \). The limit of two uncorrelated noises, acting one on the donor and another on the acceptor, corresponds to: \(\lambda^{(2)}_{1} = \lambda^{(3)}_{2} = 0 \), or \(\lambda^{(1)}_{1} = \lambda^{(2)}_{2} = 0 \).

We consider the stationary telegraph noise described by the random variable, \(\xi_{a}(t) = \zeta_{a}(t) - \bar{\zeta}_{a} \), so that,

\[\langle \xi_{a}(t) \rangle = 0, \]
\[\langle \xi_{a}(t) \xi_{a}(t') \rangle = \delta_{ab} \chi_{a}(t - t'), \]

where, \(\chi_{a}(t - t') = \sigma_{a}^{2} e^{-2\gamma_{a}|t-t'|} \), is the correlation function of a-th noise, described by the random variable, \(\xi_{a}(t) \). The average value,

\[\langle \xi_{a}(t) \rangle = \bar{\zeta}_{a} \],

is included in the renormalization of the electron energy at each site, \(n \), in Eq. (10) as: \(\varepsilon_{n} \rightarrow \varepsilon_{n} + \sum_{a} \lambda^{(a)}_{n} \bar{\zeta}_{a} \).

Employing the differential formula for the RTP \[22],

\[\left(\frac{d}{dt} + 2\gamma_{a} \right) \langle \xi_{a}(t) R[t; \xi_{a}(\tau)] \rangle = \langle \xi_{a}(t) \frac{d}{dt} R[t; \xi_{a}(\tau)] \rangle, \]

where, \(R[t; \xi_{a}(\tau)] \), is an arbitrary functional, we obtain from Eq. (3) the following system of differential equations:

\[\frac{d\rho}{dt} = i[\rho, \mathcal{H}_0] + i \sum_{a} \sigma_{a} [\langle X_{a} \rangle, \mathcal{V}_{a}], \]

\[\frac{d\langle X_{a} \rangle}{dt} = i[\langle X_{a} \rangle, \mathcal{H}_0] + i \sigma_{a} [\rho, \mathcal{V}_{a}] + i \sum_{b \neq a} \sigma_{b} \langle X_{ab} \rangle, \]

\[\frac{d\langle X_{ab} \rangle}{dt} = i[\langle X_{ab} \rangle, \mathcal{H}_0] + i \sigma_{a} [\rho, \mathcal{V}_{b}] + i \sigma_{b} \langle X_{a} \rangle, \]

where \(\langle X_{a}(t) \rangle = \langle \xi_{a}(t) \rho(t) \rangle / \sigma_{a} \), and \(\langle X_{ab}(t) \rangle = \langle \xi_{a}(t) \xi_{b}(t) \rho(t) \rangle / (\sigma_{a} \sigma_{b}) \) \((a \neq b) \). Note, that by using the properties of the RTP, one can show that, \(\langle X_{aa}(t) \rangle = \langle \rho(t) \rangle \). Therefore, the diagonal elements of the matrix, \(\langle X_{ab}(t) \rangle \), do not add new equations to the system (7) – (9).

In the rest of this paper, we use Eqs. (7) – (9) to study the two-level “donor-acceptor” system (TLS) embedded in a noisy protein environment. We assume that two uncorrelated RTPs (generally, with different interaction constants) act on both the donor and the acceptor.

![FIG. 1: (Color online) The two-level “donor-acceptor” system (TLS) interacting with two uncorrelated noisy environments, \(\xi_{1}(t) \) and \(\xi_{2}(t) \); \(\lambda^{(a)}_{n} \) are the constants of interaction. The superscript, \(a = 1,2 \), indicates the noisy environment, and the subscript, \(n = 1,2 \), indicates the electron site.](image-url)
A. Integro-differential equations and rates

The dynamics of the TLS can be described by the following system of integro-differential equations [19, 23]. (For details see the SM.):

\[
\frac{d}{dt} \langle \rho_{11}(t) \rangle = - \int_0^t K(t - t') (\langle \rho_{11}(t') \rangle - \langle \rho_{22}(t') \rangle) dt' + iV_{21} \langle \rho_{12}(0) \rangle - iV_{12} \langle \rho_{21}(0) \rangle, \quad (13)
\]

\[
\frac{d}{dt} \langle \rho_{22}(t) \rangle = \int_0^t K(t - t') (\langle \rho_{11}(t') \rangle - \langle \rho_{22}(t') \rangle) dt' - iV_{21} \langle \rho_{12}(0) \rangle + iV_{12} \langle \rho_{21}(0) \rangle, \quad (14)
\]

where, \(K(t - t') = 2 V^2 \Phi(t - t') \cos(\varepsilon(t - t')), \quad (15) \)

\(\varepsilon = \varepsilon_1 - \varepsilon_2, \) and \(\Phi(t - t') \) is the characteristic functional of the random process.

For the case of two uncorrelated environments described by the RTPs, one can show that \(\Phi(t) = \Phi_1(t) \Phi_2(t) \). The characteristic functional, \(\Phi_a(t) \), of each independent RTP, is given by [24, 25],

\[
\Phi_a(t) = e^{-\gamma_a t} \left(\cosh \left(\sqrt{\gamma_a^2 - d_a^2} t \right) + \frac{1}{\sqrt{\gamma_a^2 - d_a^2}} \sinh \left(\sqrt{\gamma_a^2 - d_a^2} t \right) \right), \quad a = 1, 2, \quad (16)
\]

where, \(d_a = (\lambda_1^{(a)} - \lambda_2^{(a)}) \sigma_a \), denotes the amplitude of \(a \)-th noise.

When the condition, \(|\int_0^\infty \tau K(\tau) d\tau| \ll 1 \), is satisfied, we can approximate Eqs. (13) and (14) by the following system of ordinary differential equations,

\[
\frac{d}{dt} \langle \rho_{11}(t) \rangle = - R(t) (\langle \rho_{11}(t) \rangle - \langle \rho_{22}(t) \rangle) + iV_{21} \langle \rho_{12}(0) \rangle - iV_{12} \langle \rho_{21}(0) \rangle, \quad (17)
\]

\[
\frac{d}{dt} \langle \rho_{22}(t) \rangle = R(t) (\langle \rho_{11}(t) \rangle - \langle \rho_{22}(t) \rangle) - iV_{21} \langle \rho_{12}(0) \rangle + iV_{12} \langle \rho_{21}(0) \rangle, \quad (18)
\]

where \(R(t) = \int_0^t K(\tau) d\tau \).

Assume that initially the off-diagonal components of the density matrix (and, correspondingly, their average values) are zero, \(\rho_{12}(0) = \rho_{21}(0) = 0 \). Then, the exact solution of Eqs. (17) and (18) can be written as:

\[
\langle \rho_{11}(t) \rangle = \frac{1}{2} + \left(\langle \rho_{11}(0) \rangle - \frac{1}{2} \right) e^{-\gamma t}, \quad (19)
\]

\[
\langle \rho_{22}(t) \rangle = \frac{1}{2} + \left(\langle \rho_{22}(0) \rangle - \frac{1}{2} \right) e^{-\gamma t}, \quad (20)
\]

where, \(\langle \rho_{11}(0) \rangle = \rho_{11}(0) \) and \(\langle \rho_{22}(0) \rangle = \rho_{22}(0) \).

As one can see, in the limit \(t \to \infty \), the presence of noise results in equal populations in the TLS.

The solution given by Eqs. (19) and (20) can be approximated by replacing \(R(t) \) by its asymptotic value, \(\Gamma = \lim_{t \to \infty} R(t) \). The result is,

\[
\langle \rho_{11}(t) \rangle = \frac{1}{2} + \left(\langle \rho_{11}(0) \rangle - \frac{1}{2} \right) e^{-\Gamma t}, \quad (21)
\]

\[
\langle \rho_{22}(t) \rangle = \frac{1}{2} + \left(\langle \rho_{22}(0) \rangle - \frac{1}{2} \right) e^{-\Gamma t}. \quad (22)
\]

Two uncorrelated noises. When the environment is described by two uncorrelated RTPs, the asymptotic rate, \(\Gamma \), is given by (see the SM for details),
In Eq. (23), we used the following notation:
\[d_n^{(a)} = \lambda_n^{(a)} \sigma_n \ (a, n = 1, 2). \]

As was mentioned above, the condition of the applicability of Eqs. (17) and (18) is:
\[| \int_0^\infty \tau K(\tau) d\tau | \ll 1. \] To analyze this condition analytically is rather complicated. Our numerical calculations show the approximate condition of applicability is: \[|V_{1,2}| \ll (\gamma_1 + \gamma_2). \] Note, that the same condition is also required for the exact solutions of Eqs. (7)-(9) to be approximated by the Eqs. (21) and (22). (See for details the SM.)

Single collective diagonal noise. In the case of a single collective noisy environment, acting on both the donor and acceptor, the rate, \(\Gamma \), in Eq. (23) has the form,
\[
\Gamma = \frac{8V^2\mu^2}{\gamma(\mu^2 - \nu^2)^2 + 4\nu^2}. \tag{25}
\]

Substituting \(\mu = d/\gamma \) and \(\nu = \varepsilon/\gamma \), we obtain,
\[
\Gamma = \frac{8\gamma|V_{12}|^2d^2}{(d^2 - \varepsilon^2)^2 + 4\gamma^2\varepsilon^2}, \tag{26}
\]
where, \(d = (\lambda_1 - \lambda_2)\sigma \), denotes the amplitude of the noise. As one can see, the rate, \(\Gamma \), reaches its maximum,
\[
\Gamma_{\text{max}} = \frac{4\gamma|V_{12}|^2}{\sqrt{\varepsilon^4 + 4\gamma^2\varepsilon^2} - \varepsilon^2}, \tag{27}
\]
at the “resonance” amplitude of noise,
\[
d_{\text{res}} = (\varepsilon^4 + 4\gamma^2\varepsilon^2)^{1/4}. \tag{28}
\]
(See also [9, 10].) When the amplitude of noise is far from the resonance value, the rate, \(\Gamma \), becomes very small.

The “nonlinear” regime of electron transfer.
The dependence of the ET rate, \(\Gamma \), in Eq. (26) on the amplitude, \(d \), of noise (the external random force), is a nonlinear one. Indeed, the amplitude, \(d \), appears in \(\Gamma \) in both the numerator and in the denominator. Suppose, that the value of \(d \) is small (\(d \ll \varepsilon \)). In this case, \(\Gamma \approx 8\gamma|V_{12}|^2/\varepsilon^2(\varepsilon^2 + 4\gamma^2) \), and the rate is proportional to the intensity of the external random process. So, in this “linear” regime (small \(d \)), there are no resonances in the \(\Gamma(d) \) behavior. In the opposite case of strong noise (\(d \gg \varepsilon \)), the ET rate is: \(\Gamma \approx 8\gamma|V_{12}|^2/d^2 \), and it decreases as \(d \) increases. We can say that the strong noise does not allow the electron to move from the donor to the acceptor, a kind of ET Zeno effect. Only for the intermediate noise amplitudes, \(d \), the “resonance” in the behavior of \(\Gamma(d) \) takes place. In this sense, the regime of the ET is a nonlinear one. A similar situation occurs when two uncorrelated noises are applied to the system. In this case, two “interacting nonlinear resonances” occur.

There are two limiting cases in which the expression for \(\Gamma_{\text{max}} \) can be simplified. (1) \(\varepsilon \gg 2\gamma \).

In this case, \(\Gamma_{\text{max}} \approx 2|V_{12}|^2/\gamma. \) (2) \(\varepsilon \ll 2\gamma. \) In this case, \(\Gamma_{\text{max}} \approx 2|V_{12}|^2/\varepsilon. \) An approximate condition for applicability of Eq. (26) for the rate, is: \(|V_{12}| \ll \gamma, d. \)

B. Results of numerical simulations

In the numerical simulations, it is convenient to measure the energy parameters in units of ps\(^{-1}\), while time is measured in ps. Then, the energy \(\varepsilon = 1\)ps\(^{-1}\) \(\approx 0.66\)meV.

In Fig. 2, we show the rate, \(\Gamma \), defined by Eq. (26) (for a single noise), as a function of the amplitude of noise, \(d \), and the correlation rate of noise (inverse correlation time), \(\gamma. \) As
FIG. 2: (Color online) Dependence of the rate, Γ, in Eq. (26) on noise amplitude, d, and the correlation rate, γ. Parameters: \(V_{12} = 5 \), \(\varepsilon = 30 \).

one can see, \(\Gamma \) reaches its maximum value at the resonance amplitude of noise, \(d_{\text{res}} \), given by Eq. (28). At the same time, as one can see from Eq. (28), for a given value of the redox potential, \(\varepsilon \), the value of \(\Gamma_{\text{max}} \) depends of \(\gamma \). This behavior is demonstrated in Fig. 2, for \(\varepsilon = 50 \), \(|V_{1,2}| = 5 \), and for \(10 \leq \gamma \leq 50 \). One can see, that for these parameters, \(\Gamma_{\text{max}} \lesssim 6 \text{ps}^{-1} \).

For two uncorrelated noises, the rate, \(\Gamma \), in Eq. (23), is shown in Fig. 3, as a function of two dimensionless amplitudes of noise, \(\mu_1 \) and \(\mu_2 \). As one can see, two “interacting” resonances are present. The amplitudes of these resonances depend on the values of \(\mu_{1,2} \). These resonances can be either non-symmetric, as in Fig. 3 (top), for different correlation rates, \(\gamma_1 = 5 \) and \(\gamma_2 = 15 \), or symmetric, as in Fig. 3 (bottom), for equal correlation rates, \(\gamma_{1,2} = 10 \). Note, that in both cases, \(\gamma_1 + \gamma_2 = 20 \). For these chosen parameters, \(\Gamma_{\text{max}} \lesssim 3.6 \text{ps}^{-1} \).

Weakly and strongly coupled dimers. The “donor-acceptor” system shown in Fig. 1, represents a coupled dimer (realized, for example, by two coupled chlorophyll molecules.) This dimer can be either weakly or strongly coupled. Let us introduce the parameter, \(\mu_d = |V_{12}|/\varepsilon \).

In Figs. 4 - 7, we present the results of the numerical simulations of the dynamical behavior of the system shown in Fig. 1, for different parameters, and for both correlated and uncorrelated noisy environments. All simulations were performed using the exact system of equations (7) - (9). In Fig. 7, we also compare the exact results with the corresponding approximate solutions. (In the SM, more details on the comparison of the exact and approximate solutions are presented.) We also consider weakly and strongly coupled dimers. For simplicity, in all cases, the initial conditions were chosen when the donor was populated: \(\rho_{11}(0) = 1 \), \(\rho_{22}(0) = \rho_{12}(0) = 0 \).

In Fig. 4a, a single correlated noise, corresponding to \(a = 1 \), is applied to a strongly coupled dimer (\(\mu_d = 1 \)). In this case, both amplitudes of noise, acting on donor and acceptor, are equal, \(d^{(1)}_1 = d^{(1)}_2 = 10 \). So, the effective noise, acting on the system, is absent:
FIG. 4: (Color online) Strongly coupled dimer ($\mu_d = 1$). Time dependence (in ps) of the density matrix components: $\rho_{11}(t)$ (blue) and $\rho_{22}(t)$ (red). Parameters: $V_{12} = 30$, $\varepsilon_1 = 60$, $\varepsilon_2 = 30$, $\gamma_1 = 10$, $\gamma_2 = 15$. (a) $d_1^{(1)} = 10$, $d_2^{(1)} = 10$, $d_1^{(2)} = 0$, $d_2^{(2)} = 0$, (b) $d_1^{(1)} = 10$, $d_2^{(1)} = 0$, $d_1^{(2)} = 0$, $d_2^{(2)} = 10$. Initial conditions: $\rho_{11}(0) = 1$, $\rho_{22}(0) = 0$.

d_1^{(1)} = d_1^{(1)} - d_2^{(1)} = 0$. This regime is easy to understand, as the matrix, V_a, in Eq. (1) becomes the unit matrix. In this case, the dynamics of the system exhibits Rabi oscillations. Because the matrix element is equal to the redox potential, $V_{1,2} = \varepsilon = 30$, the Rabi oscillations have large amplitude. The situation changes significantly when two uncorrelated noises, with the same amplitudes, $d_1^{(1)} = 10$ (applied to the donor) and $d_2^{(2)} = 10$ (applied to the acceptor), influence the same dimer. (See Fig. 4b.) In this case, the dynamics experiences rapid relaxation, and saturates ($\rho_{1,2}(t) \rightarrow 1/2$) at approximately, $t_s \approx 2$ps. We can conclude, that in this case, two uncorrelated noises (environments), with equal amplitudes, are more effective in assisting the ET than a single correlated noise with the same amplitude. Similar results are shown in Fig. 5, for the intermediately coupled dimer ($\mu_d = 1/3$). In this case, the amplitude of the Rabi oscillations in Fig. 5a decreases, and the saturation time in Fig. 5b increases, $t_s \approx 6$ps. In both cases, shown in Fig. 4b and Fig. 5b, the electron transfer dynamics is accompanied by coherent oscillations of the populations, $\rho_{11}(t)$ and $\rho_{22}(t)$. In Fig. 6, the case of a weakly coupled dimer is demonstrated, for $\mu_d = 0.1$, and for the same amplitudes of the noisy environments as in Figs. 4 and 5. As one can see, the amplitude of the Rabi oscillations in Fig. 6a decreases significantly (less than 0.05), and the saturation time of the ET in Fig. 6b increases significantly, $t_s \approx 35$ps. The populations, $\rho_{11}(t)$ and $\rho_{22}(t)$, do not experience visible oscillations in this case.

In Fig. 7, we show the dynamics of the ET for two noises, which act on both donor and acceptor, but with different amplitudes and interaction constants. Solid curves correspond to the solutions of the exact Eqs. (7)-(9). Dashed curves correspond to the approximate solutions.
components: ρ
d

FIG. 6: (Color online) Weakly coupled dimer (µd = 0.1). Time dependence (in ps) of the density matrix components: ρ11(t) (blue) and ρ22(t) (red). Parameters: V12 = 3, ε1 = 60, ε2 = 30, γ1 = 10, γ2 = 15. (a) d1(1) = 10, d2(1) = 10, d1(2) = 0, d2(2) = 0; (b) d1(1) = 10, d2(1) = 0, d1(2) = 0, d2(2) = 10. Initial conditions: ρ11(0) = 1, ρ22(0) = 0.

given by Eqs. (21) and (22). Initial conditions are the same for all cases presented in Fig. 7: ρ11(0) = 1, ρ22(0) = 0. Blue and red curves correspond to the noise amplitudes: d1(1) = 20, d2(1) = −10, d1(2) = 0, d2(2) = 0. In this case, in even though two noises are present in the system, the second noise (with a = 2) has zero constants of interaction with both the donor and acceptor: λ(2) = 0. So, effectively only one collective noise (with a = 1) acts on both the donor and acceptor. The dimensionless amplitudes of noise are: (µ1 = 1; µ2 = 0), and the ET rate is: Γ = 3.6.

Green and orange curves correspond to the amplitudes of noise: d1(1) = 20, d2(1) = 0, d1(2) = 0, d2(2) = −10. In these case, both noises act on the system. The dimensionless amplitudes of noise are: (µ1 = 1; µ2 = 0.5), and the ET rate is: Γ = 0.73. The presented ET rates correspond to the results shown in Fig. (3). As one case see, for chosen parameters, the results of the approximate solutions (dashed curves) are in good agreement with the results of exact equations (solid curves). As our results demonstrate, the saturation time depends significantly on (i) the presence of collective or independent (uncorrelated) noises acting on the donor and acceptor, (ii) the amplitude of noises, and (iii) the interaction constants with noises. Indeed, for parameters chosen in Fig. 7, for blue and red curves, the saturation time is: t_{sat} ≈ 1.8ps. For parameters chosen for green and orange curves, the saturation time is: t_{sat} ≈ 8ps.

IV. CONCLUSION

When modeling the primary quantum exciton transfer processes in photosynthetic complexes, two major problems occur. The first is related to strong pigments-protein interactions. The second problem is related to the large number of pigments (or light-sensitive sites) in the light-harvesting complexes. This results in a multi-scale electron transfer dynamics and in the necessity to develop adequate
coarse-grained procedures. Moreover, the number, N, of light-sensitive pigments in the subcomplexes of plants and algae is neither small or large, but rather of an intermediate value, $N \approx 10 \div 20$ [1, 2]. Then, it is difficult to apply the well-developed methods from the solid state physics which are used either for rare impurities or for systems with electron band structures.

In this situation, it is useful to design a simple and an “exactly solvable” (at least, numerically) quantum model which can be used to describe the electron transfer in these complex biological systems. Such a model, which is reduced to an exact closed system of first-order linear differential equations with constant coefficients, is introduced in this paper. This model can be applied for rather general photosynthetic complexes, and for any values of the “pigment-protein” coupling constants. Note, that the term “exactly solvable”, which we use here, is rather conditional. It means that the model consists of a closed system of ordinary differential equations with constant coefficients, which can be easily solved numerically. (See also close approach used in [7, 8].) Our model also includes different correlated and uncorrelated random telegraph processes, acting on different sites. This allows one to analyze, in a straightforward way, the dependences of the electron transfer dynamics on both amplitudes and correlation times of random processes. In particular, it is demonstrated, that the influence of noise on the electron transfer reveals a “resonant” character, which will allow one to design the photosynthetic complexes with optimal electron transfer properties.

We demonstrated that the uncorrelated protein fluctuations can either increase or decrease the electron transfer rates. We also derived analytical expressions for the ET rates and for the evolution of the density matrix elements, which approximate the exact solutions for large time-intervals for a wide range of parameters. In spite of our model is relevant to describing some important effects considered in the paper, it does not include many important effects, such as: temperature dependencies, the internal structures of the electron sites (which usually are represented by light-sensitive chlorophyll and carotenoid molecules), multi-exciton/electron states, etc.

Our approach can easily be applied for many concrete light-harvesting complexes and reaction centers. The solutions which follow from our model can be used for developing adequate coarse-grained procedures, and for comparison with the results of different approximations and perturbation approaches. Our results can also be used for engineering the protein environment to achieve desired properties for the ET dynamics. In order to verify the properties of the protein environment, standard molecular dynamics (MD) methods can be used to simulate the time-dependent correlation functions between different electron sites. The generalization of our approach for thermal protein environments is one focus of our future research. One way to do this, is to develop a perturbation theory not by the constants of interactions between the electron sites and the protein fluctuations, but by the matrix elements of the interactions between different electron sites. This research is now in progress.

Acknowledgments

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. A.I.N. acknowledges the support from the CONACyT, Grant No. 15349.