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Abstract: 

Slowly compressed microcrystals deform via intermittent slip events, observed as displacement 

jumps or stress drops. Experiments often use one of two loading modes: an increasing applied 

stress (stress-driven, soft), or a constant strain rate (strain-driven, hard). In this work we 

experimentally test the influence of the deformation loading conditions on the scaling behavior 

of slip events. It is found that these common deformation modes strongly affect time series 

properties, but not the scaling behavior of the slip statistics when analyzed with a mean-field 

model. With increasing plastic strain, the slip events are found to be smaller and more frequent 

when strain-driven, and the slip-size distributions obtained for both drives collapse onto the same 

scaling function with the same exponents. The experimental results agree with the predictions of 

the used mean-field model, linking the slip behavior under different loading modes. 
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I. Introduction 

Plastic deformation of crystals proceeds intermittently via discrete bursts, or slip events, of a 

broad range of sizes. Typically, the deformation in both experiments and modeling occurs under 

two distinctly different loading conditions, which are either force-controlled (soft), and 

displacement-controlled (hard). For soft loading conditions, the compressive stress is slowly 

increased at a prescribed rate. For hard loading conditions, a fixed compressive strain rate is 

imposed. In this work, we experimentally test the theoretically predicted dependency on the 

loading conditions of the time series properties of the slip events, as well as the scaling behavior 

of the slip statistics. 

 

The process of intermittent and stochastic changes of an evolving driven system has been studied 

intensely in the past decades. Prominent examples are the intermittency of energy dissipation in 

magnetism, superconductivity, earth quakes, and for example friction [1]. Despite the fact that 

the scale of their events are many orders of magnitude different, the statistical nature of the 

discrete events exhibits similar probability distributions. Yet another example of a discretely 

evolving system is a plastically flowing crystal, where the underlying dislocation structure 

reorganizes from one critical state to another. While early stress-strain evidence exists that 

plastic flow is intermittent [2], acoustic emission is readily used to record the crackling noise 

from deforming crystals [3-8]. In such experiments, the AE-amplitude reveals power-law scaling 

indicative of the scale-free nature of plastic deformation. This can also be observed by directly 

tracing the magnitude of crystallographic slip events (dislocation avalanches) [9-12] or the 

corresponding avalanche velocity [13, 14] upon straining of micron sized single crystals.  
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Even though power-law scaling is consistently observed in critically evolving systems, the 

exponents from different experiments have been shown to be difficult to compare [15, 16] 

because of differing loading conditions. Consequently, the effects of loading mode and boundary 

conditions in avalanche-mediated transitions has become a topic of increasing interest for 

systems with power-law dynamics [16-20]. Earlier studies either focus on the comparison 

between simulations and experiment for one given type of loading or boundary conditions [3], or 

are making comparisons for different loading or boundary conditions entirely based on 

simulations [16-18, 21]. For example, in the specific case of an evolving dislocation network, 

reflecting pinning-depinning dynamics, dislocation-dynamics simulations [21] have indicated 

that the scaling behaviour of the avalanche statistics, quantified for example by the avalanche 

size distribution, should remain unaffected by both internal variables, such as material, crystal 

structure, as well as by the imposed deformation mode. The latter implies insensitivity of the 

statistics to how the dislocation structure is being driven and whether it is allowed to relax 

intermittently by differences in how the external stress is imposed. This is particularly 

interesting, because dislocation networks are known to evolve with strain from a low density and 

energy configuration to highly complex and hierarchical dislocation structures. Until today, a 

direct comparison between theoretical predictions and experimental data is lacking, and in 

particular no experimental study has tested whether universality across hard and soft loading 

conditions exists for evolving dislocation networks. 

 

Here, we therefore investigate the slip-size magnitudes of quasi-statically deforming 

microcrystals under two very different loading conditions: stress-driven (soft) and strain-driven 

(hard) loading. We compute the slip statistics for sufficiently slow driving speed, that is as close 
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as possible to the adiabatic limit. In order to compare experimental data from different driving 

modes, a new scaling collapse method is introduced. Applying a mean-field model, all 

experimental data from stress- and strain-driven loading can be collapsed onto a universal 

scaling function, directly proving the theoretical predictions. Furthermore, we find that the time 

series properties of dislocation avalanches near failure are markedly different for the two loading 

conditions; a finding that may be of immediate relevance for non-destructive testing and failure 

prediction.  

 

II. Model Assumptions and Experimental Details 

Before turning our attention to the experiments and their comparison to theory, we first outline 

the used mean-field model, its predictions, and some experimental details. The employed model 

[22, 23] assumes that the material has weak spots, e.g. pinned dislocations in the crystal. These 

weak spots slip whenever the local stress at the spot exceeds a random threshold, causing it to 

displace until the stress is reduced to some arrest stress. All weak spots are elastically coupled 

such that a slipping spot can trigger other spots to slip, leading to a slip avalanche. The model 

has been solved analytically in the mean field theory (MFT) approximation, which assumes that 

the interactions have infinite range, i.e. they do not decay with distance [22, 23]. MFT exactly 

predicts the scaling behavior of the slip statistics in 3 dimensions as described below, and agrees 

well with discrete dislocation dynamics simulations [24-26] and experiments [27]. In the 

following, we compute the slip statistics for sufficiently slow driving in the quasi-static limit. 
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In the absence of hardening, the model predicts that the probability density distribution D(S,F) of 

slip sizes S occurring at an applied force F, follows a power law with a force-dependent 

maximum size cut off Smax=cሺܨ െ ,ሺܵܦ :ሻିଵ/ఙ asܨ ሻ~ܵିఛܨ ௦݂ ቀܵሺܨ െ ሻభቁܨ ൌ ܵିఛ ௦݂ሺܿܵ/ܵ௫ሻ      (1) 

Here ߬=3/2, σ=1/2, and ௦݂ሺݔሻ ൌ ݁ି௫ are the detail-independent “universal” exponents and 

scaling function, respectively. Fc is a critical force and model parameter, above which the 

material cannot sustain any load, and we further discuss its meaning in the Appendix. A and c are 

material dependent parameters.  

 

Using the well known method of scaling collapses [28], we introduce a new general scaling 

collapse that uses the average avalanche sizes for different displacement windows as the tuning 

variable rather than the stress itself, which enables the comparison of experiments with different 

driving modes or unknown tuning parameter values. Equation (1) predicts that the average 

avalanche size 〈ܵ〉ሺܨሻ ؠ   ,ሺܵܦ ܵ ሻ݀ܵஶܨ  scales with applied force as 〈S〉(F)~ሺܨ െ  ሻሺఛିଶሻ/ఙ, asܨ

shown in Ref. [22], or equivalently Fc-F ~ 〈S〉σ/(τ-2). Substituting 〈S〉σ/(τ-2) for (Fc-F) in Equation 

(1) then gives a scaling form for the avalanche size distribution in terms of the average avalanche 

size 〈S〉(F)≡〈S〉 for a small bin in force F: 

D(S,〈S〉) ~ 〈S〉τ/(τ-2)gs(S〈S〉1/(τ-2))         (2) 

The scaling function gs(x) = x-τexp(-Bx) is universal, while B is a material dependent parameter. 

Equation (2) also yields the scaling form for the complementary cumulative distribution function 

(CDF) [22, 27] ܥሺܵ, 〈ܵ〉ሻ ؠ  ,ሺܵᇱܦ 〈ܵ〉ሻ݀ܵᇱஶௌ , which gives the relative number of avalanches 

larger than S that occur in a stress bin with the average avalanche size 〈S〉: 
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C(S,〈S〉) ~ 〈S〉((τ-1)/(τ-2)) gc(S 〈S〉1/(τ-2)),        (3) 

where gc(x)= ࢞ఛஶିݐ௧ି݁ ݐ݀  is a universal scaling function and ߬=3/2 in MFT. In the quasi-static 

limit, C(S,〈S〉) is predicted to be identical for both stress-driven and strain-driven deformation, 

such that the exponents and scaling functions of the avalanche size distribution are the same 

regardless of the deformation mode or how the dislocation ensemble is driven. This model 

prediction will be tested in the following with experimental data, first by conducting the 

appropriate collapse, using ߬=3/2, followed by fitting the collapsed data to equation (3). 

Equation (3) is more general than Equation (1) and applies to materials with or without 

hardening [22]. Additional scaling forms are discussed in the Appendix. 

 

In order to experimentally test the theoretical predictions, uni-axial micro-compression tests were 

conducted on cylindrical [001]-oriented Au single crystals with diameters of 1μm (7 crystals), 

3μm (6 crystals) and 5μm (8 crystals), with a nominal aspect ratio of 3 and a side wall taper 

angle smaller than 1.2°. The crystals were compressed in a Hysitron nanoindenter either using a 

strain-driven (displacement controlled, equivalent to hard) or a stress-driven (force controlled, 

equivalent to, soft) deformation mode [29]. In the following, displacement represents the platen 

position during loading, and with force we mean the value applied by the device onto the crystal. 

Both displacement (equivalent to strain) and force (equivalent to stress, quantified as engineering 

stress [14, 30]) were acquired at a rate of 60 Hz and are measured with sub-nm and nN precision. 

The samples were prepared by following a multistep annular focused ion beam (FIB) 

methodology used in earlier work [14].  

 

III. Results and Discussion 



7 
 

Figure 1a depicts a typical force-displacement data set for a test conducted in each deformation 

mode. Despite different force levels during plastic flow for different crystal sizes, the data in 

Figure 1 is representative for all sample diameters investigated in this study. In both strain-driven 

and stress-driven compression the flow response is characterized by a series of discrete 

displacement jumps that reflect slip events (dislocation avalanches [13, 14]). During a slip event 

the true plastic strain rate that is larger than the nominally applied strain rate. The two 

deformation modes differ significantly in the way they drive the evolving underlying dislocation 

structure and how intermediate internal stress states are sampled. For force-displacement data 

that spans the same total displacement, on average the slip events have larger displacements in 

the stress-driven mode than in the strain-driven mode. Also, in the strain-driven data one finds 

larger overall force increments per unit displacement than in the stress-driven mode. Both effects 

are explained by the conditions imposed on the sample in each mode. Each displacement jump in 

both strain-driven and stress-driven deformation is consisting of a forward surge in displacement, 

S, and a simultaneously occurring force drop, ΔF, that leads to a stress relaxation of the 

deforming sample. A comparison for a slip event (dislocation avalanche) obtained under stress-

driven and strain-driven loading conditions is shown in Figure 1b and Figure 1c, respectively. 

The applied force, and thus stress, is kept approximately constant during slip events in the stress-

driven mode. In contrast, strain-driven compression is characterized by a force decrease (stress 

drops) during and after the discrete slip events (Figure 1c). The reason is that the slipping crystal 

and the device are acting as two springs in series, which relax during the slip event, thereby 

reducing the stored elastic energy. The inset in Figure 1a displays the correlation between force 

drop and slip size, both evaluated between the beginning and end of the slip event, for 

microcrystals with a diameter of 1 μm tested in strain-driven and stress-driven mode. In both 
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cases, the data falls on a linear trend, but with markedly different maximum S-values and ΔF-S 

slopes. The ΔF-S slopes of the dashed linear fits differ by a factor of ~2200 (1.7μN/nm for strain 

control, 7.7×10-4μN/nm for stress control). Considering the sample and machine as two serial 

springs, where the axial transducer stiffness is ~102 N/m, and the sample has an axial stiffness of 

~11000 N/m, it is clear that the dominant contribution to the apparent stiffness for the strain-

driven data originates from the much more compliant transducer. The effective ΔF-S slope in 

strain-driven deformation amounts to~1700 N/m, which only can be understood when 

considering the efficient and fast (78 kHz) feedback loop of the device, artificially stiffening the 

system [29]. For stress-driven testing the assumption of two springs in series does not apply. 

Rather, the feedback of the device produces an amplified soft response. Apart from some 

exceptions, the stress drop magnitude in stress-driven deformation generally amounts to ~ 0.5 

μN, whereas strain-driven data mainly lies above 1 μN.  

 

[Figure 1 approximately here] 

 

When the device controlled unload after the slip event in strain-driven deformation is complete, a 

linear reloading segment follows a slip event (Figure 1c). An example is shown in Figure 1a 

where the elastic re-loading segments occur at the displacements of ~240, 280 and 335 nm. In 

contrast, under stress-driven deformation, the stress cannot be lowered during slip events because 

the applied force is kept fixed during the slip events within the limits of the instrumental 

capabilities. Thus, a strain-driven system is effectively much stiffer than a stress-driven system, 

preventing the spanning avalanche from growing. Successive slip events that would be separate 

in strain-driven compression may be forced to merge in stress-driven deformation. Consequently 
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the slip frequency per force increase is higher in strain-driven than in stress-driven compression. 

Similar effects have been observed in other systems such as spin-models with quenched disorder 

[17]. A discussion on the stiffness, the instrumental assembly and different deformation modes 

of the nanoindenter used in this study is presented in detail in Ref. [29]. 

 

Experiments were conducted probing three sample sizes over a range of applied rates: 0.4-3 nms-

1 in strain-driven mode and 0.3-2 μNs-1 in stress-driven mode. The extent of each avalanche is 

extracted from the displacement versus time data, following a custom procedure [9, 14, 27]: a 

numerical derivative of the displacement versus time data yields the platen velocity v during the 

forward surge of the sample-device interface for both compression modes. We set a conservative 

threshold velocity of 〈v〉+2σv, with 〈v〉 being the average displacement velocity, and σv the 

standard deviation. We denote the start of an avalanche when the platen velocity first exceeds the 

prescribed rate, and its end when the displacement velocity subsequently drops below this 

threshold. The slip size S is defined as the increase in displacement observed from the start to the 

end of each avalanche. Representative for the data obtained from the different crystal sizes, 

Figure 2 displays the stress integrated complementary cumulative distributions Cint(S), which 

includes all slip sizes from the entire stress-strain curve of the 1 micron large crystals. Further 

details on the stress integrated scaling laws can be found in the Appendix. The stress-integrated 

distributions Cint(S) for both deformation modes align well with the power-law exponent -1 given 

by the mean field model, and, as discussed above, stress-driven deformation produces larger 

avalanche sizes than strain-driven deformation. A related effect of merged avalanches has been 

observed for increased applied strain rates [12, 27]. 
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[Figure 2 approximately here] 

 

For our comparison between experiments and theory, we focus on data obtained for the 

compression of 3 μm-diameter crystals at the slowest possible rates, 0.4 nm/s (strain-driven) and 

0.3 μN/s (stress-driven), which corresponds to a nominal strain rate of ~10-5 s-1. These are chosen 

to attain as close to quasi-static conditions as possible, to mimic the assumptions of the MFT 

model, and to also exemplify the results of the other crystal sizes. The stress rate of the force-

controlled deformation was chosen such that the true plastic strain rate beyond the elastic limit 

attained values in the range between 0.6 and 0.2 nm/s in segments where no resolvable slip event 

occurred. Within the experimentally controllable means the true plastic rates in both considered 

deformation modes are therefore comparable. The complementary cumulative distribution 

functions (CDFs) C(S,〈S〉) of the collected slip sizes S are shown in Figure 3. Different colours 

denote CDFs for stress bins with different average avalanche size 〈S〉. Figure 3a and b shows that 

C(S,〈S〉) follows the model prediction from equation (3) very well for both deformation modes, 

because the experimental data describes the distribution as given by the CDF of the model. We 

note that a larger number of data points would be desirable in order to improve the distributions 

even further. The insets show the scaling collapse obtained via a fitting procedure with the mean 

field exponent (߬=3/2), which supports the predicted scaling function of equation (3). Figure 3c 

demonstrates that the data for stress-driven compression collapses onto that for strain-driven 

compressions. The collapsed data-sets not only overlay one another, but they also follow the 

scaling function predicted by MFT, which was fit to the entire experimental data depicted in 

Figure 3c. Both the constant B from equation (3) and the integration constant A of gc(x) are 

indicated in Figure 3c. The slight deviations, primarily seen for stress-driven data, have three 
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main reasons: i) less-than-perfectly quasi-static conditions and ii) the statistically smaller data 

set, and iii) finite size-effects arising for large events amplified by the soft stress-driven mode. 

Despite these issues, and also the limited amount of experimental data (ca. 1000 experimental 

slip events are contained in the analysis of Figure 3), good support for the earlier described 

model predictions are found - a remarkable result considering the simplifications made by the 

theory. The stress-binning procedure is described in the Appendix. 

 

[Figure 3 approximately here] 

 

Since the values of the scaling exponents and the scaling function of the collapse agree well with 

the corresponding mean field predictions applied to our experimental data for two different 

loading conditions, it is clear that the scaling behaviour of the slip statistics is universal beyond 

the drive of the critically evolving dislocation network. In combination with earlier 

investigations [9, 10, 27], a picture emerges where the experimental evidence shows that the 

power-law statistics are the same for small fcc and bcc crystals, crystal orientation, crystal size, 

applied deformation rate, and as investigated here, for both soft and hard imposed conditions. 

This is interesting as viewed in the context of the different strength-size scaling of small-scale 

fcc and bcc crystals [31], which implies that the underlying strengthening mechanisms are 

different. Yet, the slip magnitude statistics reveal no noticeable difference across so far all tested 

conditions and parameters. 

 

In contrast, Figure 4 shows that time series properties, such as the slip frequency and its variation 

with force strongly depend on the experimental deformation mode. The histogram bins in Figure 
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4 were obtained using linear binning in applied force at intervals of 0.1 F/FC and centred at 

uneven multiples of 0.05. As outlined in more detail in the Appendix, FC is a model parameter 

that represents the force at failure for the studied system. Obviously, a stress as high as FC cannot 

be reached in the experiments conducted here. That is why in this work FC was approximated by 

the maximum force in each loading curve. Figure 4a demonstrates that for strain-driven 

deformation the slip frequency increases strongly with the applied force, while for stress-driven 

deformation (Figure 4b) such increase is marginal. This holds true irrespective of the fact that 

higher plastic displacements were achieved in force-controlled deformation. It also holds true if 

only the plastic strain regime is considered. 

 

[Figure 4 approximately here] 

 

In fact, for strain-driven compression the number of slip events per bin increases exponentially 

with stress, with a decay constant of 0.79±0.004 and a fitting coefficient R2 = 0.998. Slip events 

are observed down to lower normalized force values than for stress-driven compressions. The 

low initial slope in the elastic regime below 0.1 F/FC in the stress-strain data shown in Figure 4a 

is a typical signature of commonly observed indenter-to-sample alignment [30], and we have 

chosen not to include any such events in the slip frequency analysis of Figure 4a in order to only 

compare the strain- and force-driven data obtained after linear loading sets in.  

 

The exponential increase of the slip frequency with stress for strain-driven deformation is 

consistent with our model predictions. Equation (1) states that slip events at higher stresses 

become larger under stress-driven conditions. Since, as described above, these larger events are 
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continuously broken down into smaller slip-sizes in strain-driven deformation, the slip triggering 

rate has to increase with stress. The exact number depends on the stiffness of the material and the 

measurement instrument, but the trend is expected to be similar across many different materials. 

The exponential dependence of the slip frequency on the stress follows from the model for the 

commonly assumed Weibull distribution of weak spot-strengths with exponentially decaying 

tails.  

 

IV. Summary 

In this work we have made an experimental investigation on effects of loading conditions on the 

slip statistics obtained from plastically deforming microcrystals, with the aim at testing the 

theoretical prediction that scaling exponents for intermittent dislocation plasticity are insensitive 

to how the dislocation structure is externally driven. To this end, we have compared the slip 

statistics from dislocation avalanches under soft (stress-driven) and hard (strain-driven) 

deformation conditions. The comparison of experimental data with predictions of a simple mean 

field model shows that the scaling behavior of the slip avalanche statistics of a dynamically 

changing dislocation network is universal across both deformation modes for the slowest 

accessible applied rates and low device stiffness. In contrast, time series properties, such as the 

slip sizes and the stress-dependent slip frequency depend markedly on the loading conditions, 

where the increase in slip frequency is exponentially growing with plastic strain under strain-

driven deformation, and a much slower increase is observed under stress-driven conditions. That 

means by studying the avalanche rate change of plastically deforming crystals, as well as other 

systems exhibiting scale-free crackling noise, it is possible to differentiate between the mode of 

the externally applied drive. The obtained results are expected to apply to the deformation of 
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many driven inhomogeneous systems that evolve critically, and they may be useful for materials 

testing applications. 
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Appendix A: Stress Integrated Distributions 

 

The multivariate nature of the distribution D(S,F) can be integrated with respect to the force from 

zero up to some maximum force Fmax<Fc, yielding: 

,௧ሺܵܦ ௫ሻ~ܵିሺఛାఙሻܨ ݂௧ ቀܵሺܨ െ ௫ሻଵܨ ఙൗ ቁ.      (A1) 

fint is an exponentially decaying scaling function, and ܨ is a critical force, above which the 

material cannot sustain any load and should be seen as a model parameter. We note that for finite 

systems sizes, ܨ will reflect sample dependent fluctuations, and the distribution of ܨ would 

have a size-dependent width. If ܨ െ -௫ is chosen to be small, as in our case, then the powerܨ
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law dominates for the broad range of avalanche sizes  0 ൏ ܵ ൏ ሺܨ െ ௫ሻିଵܨ ఙൗ  with an 

exponent of ߬  ߪ ൌ 2 predicted by the mean field theory model described in the main text.  

Integrating with respect to the force up to Fmax=Fc yields a pure power law ܦ௧ሺܵ,  .ሻ~ܵିሺఛାఙሻܨ
This power law distribution provides less information than the stress dependent distribution in 

equation (A1). The reason is that ߬ and σ cannot be separately determined from this power law 

alone, where the stress dependence is fully integrated out. On the other hand the stress integrated 

distribution ܦ௧ሺܵ,  ሻ usually has better statistics because it takes into account all measuredܨ

avalanches for the full stress range, while the stress dependent distribution only take into account 

a fraction of the avalanches for a smaller stress range, and therefore has larger statistical 

fluctuations. Plotting ܦ௧ሺܵ,  ሻ and comparing it with the predicted power law ܵିሺఛାఙሻܨ
constitutes a strong test of the theory.  

The statistical fluctuations can be reduced even further by plotting the corresponding 

complementary cumulative distribution function (CDF), which is predicted to scale as ܥ௧ሺܵሻ~ܵିሺఛାఙିଵሻ, see main text. 

Our mean field model predicts τ+σ=2, so that the predicted power law decay exponent on the 

CDF ܥ௧ሺܵሻ should be -1, i.e. ܥ௧ሺܵሻ~1/ܵ in mean field theory. 

In Figure 2 a set of four strain-driven and stress-driven experimental data sets Cint(S,Fmax) for 1 

μm sized crystals are shown together with theoretical lines of slope -1. By integrating equation 

(A1) over avalanche size from S to infinity we obtain 

,௧ሺܵܥ ௫ሻ~ܵିሺఛାఙିଵሻ݃௧ܨ ቀܵሺܨ െ ௫ሻଵܨ ఙൗ ቁ.      (A2) 
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Here gint is another exponentially decaying scaling function that is responsible for the slight bend 

downwards of the distributions for large avalanche sizes S. 

 

Appendix B: Binning the Avalanche Data in 〈S〉: 

 

The cumulative distributions shown in the main paper corresponding to different 〈S〉 values are 

obtained from collecting slip sizes for different bins in time or displacement. For nominally 

identical 3 μm microcrystals, these bins are indicated by different colors in Figure A1a for 

displacement controlled, and in Figure A1b for force controlled compression. Only data from the 

plastic regime is shown and the force-displacement curves of the different specimen have been 

shifted relative to each other for clarity. Large gaps in the stress-driven curves in Figure A1b are 

due to large slips (sudden jumps in displacement) during plastic deformation.  

 

It is clear that in the stress-driven mode both stress and strain are monotonically increasing in 

time, i.e. the data in the (n+1)st bin is at larger stress and displacement values than the data in the 

nth bin (where the index n increases with time). Therefore stress-binning of stress-controlled 

deformation can always be transferred into time binning, without any loss of generality.  

 

Similarly, in the strain-driven mode, both the displacement and the starting stress of the 

avalanches are monotonically increasing in time, so time binning will work there as well, Note 

however, that time, force, or stress bins in the strain-driven mode may result in a much larger 

number of slip displacements for bins at higher strain, as shown in the main paper. This is 

resulting from the possibility of effectively zero hardening (or softening) with increasing 
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deformation. With hardening, we refer to the derivative of the upper envelope of the stress-strain 

curve, i.e. its increase in stress per increase in displacement. In the limit of an elastic-perfectly-

plastic material, all slip events would fall into a single and very narrow stress bin due to a 

constant stress level throughout plastic flow. Parts of the force-displacement curve in Figure 1 

display such regimes with effectively zero hardening or softening after an initial hardening 

regime. 

 

[Figure A1 approximately here] 

 

The question emerges how stress/force-binning can be done adequately without placing a large 

part of the slips arising at the later state of deformation into just one bin? We find that the force-

displacement curve has sections (“arches”) where the curve starts with a steep slope (high 

apparent hardening rate, far from criticality), after which the hardening rate becomes lower, 

which we call more critical. Subsequently a large event occurs, and then the system returns to 

being far from criticality – similar to the mechanism discussed by Papanikolaou et al. [32]. Here, 

we calculate 〈S〉 for each such arch and then group the avalanches in those arched sections 

together that have roughly the same average slip-sizes 〈S〉. The resulting slip-size distributions 

for different 〈S〉-values, are used for the scaling collapses in the main paper (Figure 3c). This 

analysis does not require prior knowledge of the tuning parameter (stress or strain), and it allows 

us to perform the identical analysis for stress-driven and strain-driven loading conditions. The 

idea is to define suitable displacement bins in both cases, to calculate 〈S〉 for each bin and then to 

form new histograms of the avalanches that came from bins with the same 〈S〉-value. This 
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method is generally applicable to systems where the driving parameter is either not known or 

where we need to compare systems with different driving parameters. 

  



19 
 

References 
 

[1] D. S. Fisher, Physics Reports-Review Section of Physics Letters 1998, 301, 113. 
[2] R. F. Tinder, J. P. Trzil, Acta Metallurgica 1973, 21, 975. 
[3] M. C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, J. R. Grasso, Nature 2001, 410, 667. 
[4] G. Ananthakrishna, S. J. Noronha, C. Fressengeas, L. P. Kubin, Phys. Rev. E 1999, 60, 5455. 
[5] J. Weiss, T. Richeton, F. Louchet, F. Chmelik, P. Dobron, D. Entemeyer, M. Lebyodkin, T. 

Lebedkina, C. Fressengeas, R. J. McDonald, Physical Review B 2007, 76, 22410. 
[6] J. Weiss, D. Marsan, Science 2003, 299, 89. 
[7] T. Richeton, P. Dobron, F. Chmelik, J. Weiss, F. Louchet, Materials Science and Engineering: A 

2006, 424, 190. 
[8] T. Richeton, J. Weiss, F. Louchet, P. Dobron, F. Chmelik, Kovove Mater. 207, 45, 149. 
[9] D. M. Dimiduk, C. Woodward, R. LeSar, M. D. Uchic, Science 2006, 312, 1188. 
[10] M. Zaiser, J. Schwerdtfeger, A. S. Schneider, C. P. Frick, B. G. Clark, P. A. Gruber, E. Arzt, 

Philosophical Magazine 2008, 88, 3861. 
[11] S. Brinckmann, J. Y. Kim, J. R. Greer, Physical Review Letters 2008, 100, 155502. 
[12] S. Papanikolaou, D. M. Dimiduk, W. Choi, J. P. Sethna, M. D. Uchic, C. F. Woodward, S. Zapperi, 

Nature 2012, 490, 517. 
[13] R. Maass, P. M. Derlet, J. R. Greer, Small 2015, 11, 341. 
[14] R. Maass, P. M. Derlet, J. R. Greer, Scripta Materialia 2013, 69, 586. 
[15] G. Durin, S. Zapperi, Physical Review Letters 2000, 84, 4705. 
[16] L. Zhang, E. K. H. Salje, X. Ding, J. Sun, Applied Physics Letters 2014, 104. 
[17] F.-J. Perez-Reche, L. Truskinovsky, G. Zanzotto, Physical Review Letters 2008, 101. 
[18] B. Tadic, Physical Review Letters 1996, 77, 3843. 
[19] G. Bertotti, G. Durin, A. Magni, Journal of Applied Physics 1994, 75, 5490. 
[20] F. J. Perez-Reche, B. Tadic, L. Manosa, A. Planes, E. Vives, Physical Review Letters 2004, 93. 
[21] F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Science 2007, 318, 251. 
[22] K. A. Dahmen, Y. Ben-Zion, J. T. Uhl, Physical Review Letters 2009, 102, 175501. 
[23] K. A. Dahmen, Y. Ben-Zion, J. T. Uhl, Nat Phys 2011, 7, 554. 
[24] G. Tsekenis, J. T. Uhl, N. Goldenfeld, K. A. Dahmen, EPL 2013, 101. 
[25] G. Tsekenis, N. Goldenfeld, K. A. Dahmen, Physical Review Letters 2011, 106, 105501. 
[26] P. M. Derlet, R. Maass, Model. Simul. Mater. Sci. Eng. 2013, 21, 035007. 
[27] N. Friedman, A. T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J. T. Uhl, J. R. Greer, K. A. Dahmen, 

Physical Review Letters 2012, 109, 095507. 
[28] M. Zaiser, B. Marmo, P. Moretti, Proceedings of Science 2005, PoS (SMPRI2005) 053, 1. 
[29] O. L. Warren, S. A. Downs, T. J. Wyrobek, Z. Metallk. 2004, 95, 287. 
[30] R. Maass, M. D. Uchic, Acta Materialia 2012, 60, 1027. 
[31] J. R. Greer, J. T. M. De Hosson, Progress in Materials Science 2011, 56, 654. 
[32] S. Papanikolaou, F. Bohn, R. L. Sommer, G. Durin, S. Zapperi, J. P. Sethna, Nat Phys 2011, 7, 316. 
 
 

  



20 
 

Figures and Figure Captions 

 

 

Figure 1: (Color online) (a) Force-displacement curves for two 1 μm Au〈001〉 microcrystals 

deformed with different loading conditions (0.5 nm/s for strain-driven, and 0.4μN/s for stress-

driven). The inset in (a) shows the correlation between slip-induced force-drop magnitude, ΔF, 

and slip-size magnitude, S. Linear fits are displayed by dashed lines. Close-up views on a slip 

event during stress-driven compression (b) and strain-driven compression (c) demonstrate the 

different slip dynamics in terms of ΔF. 
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Figure 2. (Color online) Stress integrated complementary cumulative distributions Cint(S,Fmax) 

for the 1 μm sized crystals. The slope of -1 is the predicted exponent for Cint(S,Fmax). The red 

curves are from stress-driven experiments, and the blue curves are from strain-driven 

experiments. The shift to the right of the stress-driven experiments results from the fact that 

stress-driven conditions produce effectively larger slips. 
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Figure 3: (Color online) Complementary cumulative avalanche size distributions from quasi-

static compressions of 3μm Au microcrystals. The colors correspond to different stress bins with 

different values for the average avalanche size (〈S〉), the insets show scaling collapses according 

to equation (3), using the mean field exponents (a) for strain-driven compression at 0.4 nm/s, (b) 

for stress-driven compression at 0.3 μN/s, (c) scaling collapse for strain-driven (blue) and stress-

driven (red).The black curve corresponds to the mean field scaling function. 
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Figure 4: (Color online) Force vs. displacement for typical experiments on 3μm-diameter Au 

crystals (a) for strain-driven compression at 0.4 nm/s, (b) for stress-driven compression at 0.3 

μN/s. The histograms represent the slip frequency, which is the number of avalanche events 

within each force bin. The increase in the slip frequency with stress is more pronounced for 

strain-driven than for stress-driven compressions. In the strain-driven conditions the slip 

frequency grows exponentially with force as predicted by the model. The upper x-axes indicate 

the number of events per stress bin. 
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Figure A1: (Color online) Plastic part of the force-displacement data for all 3 μm microcrystals 

deformed in both strain-driven (0.4 nm/s, Figure A1a) and stress-driven (0.3 μN/s, Figure A1b) 

steering mode. The alternating colored parts of the curves represent different displacement bins 

that are later grouped according to their corresponding 〈S〉 values into different 〈S〉-bins. Large 

gaps in the stress-driven curves in Figure A1b are due to large slip events during plastic 

deformation. 

 


