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We consider the dependence of the electron transfer in photosynthetic complexes on correlation
properties of random fluctuations of the protein environment. The electron subsystem is modeled by
a finite network of connected electron (exciton) sites. The fluctuations of the protein environment
are modeled by random telegraph processes, which act either collectively (correlated) or indepen-
dently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear
differential equations with constant coefficients, for the average density matrix elements and for
their first moments. Under some conditions, we obtained analytic expressions for the electron trans-
fer rates, and found the range of parameters for their applicability by comparing with the exact
numerical simulations. We also compared the correlated and uncorrelated regimes, and demon-
strated numerically that the uncorrelated fluctuations of the protein environment can, under some
conditions, either increase or decrease the electron transfer rates.
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I. INTRODUCTION

In a photosynthetic organism, sunlight is ab-
sorbed in the light-harvesting complex (LHC)
or antenna, by a light-sensitive (chlorophyll or
carotenoid) molecule. This is the first step in
transforming solar energy into electron energy
in the form of the exciton. This exciton travels
through many connected sites (pigments) of the
antenna complex, and finally reaches the reac-
tion center (RC), where charge separation and
chemical reactions take place. (See, for exam-
ple, [1, 2], and references therein.)

The timescale of the primary processes of
electron (exciton) transfer (ET) and charge
separation are very fast, tprime ≈ 1 ÷ 3 ps.
There are two major theoretical challenges in
describing these primary processes. The first
problem is that the constant of interaction,
λn, between the electron site, n, and the pro-
tein environment is usually not small. In-
deed, the well-known Marcus formula for the
ET rate, kda, between the donor and the
acceptor, under the influence of the collec-
tive protein thermal fluctuations, has the form
[3, 4]: kda = (2π|Vda|2/

√
4πεrT ) exp[−(ε −
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εr)
2/4kBTεr]. Here ε is the difference between

the donor and the acceptor site energies; Vda

is the matrix element of the donor-acceptor in-
teraction, T is the absolute temperature; kB
is the Boltzmann constant; and εr is the so-
called reconstruction energy, εr ∝ λ2. As one
can see, the interaction constant, λ, occurs in
the denominators of both the pre-exponential
factor and in the exponent. This result cannot
be obtained by using standard perturbative ap-
proaches by expanding the initial expressions in
a power series in the interaction constant, λ.

It is known that the Marcus formula is de-
rived in the high-temperature limit, but can
also be used for room temperature [4]. A sig-
nificant development of the Marcus theory was
achieved in [5, 6], where the extension for a wide
range of temperatures and for different proper-
ties of a solvent were incorporated. Note, that
in [3–6], a single protein environment was used
which acts on both donor and acceptor, but
with different coupling constants. However, the
important question remains: What modifica-
tions for the ET process will occur if a com-
bination of correlated and independent (uncor-
related) protein environments act on different
electron sites?

In [7, 8], the stochastic models, with uncorre-
lated noises acting on different sites, were used
to elucidate the unidirectionality of the pri-
mary charge separation process in the bacterial
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reaction centers with two symmetric ways of
ET, starting from the common electron donor.
These papers addressed a well-known problem
of the highly asymmetric ET in the photosyn-
thetic reaction centers.
Note, that in the real photosynthetic organ-

isms, uncorrelated protein fluctuations can act
on their neighboring pigments as well as on
other pigments. Experimentally, this can be
verified by measuring the corresponding cor-
relation functions of the protein fluctuations
between different donor-acceptor sites. The
correlation properties of protein fluctuations
at different electron sites can also be modeled
and simulated numerically using the standard
molecular dynamics (MD) approaches.
In [9, 10], we introduced a quantum mechan-

ical nonperturbative model to describe multi-
level donor-acceptor system. The model was
used to describe multi-scale ET dynamics and
nonphotochemical quenching by a charge trans-
fer state in photosynthetic bio-complexes. In
our approach the protein environment is mod-
eled by a random telegraph process (RTP).
In this paper, we extend our model to the

case in which the random protein environment
can act both collectively and independently
on all light-sensitive electron sites (pigments).
Namely, for all electron sites, we introduce
both collective (correlated) and independent
(uncorrelated) protein fluctuations, modeled by
RTP’s. We apply our model to determine the
quantum ET dynamics of the simplest donor-
acceptor system. Our main goal is to clarify the
similarities and differences in actions of corre-
lated and uncorrelated protein environments on
the ET processes. Under some conditions, we
derived analytic expressions for the ET rates,
that are a generalization of the Marcus-type
expression for noisy protein environment. We
compared our analytic expressions, in the wide
range of parameters, with the results of exact
numerical simulations. We demonstrated nu-
merically that the uncorrelated fluctuations of
the protein environment can either increase or
decrease the ET rates.
In spite of, protein environments modeled by

random processes and by the thermal bath usu-
ally produce different long-time asymptotic be-
havior for the ET dynamics, we believe that
our approach is appropriate for the problems
when the stationary states are realized before
the thermal equilibrium is approached [8, 10].
Note also that protein environments in living
organisms, have both noisy and thermal com-
ponents [3, 4, 7, 8, 11–21].
The structure of the paper is the following.

In Section II, we describe our model, and de-
rive the closed system of differential equations
for the averaged density matrix elements and
for their moments. In Section III, we apply our
approach to a specific “donor-acceptor” sys-
tem, introduce the characteristic parameters,
and present the results of the numerical sim-
ulations for both exact and approximate solu-
tions. In the Conclusion, we summarize our
results and formulate some challenges for fu-
ture research. In the Supplementary Material
(SM), we present mathematical details of our
approach, and additional illustrations on the
action of correlated and uncorrelated protein
environment on the ET.

II. DESCRIPTION OF THE MODEL

Consider a quantum system which is de-
scribed by a time-dependent Hamiltonian,
H(t). We assume that this Hamiltonian de-
pends on some control parameters, λa. The
noise associated with fluctuations of these pa-
rameters is described by the functions, δλa(t),
that depend on the random variables, ξa(t).
Expanding the Hamiltonian to first order in
ξa(t), we have,

H(t) = H0 +
∑

a

Vaξa(t), (1)

where, H0, is the Hamiltonian of the system
under consideration, and Va is a matrix that
describes the interaction with noise. Using (1),
we obtain the following equations of motion for
the density matrix (~ = 1),

dρ

dt
= i[ρ,H0] + i[ρ,

∑

a

Va, ξa(t)]. (2)

For the density matrix averaged over noise this
yields,

d〈ρ〉
dt

= i[〈ρ〉,H0] + i
∑

a

[〈ρξa(t)〉,Va], (3)

where the average, 〈... 〉, is taken over the ran-
dom processes.
To close this system of differential equations

(3), we assume that the fluctuations are pro-
duced by the independent random telegraph
processes (RTPs),

〈ξa(t)〉 = 0, (4)

〈ξa(t)ξb(t′)〉 = δabσ
2
ae

−2γaτ . (5)
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Employing the differential formula for the
RTP [22],

( d

dt
+ 2γa

)

〈ξa(t)R[t; ξa(τ)]〉 =
〈

ξa(t)
d

dt
R[t; ξa(τ)]

〉

, (6)

where, R[t; ξa(τ)], is an arbitrary functional, we
obtain from Eq. (3) the following system of
differential equations:

d〈ρ〉
dt

=i[〈ρ〉,H0] + i
∑

a

σa[〈Xa〉,Va], (7)

d〈Xa〉
dt

=i[〈Xa〉,H0] + iσa[〈ρ〉,Va]

+ i
∑

b6=a

σb[〈Xab〉,Vb]− 2γa〈Xa〉, (8)

d〈Xab〉
dt

=i[〈Xab〉,H0] + iσa[〈Xb〉,Vb]

+ iσb[〈Xa〉,Vb]− 2(γa + γb)〈Xab〉,
(9)

where 〈Xa(t)〉 = 〈ξa(t)ρ(t)〉/σa, and 〈Xab(t)〉 =
〈ξa(t)ξb(t)ρ(t)〉/(σaσb) (a 6= b). Note, that by
using the properties of the RTP, one can show
that, 〈Xaa(t)〉 = 〈ρ(t)〉. Therefore, the diag-
onal elements of the matrix, 〈Xab(t)〉, do not
add new equations to the system (7) - (9).

In the rest of this paper, we use Eqs. (7)
– (9) to study the two-level “donor-acceptor”
system (TLS) embedded in a noisy protein en-
vironment. We assume that two uncorrelated
RTPs (generally, with different interaction con-
stants) act on both the donor and the acceptor.

FIG. 1: (Color online) The two-level “donor-
acceptor” system (TLS) interacting with two un-

correlated noisy environments, ξ1(t) and ξ2(t); λ
(a)
n

are the constants of interaction. The superscript,
a = 1, 2, indicates the noisy environment, and the
subscript, n = 1, 2, indicates the electron site.

III. TWO-LEVEL

“DONOR-ACCEPTOR” SYSTEM

For a simplicity of consideration, we apply
our approach to the TLS, with the following
Hamiltonian:

H̃ =
∑

n

εn|n〉〈n|+
∑

m 6=n

Vmn|m〉〈n|

+
∑

m,n

λmn(t)|m〉〈n|, m, n = 0, 1, (10)

where the functions, λmn(t), describes the in-
fluence of noise. When the matrix elements,
Vnm, are absent, the diagonal matrix elements,
λnn(t), are responsible for decoherence – the
decay of the non-diagonal density matrix ele-
ments. When λmn(t) = 0 (m 6= n), relax-
ation in the system occurs only if Vmn 6= 0.
When Vmn = 0, the off-diagonal matrix ele-
ments, λmn(t) (m 6= n), lead to “direct” relax-
ation processes.

In what follows, we restrict ourselves to diag-
onal noise effects produced by two independent
(uncorrelated) protein environments described
by the RTPs, ξ1,2(t). Then, one can write,

λmn(t) = δmn

∑2
a=1 λ

(a)
n ξa(t), where, λ

(a)
n , is

the interaction constant with the a-th environ-
ment, ξa(t), at the site, n (a, n = 1, 2). Note,
that in our approach, each noise can act on
both donor and acceptor sites. (See Fig. 1.)
The limit of a single collective noise, acting on
both the donor and acceptor sites, corresponds

to: λ
(1)
1,2 6= 0 and λ

(2)
1,2 = 0, or λ

(1)
1,2 = 0 and

λ
(2)
1,2 6= 0. The limit of two uncorrelated noises,

acting one on the donor and another on the

acceptor, corresponds to: λ
(2)
1 = λ

(1)
2 = 0, or

λ
(1)
1 = λ

(2)
2 = 0.

We consider the stationary telegraph noise
described by the random variable, ξa(t) =
ζa(t)− ζ̄a, so that,

〈ξa(t)〉 = 0, (11)

〈ξa(t)ξb(t′)〉 = δabχa(t− t′), (12)

where, χa(t − t′) = σ2
ae

−2γa|t−t′|, is the cor-
relation function of a-th noise, described by
the random variable, ξa(t). The average value,
〈ζa(t)〉 = ζ̄a, is included in the renormalization
of the electron energy at each site, n, in Eq.

(10) as: εn → εn +
∑

a λ
(a)
n ζ̄a.
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A. Integro-differential equations and rates

The dynamics of the TLS can be described
by the following system of integro-differential
equations [19, 23]. (For details see the SM.):

d

dt
〈ρ11(t)〉 =−

∫ t

0

K(t− t′)(〈ρ11(t′)〉 − 〈ρ22(t′)〉)dt′

+ iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉,
(13)

d

dt
〈ρ22(t)〉 =

∫ t

0

K(t− t′)(〈ρ11(t′)〉 − 〈ρ22(t′)〉)dt′

− iV21〈ρ12(0)〉+ iV12〈ρ21(0)〉,
(14)

where,

K(t− t′) =2V 2Φ(t− t′) cos(ε(t− t′)), (15)

ε = ε1 − ε2, and Φ(t − t′), is the characteristic
functional of the random process.

For the case of two uncorrelated environ-
ments described by the RTPs, one can show
that Φ(t) = Φ1(t)Φ2(t). The characteristic
functional, Φa(t), of each independent RTP, is
given by [24, 25],

Φa(t) = e−γat
(

cosh
(
√

γ2
a − d2a t

)

+
1

√

γ2
a − d2a

sinh
(
√

γ2
a − d2a t

)

)

, a = 1, 2, (16)

where, da = (λ
(a)
1 −λ

(a)
2 )σa, denotes the ampli-

tude of a-th noise.
When the condition, |

∫∞

0
τK(τ)dτ | ≪ 1, is

satisfied, we can approximate Eqs. (13) and
(14) by the following system of ordinary differ-
ential equations,

d

dt
〈ρ11(t)〉 =−R(t)

(〈

ρ11(t)
〉

−
〈

ρ22(t)
〉)

+ iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉,
(17)

d

dt
〈ρ22(t)〉 =R(t)

(〈

ρ11(t)
〉

−
〈

ρ22(t)
〉)

− iV21〈ρ12(0)〉+ iV12〈ρ21(0)〉,
(18)

where R(t) =
∫ t

0
K(τ)dτ .

Assume that initially the off-diagonal compo-
nents of the density matrix (and, correspond-
ingly, their average values) are zero, ρ12(0) =
ρ21(0) = 0. Then, the exact solution of Eqs.
(17) and (18) can be written as:

〈

ρ11(t)
〉

=
1

2
+

(

〈ρ11(0)〉 −
1

2

)

e−2
∫

t

0
R(t′)dt′ ,

(19)

〈

ρ22(t)
〉

=
1

2
+

(

〈ρ22(0)〉 −
1

2

)

e−2
∫

t

0
R(t′)dt′ ,

(20)

where, 〈ρ11(0)〉 = ρ11(0) and 〈ρ22(0)〉 = ρ22(0).
As one can see, in the limit t → ∞, the presence
of noise results in equal populations in the TLS.
The solution given by Eqs. (19) and (20)

can be approximated by replacing R(t) by its
asymptotic value, Γ/2 = limt→∞ R(t). The re-
sult is,

〈

ρ11(t)
〉

=
1

2
+

(

ρ11(0)−
1

2

)

e−Γt, (21)

〈

ρ22(t)
〉

=
1

2
+

(

ρ22(0)−
1

2

)

e−Γt. (22)

Two uncorrelated noises. When the environ-
ment is described by two uncorrelated RTPs,
the asymptotic rate, Γ, is given by (see the SM
for details),
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Γ =
2|V12|2

α1 α2 (γ1 + γ2)
ℜ
(

(g1 g2 − α1 α2) (1 + iν) + (α1 g2 − g1 α2) (α1 − α2)

(α1 − α2)
2 − (1 + iν)2

− (g1 g2 + α1 α2) (1 + iν) + (g1 α2 + α1 g2) (α1 + α2)

(α1 + α2)
2 − (1 + iν)

2

)

, (23)

where,

α1 =
√

g21 − µ2
1, α2 =

√

g22 − µ2
2, g1 =

γ1
γ1 + γ2

, g2 =
γ2

γ1 + γ2
,

ν =
ε

(γ1 + γ2)
, µ1 =

d
(1)
1 − d

(1)
2

γ1 + γ2
, µ2 =

d
(2)
1 − d

(2)
2

γ1 + γ2
. (24)

In Eq. (23), we used the following notation:

d
(a)
n = λ

(a)
n σa (a, n = 1, 2).

As was mentioned above, the condition of
the applicability of Eqs. (17) and (18) is:
|
∫∞

0
τK(τ)dτ | ≪ 1. To analyze this condition

analytically is rather complicated. Our numer-
ical calculations show the approximate condi-
tion of applicability is: |V1,2| . (γ1+γ2). Note,
that the same condition is also required for the
exact solutions of Eqs. (7)-(9) to be approx-
imated by the Eqs. (21) and (22). (See for
details the SM.)
Single collective diagonal noise. In the case

of a single collective noisy environment, acting
on both the donor and acceptor, the rate, Γ, in
Eq. (23) has the form,

Γ =
8V 2µ2

γ((µ2 − ν2)2 + 4ν2)
. (25)

Substituting µ = d/γ and ν = ε/γ, we obtain,

Γ =
8γ|V12|2d2

(d2 − ε2)2 + 4γ2ε2
, (26)

where, d = (λ1−λ2)σ, denotes the amplitude of
the noise. As one can see, the rate, Γ, reaches
its maximum,

Γmax =
4γ|V12|2

√

ε4 + 4γ2ε2 − ε2
, (27)

at the “resonance” amplitude of noise,

dres = (ε4 + 4γ2ε2)1/4. (28)

(See also [9, 10].) When the amplitude of noise
is far from the resonance value, the rate, Γ, be-
comes very small.
The “nonlinear” regime of electron transfer.

The dependence of the ET rate, Γ, in Eq. (26)

on the amplitude, d, of noise (the external ran-
dom force), is a nonlinear one. Indeed, the
amplitude, d, appears in Γ in both the numer-
ator and in the denominator. Suppose, that
the value of d is small (d ≪ ε). In this case,
Γ ≈ 8γ|V12|2/ε2(ε2 + 4γ2), and the rate is pro-
portional to the intensity of the external ran-
dom process. So, in this “linear” regime (small
d), there are no resonances in the Γ(d) behavior.
In the opposite case of strong noise (d ≫ ε), the
ET rate is: Γ ≈ 8γ|V12|2/d2, and it decreases as
d increases. We can say that the strong noise
does not allow the electron to move from the
donor to the acceptor, a kind of ET Zeno effect.
Only for the intermediate noise amplitudes, d,
the “resonance” in the behavior of Γ(d) takes
place. In this sense, the regime of the ET is a
nonlinear one. A similar situation occurs when
two uncorrelated noises are applied to the sys-
tem. In this case, two “interacting nonlinear
resonances” occur.
There are two limiting cases in which the ex-

pression for Γmax can be simplified. (1) ε ≫ 2γ.
In this case, Γmax ≈ 2|V12|2/γ. (2) ε ≪ 2γ. In
this case, Γmax ≈ 2|V12|2/ε. An approximate
condition for applicability of Eq. (26) for the
rate, is: |V12| . γ, d.

B. Results of numerical simulations

In the numerical simulations, it is convenient
to measure the energy parameters in units of
ps−1, while time is measured in ps. Then, the
energy ε = 1ps−1 ≈ 0.66meV.
In Fig. 2, we show the rate, Γ, defined by

Eq. (26) (for a single noise), as a function of
the amplitude of noise, d, and the correlation
rate of noise (inverse correlation time), γ. As
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FIG. 2: (Color online) Dependence of the rate, Γ, in
Eq. (26) on noise amplitude, d, and the correlation
rate, γ. Parameters: V12 = 5, ε = 30.

one can see, Γ reaches its maximum value at the
resonance amplitude of noise, dres, given by Eq.
(28). At the same time, as one can see from Eq.
(28), for a given value of the redox potential, ε,
the value of Γmax depends of γ. This behavior
is demonstrated in Fig. 2, for ε = 50, |V1,2| = 5,
and for 10 6 γ 6 50. One case see, that for
these parameters, Γmax . 6ps−1.

For two uncorrelated noises, the rate, Γ, in
Eq. (23), is shown in Fig. 3, as a function
of two dimensionless amplitudes of noise, µ1

and µ2. As one can see, two “interacting” res-
onances are present. The amplitudes of these
resonances depend on the values of µ1,2. These
resonances can be either non-symmetric, as in
Fig. 3 (top), for different correlation rates,
γ1 = 5 and γ2 = 15, or symmetric, as in Fig. 3
(bottom), for equal correlation rates, γ1,2 = 10.
Note, that in both cases, γ1+γ2 = 20. For these
chosen parameters, Γmax . 3.6ps−1.

Weakly and strongly coupled dimers. The
“donor-acceptor” system shown in Fig. 1, rep-
resents a coupled dimer (realized, for example,
by two coupled chlorophyll molecules.) This
dimer can be either weakly or strongly coupled.
Let us introduce the parameter, µd = |V12/ε|.
It is easy to see that when µd ≪ 1, both eigen-
states, |u+〉 and |u−〉, of the Hamiltonian, H0,
in (2), become close to the unperturbed states,
|u1〉 and |u2〉, when V12 = 0. In this case, we
call the dimer “weakly coupled”. The dimer is
called “strongly coupled”, when the value of µd

is not too small. We can say that the dimer is
strongly coupled when, µd & 1.

In Figs. 4 - 7, we present the results of the

FIG. 3: (Color online) Asymptotic rate, Γ, of Eq.
(23) vs. the dimensionless amplitudes of two uncor-
related noises, µ1, and µ2. Parameters: V12 = 3,
ε = 30. Top: γ1 = 5, γ2 = 15. Bottom:
γ1 = γ2 = 10.

numerical simulations of the dynamical behav-
ior of the system shown in Fig. 1, for different
parameters, and for both correlated and un-
correlated noisy environments. All simulations
were performed using the exact system of equa-
tions (7) - (9). In Fig. 7, we also compare the
exact results with the corresponding approxi-
mate solutions. (In the SM, more details on the
comparison of the exact and approximate solu-
tions are presented.) We also consider weakly
and strongly coupled dimers. For simplicity,
in all cases, the initial conditions were chosen
when the donor was populated: ρ11(0) = 1,
ρ22(0) = ρ12(0) = 0.

In Fig. 4a, a single correlated noise, corre-
sponding to a = 1, is applied to a strongly
coupled dimer (µd = 1). In this case, both
amplitudes of noise, acting on donor and ac-

ceptor, are equal, d
(1)
1 = d

(1)
2 = 10. So, the

effective noise, acting on the system, is absent:
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(a)

(b)

FIG. 4: (Color online) Strongly coupled dimer
(µd = 1). Time dependence (in ps) of the density
matrix components: ρ11(t) (blue) and ρ22(t) (red).
Parameters: V12 = 30, ε1 = 60, ε2 = 30, γ1 = 10,

γ2 = 15. (a) d
(1)
1 = 10, d

(1)
2 = 10, d

(2)
1 = 0, d

(2)
2 = 0,

(b) d
(1)
1 = 10, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10. Initial

conditions: ρ11(0) = 1, ρ22(0) = 0.

d(1) = d
(1)
1 −d

(1)
2 = 0. This regime is easy to un-

derstand, as the matrix, Va, in Eq. (1) becomes
the unit matrix. In this case, the dynamics of
the system exhibits Rabi oscillations. Because
the matrix element is equal to the redox po-
tential, V1,2 = ε = 30, the Rabi oscillations
have large amplitude. The situation changes
significantly when two uncorrelated noises, with

the same amplitudes, d
(1)
1 = 10 (applied to the

donor) and d
(2)
2 = 10 (applied to the acceptor),

influence the same dimer. (See Fig. 4b.) In
this case, the dynamics experiences rapid relax-
ation, and saturates (ρ1,2(t) → 1/2) at approxi-
mately, ts ≈ 2ps. We can conclude, that in this
case, two uncorrelated noises (environments),
with equal amplitudes, are more effective in as-
sisting the ET than a single correlated noise
with the same amplitude. Similar results are
shown in Fig. 5, for the intermediately coupled
dimer (µd = 1/3). In this case, the amplitude

(a)

(b)

FIG. 5: (Color online) Time dependence (in ps) of
the density matrix components: ρ11(t) (blue) and
ρ22(t) (red). Parameters: V12 = 10, ε1 = 60, ε2 =

30, γ1 = 10, γ2 = 15. (a) d
(1)
1 = 10, d

(1)
2 = 10,

d
(2)
1 = 0, d

(2)
2 = 0, (b) d

(1)
1 = 10, d

(1)
2 = 0, d

(2)
1 = 0,

d
(2)
2 = 10. Initial conditions: ρ11(0) = 1, ρ22(0) =

ρ12(0) = 0.

of the Rabi oscillations in Fig. 5a decreases,
and the saturation time in Fig. 5b increases,
ts ≈ 6ps. In both cases, shown in Fig. 4b and
Fig. 5b, the electron transfer dynamics is ac-
companied by coherent oscillations of the pop-
ulations, ρ11(t) and ρ22(t). In Fig. 6, the case
of a weakly coupled dimer is demonstrated, for
µd = 0.1, and for the same amplitudes of the
noisy environments as in Figs. 4 and 5. As
one can see, the amplitude of the Rabi oscil-
lations in Fig. 6a decreases significantly (less
than 0.05), and the saturation time of the ET
in Fig. 6b increases significantly, ts ≈ 35ps.
The populations, ρ11(t) and ρ22(t), do not ex-
perience visible oscillations in this case.

In Fig. 7, we show the dynamics of the ET
for two noises, which act on both donor and
acceptor, but with different amplitudes and in-
teraction constants. Solid curves correspond to
the solutions of the exact Eqs. (7)-(9). Dashed
curves correspond to the approximate solutions
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(a)

(b)

FIG. 6: (Color online) Weakly coupled dimer (µd =
0.1). Time dependence (in ps) of the density matrix
components: ρ11(t) (blue) and ρ22(t) (red). Param-
eters: V12 = 3, ε1 = 60, ε2 = 30, γ1 = 10, γ2 = 15.

(a) d
(1)
1 = 10, d

(1)
2 = 10, d

(2)
1 = 0, d

(2)
2 = 0, (b)

d
(1)
1 = 10, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10. Initial

conditions: ρ11(0) = 1, ρ22(0) = rho12(00 = 0.

given by Eqs. (21) and (22). Initial conditions
are the same for all cases presented in Fig. 7:
ρ11(0) = 1, ρ22(0) = ρ12(0) = 0. Blue and
red curves correspond to the noise amplitudes:

d
(1)
1 = 20, d

(1)
2 = −10, d

(2)
1 = 0, d

(2)
2 = 0. In

this case, in even though two noises are present
in the system, the second noise (with a = 2)
has zero constants of interaction with both the
donor and acceptor: λ

(2)
1,2 = 0. So, effectively

only one collective noise (with a = 1) acts on
both the donor and acceptor. The dimension-
less amplitudes of noise are: (µ1 = 1.5;µ2 = 0),
and the ET rate is: Γ = 3.6.

Green and orange curves correspond to the

amplitudes of noise: d
(1)
1 = 20, d

(1)
2 = 0,

d
(2)
1 = 0, d

(2)
2 = −10. In these case, both

noises act on the system. The dimensionless
amplitudes of noise are: (µ1 = 1;µ2 = 0.5),
and the ET rate is: Γ = 0.73. The presented
ET rates correspond to the results shown in

FIG. 7: (Color online) Weakly coupled dimer (µd =
0.1). Time dependence (in ps) of the density matrix
components: ρ11(t) (blue and green curves), ρ22(t)
(red and orange curves). Choice of parameters:
V12 = 3, ε1 = 60, ε2 = 30, γ1 = 5, γ2 = 15. Blue

and red curves: d
(1)
1 = 20, d

(1)
2 = −10, d

(2)
1 = 0,

d
(2)
2 = 0, Γ = 3.6, (µ1 = 1.5;µ2 = 0). Green

and orange curves: d
(1)
1 = 20, d

(1)
2 = 0, d

(2)
1 = 0,

d
(2)
2 = −10, Γ = 0.73, (µ1 = 1;µ2 = 0.5). Solid

curves correspond to the solutions of the exact Eqs.
(7)-(9). Dashed curves correspond to the approxi-
mate solutions given by Eqs. (21) and (22). Initial
conditions: ρ11(0) = 1, ρ22(0) = ρ12(0) = 0.

Fig. (3). As one case see, for chosen param-
eters, the results of the approximate solutions
(dashed curves) are in good agreement with the
results of exact equations (solid curves). As our
results demonstrate, the saturation time de-
pends significantly on (i) the presence of collec-
tive or independent (uncorrelated) noises acting
on the donor and acceptor, (ii) the amplitude of
noises, and (iii) the interaction constants with
noises. Indeed, for parameters chosen in Fig.
7, for blue and red curves, the saturation time
is: tsat ≈ 1.8ps. For parameters chosen for
green and orange curves, the saturation time
is: tsat ≈ 8ps.

IV. CONCLUSION

When modeling the primary quantum exci-
ton transfer processes in photosynthetic com-
plexes, two major problems occur. The first
is related to strong pigments-protein interac-
tions. The second problem is related to the
large number of pigments (or light-sensitive
sites) in the light-harvesting complexes. This
results in a multi-scale electron transfer dynam-
ics and in the necessity to develop adequate
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coarse-grained procedures. Moreover, the num-
ber, N , of light-sensitive pigments in the sub-
complexes of plants and algae is neither small
or large, but rather of an intermediate value,
N ≈ 10÷ 20 [1, 2]. Then, it is difficult to apply
the well-developed methods from the solid state
physics which are used either for rare impurities
or for systems with electron band structures.
In this situation, it is useful to design a sim-

ple and an “exactly solvable” (at least, numer-
ically) quantum model which can be used to
describe the electron transfer in these complex
biological systems. Such a model, which is re-
duced to an exact closed system of first-order
linear differential equations with constant co-
efficients, is introduced in this paper. This
model can be applied for rather general photo-
synthetic complexes, and for any values of the
“pigment-protein” coupling constants. Note,
that the term “exactly solvable”, which we use
here, is rather conditional. It means that the
model consists of a closed system of ordinary
differential equations with constant coefficients,
which can be easily solved numerically. (See
also close approach used in [7, 8].) Our model
also includes different correlated and uncorre-
lated random telegraph processes, acting on dif-
ferent sites. This allows one to analyze, in
a straightforward way, the dependences of the
electron transfer dynamics on both amplitudes
and correlation times of random processes. In
particular, it is demonstrated, that the influ-
ence of noise on the electron transfer reveals a
“resonant” character, which will allow one to
design the photosynthetic complexes with opti-
mal electron transfer properties.
We demonstrated that the uncorrelated pro-

tein fluctuations can either increase or decrease
the electron transfer rates. We also derived an-
alytical expressions for the ET rates and for the
evolution of the density matrix elements, which
approximate the exact solutions for large time-
intervals for a wide range of parameters.
In spite of our model is relevant to de-

scribing some important effects considered in
the paper, it does not include many impor-
tant effects, such as: temperature dependen-
cies, the internal structures of the electron
sites (which usually are represented by light-
sensitive chlorophyll and carotenoid molecules),
multi-exciton/electron states, etc.

Our approach can easily be applied for many
concrete light-harvesting complexes and reac-
tion centers. The solutions which follow from
our model can be used for developing adequate
coarse-grained procedures, and for comparison
with the results of different approximations
and perturbation approaches. Our results
can also be used for engineering the protein
environment to achieve desired properties
for the ET dynamics. In order to verify
the properties of the protein environment,
standard molecular dynamics (MD) methods
can be used to simulate the time-dependent
correlation functions between different electron
sites. The generalization of our approach for
thermal protein environments is one focus of
our future research. One way to do this, is
to develop a perturbation theory not by the
constants of interactions between the electron
sites and the protein fluctuations, but by the
matrix elements of the interactions between
different electron sites. This research is now in
progress.
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