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Abstract 

The solvation of hard, sphero-cylindrical solutes is analyzed within the context of scaled-

particle theory, which takes the view that the free energy of solvating an empty, cavity-like 

solute is equal to the pressure-volume work required to inflate a solute from nothing to the 

desired size and shape within the solvent. Based on our analysis an “end cap” approximation is 

proposed to predict the solvation free energy as a function of the sphero-cylinder length from 

knowledge regarding only the solvent density in contact with a spherical solute. The framework 

developed is applied to extend Reiss’s classic implementation of scaled-particle theory and a 

previously developed revised scaled-particle theory to sphero-cylindrical solutes. To test the 

theoretical descriptions developed molecular simulations of the solvation of infinitely long 

cylindrical solutes are performed. In hard-sphere solvents classic scaled-particle theory is shown 

to provide a reasonably accurate description of the solvent contact correlation and resulting 

solvation free energy per unit length of cylinders, while the revised scaled-particle theory fitted 

to measured values of the contact correlation provides a quantitative free energy. Applied to the 

Lennard-Jones solvent at a state-point along the liquid-vapor coexistence curve, however, classic 

scaled-particle theory fails to correctly capture the dependence of the contact correlation. 

Revised scaled-particle theory, on the other hand, provides a quantitative description of cylinder 

solvation in the Lennard-Jones solvent with a fitted interfacial free energy in good agreement 

with that determined for purely spherical solutes. The break down of classical scaled-particle 

theory does not result from the failure of the end cap approximation, however, but is indicative 

of neglected higher-order curvature dependencies to the solvation free energy. 
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Introduction 

The solubility and conformation of a solute in solution is ultimately dictated by the size 

and shape dependence of its solvation free energy. One of the earliest molecular-based 

approaches used to describe the solvation of solutes of varying size is scaled-particle theory 

(SPT) proposed by Reiss and coworkers [1-3]. The original implementation of SPT describes the 

solvation of hard sphere (HS) solutes over all size scales by enforcing a smooth juncture between 

exact results for the dissolution of microscopic solutes and a phenomenological thermodynamic 

curvature expansion for the free energy of creating a macroscopic volume within the solvent. 

Scaled-particle theory was subsequently used to derive analytical expressions for the equation-

of-state of HS fluids and the interfacial free energy of realistic and HS solvents. When applied to 

realistic solvents with attractive interactions and molecular topology, however, Reiss’s “classic” 

application of SPT (cSPT) treats the solvent as effectively monatomic utilizing an empirically 

determined hard-sphere diameter. 

Following the successes of SPT, the theory was applied to correlate the dissolution of 

non-polar gases in aqueous solution, where water is assumed within cSPT to be a monatomic 

solvent with an effective diameter of ~2.8 Å [4-6]. Stillinger demonstrated, however, that cSPT 

applied to hydrophobic hydration predicts a thermodynamically incorrect, non-monotonic 

temperature dependence of the surface tension of water displaying a maximum well above the 

normal boiling point [7]. Henderson furthermore showed cSPT applied to liquids near 

coexistence incorrectly predicts the surface tension is a decreasing function of pressure [8], while 

molecular simulations find the surface tension displays a maximum with increasing pressure as a 

result of the formation of a vapor-like layer enshrouding the solute in solvents near coexistence 

[9-11]. To overcome these shortcomings Stillinger incorporated the pair-correlation function, 
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equation-of-state, and surface tension of water in a reformulated SPT to ensure the theory 

conformed to the experimentally known microscopic and macroscopic limits. Following 

Stillinger, Ashbaugh and Pratt developed a revised SPT (rSPT) in which multi-body solvent 

correlations determined from simulations are used to provide an improved description of 

molecular-scale solvation. Revised SPT has successfully been applied to quantitatively evaluate 

the solvation free energy of spherical solutes in water [12] and water-like [13] solvents as well as 

Lennard-Jonesium [11,14] and organic solvents [15,16].   

Scaled-particle theory and SPT related theories have been extended to consider fluids 

composed of convex bodies [17-21], random fiber networks [22], and non-monatomic, molecular 

solvents [15,23,24]. Application of SPT to the dissolution of non-spherical solutes, however, has 

been minimal. Recently a SPT treatment of sphero-cylindrical cavity-like solutes has been put 

forward [25], however the proposed framework employs an ad hoc formulation of the solute’s 

solvent accessible volume and utilizes a polynomial expansion for the free energy over a range 

of solute sizes where the underlying expression diverges [26]. Hadwiger’s theorem [27], on the 

other hand, can be used to develop a top-down, morphometric expansion of the solvation free 

energy of solutes of varying shape in terms of the solute volume, area, mean and Gaussian 

curvatures [28,29]. This morphometric approach has been used to examine the interfacial free 

energies of growing spherical and infinitely long cylindrical solutes in a HS fluid [30] and 

aqueous solutions [31]. Utilizing expansion coefficients for HS solvents determined analytically 

from fundamental measure theory [32], the morphometric approach has been successfully used 

to describe an even broader range of solute shapes, including cubes, cones, and prisms [33] as 

well as the colloidal depletion forces in mixtures of hard-spheres and ellipsoids [34]. The 

morphometric approach, however, breaks down when the solute size is comparable to the solvent 
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correlation length, where solvent packing and specific interactions impact solvation. This opens 

up the potential to build bridges between the microscopic solvation free energies derived from 

SPT and macroscopic morphometric approaches to develop descriptions of solvation applicable 

over the entire range of solute size and shape.  

As a step toward extending SPT to non-spherical solute solvation, we presently examine 

the dissolution of sphero-cylindrical cavities in monatomic solvents. In the following section we 

consider the process of growing a sphero-cylindrical cavity in solution, and use our findings to 

develop an analytical extension of cSPT for spherical solutes to elongated sphero-cylinders. 

Furthermore, we extend the rSPT originally developed for spherical cavities to describe cylinder 

dissolution in the limit of an infinitely long cylinder. We subsequently test the application of the 

theoretical framework developed here using Monte Carlo simulations of two different 

monatomic fluids, the HS and Lennard-Jones (LJ) solvents. The HS solvent allows us to examine 

the impact of packing interactions, while the LJ solvent allows us to examine the impact of 

attractive solvent interactions on dissolution near liquid-vapor coexistence. 

 

Theory 

Cylinder Growth in Solution. The chemical potential of a hard cavity-like solute (cav) in 

solution formally is  

 μcav ν( ) = kT ln ρcavΛcav
3 qrot( ) − kT ln p0 ν( )  (1)  

where ν is the solvent excluding volume of the cavity devoid of solvent centers, kT is the product 

of Boltzmann’s constant and the absolute temperature, ρcav  is the solute number density in 

solution, Λcav is the thermal de Broglie wavelength of the solute, and qrot is the rotational 
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partition function of the solute. The quantity p0 ν( )  represents the probability that a stencil of the 

same shape and volume of the solute randomly placed in solution is spontaneously devoid of 

solvent centers. The first term on the right-hand side of Eq. (1) is the ideal contribution to the 

chemical potential, while the second term corresponds to the excess contribution to the chemical 

potential resulting from molecular interactions, i.e., μcav
ex ν( ) = −kT ln p0 ν( ) . While the ideal 

contribution is analytically known and independent of the solvent medium, the excess 

contribution is generally more complicated because it depends on multi-body correlations. While 

p0 ν( )  is readily evaluated for solutes comparable in size to the solvent by passive observation 

during molecular simulations, accurate determination of this probability for larger solutes is 

problematic due to the increasing rarity of volume emptying fluctuations.  

Rather than passive observation of solvent fluctuations, SPT takes the alternate view that 

the chemical potential can be obtained from the work of growing a hard solute from nothing to 

an empty cavity of the size and shape of interest, similar to inflating a balloon. The process of 

growing a sphero-cylinder into solution can be thought of as occurring in two steps (Figure 1). In 

the first step, a spherical cavity is grown from nothing to a solvent excluding radius R. In the 

second step, the spherical solute is extended along one axis to a length L from the edge of one 

spherical cap to the other.  

The excess chemical potential for growing a spherical cavity-like solute with zero 

cylindrical length into solution (Figure 1, step 1) from SPT is [1]  

 βμcav
ex R, L = 0( ) = kTρ G r( )4πr2 dr

0

R

∫ . (2) 
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The function G r( ) , referred to as the contact correlation function, reports the contact values of 

the solute cavity-solvent radial distribution function for solute cavities with solvent-excluding 

radius r, while  is the solvent number density. The grouping of terms kTρG r( )  has units of 

pressure and 4πr2 dr  is a differential volume element, so that Eq. (2) corresponds to the 

pressure-volume work to grow cavities into solution. 

Extending the SPT formalism to the second step of the cylinder growth process where the 

initially spherical cavity is elongated along the cylindrical axis (Figure 1, step 2), the contact 

correlation function is replaced by the mean contact value of the cavity-solvent pair correlation 

function averaged over the surface of either spherical end cap of the growing cylinder. The free 

energy difference between the spherical and sphero-cylindrical cavities is then  

 μcav
ex R, L( ) − μcav

ex R,0( ) = kTρ Gcap R,λ( )π R2 dλ
0

L

∫ , (3) 

where Gcap R,λ( )  is the mean end cap contact correlation function, which depends on the sphero-

cylinder length λ but plateaus at a finite value with increasing length. A formal description of the 

mean contact correlation function is discussed in refs. [35,36]. For a spherical cavity that has a 

cylindrical length of zero, the mean end cap contact correlation function is equal to the spherical 

contact correlation function, i.e., Gcap R,0( ) = G R( ) . Summing the free energies of the first and 

second steps, the solvation free energy of the sphero-cylindrical cavity is  

 μcav
ex R, L( ) = kT ρ Gcap r,0( )4πr2 dr

0

R

∫ + kT ρ Gcap R,λ( )π R2 dλ
0

L

∫  (4) 
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The challenge for determining the excess chemical potential of sphero-cylinder then is 

determining Gcap R,λ( ) .  

If we assume Gcap R,λ( )  is insensitive to the sphero-cylinder length we can equate the 

mean end cap contact correlation function with the contact correlation function of a sphere of the 

same radius, i.e., Gcap R,λ( ) ≈ Gcap R,0( ), referred to here as the “end cap” approximation. 

Following this approximation the excess chemical potential of the sphero-cylinder is  

 μcav
ex R, L( ) ≈ kT ρ Gcap r,0( )4πr2 dr

0

R

∫ + kTρGcap R,0( )π R2L (5) 

This expression notably predicts the intuitive expectation that the free energy scales as the 

cylinder length for sufficiently long cavities. For an infinitely long cylinder, the free energy per 

unit length predicted by the end cap approximation is  

 limL→∞

βμcav
ex R, L( )σ

L
= ρGcap R,0( )π R2σ , (6) 

where β = 1/kT and σ is the diameter of a solvent molecule. Following a macroscopic 

phenomenological thermodynamic curvature expansion, the free energy of solvating a cylinder is 

determined to leading order as the as the bulk pressure, P, times the volume plus the interfacial 

free energy of creating a flat interface, γ∞ , times the area. The resulting expansion for the free 

energy per unit length for an infinitely long cylinder is  

 limL→∞

βμcav
ex R, L( )σ

L
= βPπ R2σ + βγ∞ 2π Rσ + order R0( ) . (7) 

Comparing Eqs. (6) and (7), we obtain the following expansion for the contact correlation 

function of a spherical cavity 
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 Gcap R,0( ) = βP
ρ

+
2βγ∞

ρR
+ order R−2( ), (8) 

which matches expectations for a macroscopic spherical cavity, giving confidence that the end 

cap approximation is reasonable. 

While the free energy for growing a cavity into solution is independent of the path used, 

the mean end cap contact correlation function discussed above is only useful for evaluation of 

the free energy following the steps in Figure 1 in the order presented. If the sphero-cylinder is 

inflated from a needle of length L and radius 0 to a final radius R, then the mean contact 

correlation averaged over the solute surface, not just the end caps, as a function of the radius is 

required. For an infinitely long cylinder, the free energy per unit length can be obtained from an 

integral analogous to that for a spherical cavity (Eq. (2)) 

 limL→∞

βμcav
ex R, L( )σ

L
= ρσ Gc

∞ r( )2π r dr
0

R

∫ , (9) 

where the cylinder contact correlation function, Gc
∞ r( ) , is the contact value of the pair-

correlation function in the radial direction between an infinitely long cylinder of radius r and the 

solvent. The contact function is subsequently determined by the derivative 

 Gc
∞ R( ) = limL→∞

1
2πρLR

dβμcav
ex R, L( )
dR

, (10) 

Substituting Eq. (4) into Eq. (10) and taking the appropriate limit, we obtain  

 Gc
∞ R( ) = Gcap R,∞( ) + R

2

dGcap R,∞( )
dR

, (11) 

which arises from the expectation that Gcap R,λ( )  asymptotically plateaus with increasing length. 

Assuming length independence we obtain 
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 Gc
∞ R( ) ≈ Gcap R,0( ) + R

2

dGcap R,0( )
dR

, (12) 

as the end cap approximation result for the contact correlation normal to the surface of an infinite 

cylinder. This expression provides a basis for assessing the accuracy of the end cap 

approximation by direct comparison with molecular simulation. 

 

Classic Scaled-Particle Theory. By enforcing a smooth juncture between the known 

analytical limit for sub-molecular cavities and a phenomenological curvature expansion for 

macroscopic cavities, Reiss and coworkers derived the following cSPT expression for the solvent 

contact correlation function for a spherical cavity [1-3] 

 Gcap R,0( ) =

1

1−η 2R σ s( )3
, R ≤ σ s / 2,

βP
ρ

+ 2 +η

1−η( )2
− 2βP

ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

σ s

2R

⎛

⎝
⎜

⎞

⎠
⎟+ −

1+ 2η( )
1−η( )2

+ βP
ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

σ s

2R

⎛

⎝
⎜

⎞

⎠
⎟

2

, R > σ s / 2.

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 (13) 

In this expression σ s  is the effective solvent diameter and η = πρσ s
3 6 is the solvent packing 

fraction. The effective solvent diameter is equal to the actual diameter σ of a HS solvent but is 

treated as an adjustable fitting parameter for solvents with more realistic interactions.  This 

contact correlation function forms the basis of cSPT. Substituting the cSPT expression for 

Gcap R,0( )  into Eq. (2), the excess chemical potential of a hard-sphere cavity is 
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 βμcav
ex R( ) =

− ln 1−η 2R σ s( )3⎛
⎝
⎜ ⎞

⎠
⎟, R ≤ σ s / 2,

−ln 1−η( ) + 9η2

2 1−η( )2
− ηβP

ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ −

3η 1+ 2η( )
1−η( )2

+ 3ηβP
ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+
3η 2 +η( )
2 1−η( )2

− 3ηβP
ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+ ηβP
ρ

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

,

R > σ s / 2.

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

 (14) 

Classic SPT has been used extensively to model spherical cavity dissolution in a wide range of 

solvents [2,4,5,15,22-24]. Recognizing for the HS solvent that a cavity of radius σ is identical to 

a solvent particle, the pressure can be derived by requiring self-consistency between the virial 

expression for the pressure, i.e., βP ρ =1+ 4ηGcap σ ,0( ) , and the contact correlation evaluated 

from Eq. (13). The HS equation-of-state derived from cSPT is [1] 

 
βPSPT

ρ
= 1+η +η2

1−η( )3
, (15) 

which is identical to that evaluated by integrating the HS compressibility determined from 

Percus-Yevick integral equation theory [37]. 

Following the end cap approximation, cSPT predicts the chemical potential of a sphero-

cylindrical cavity is  
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βμcav
ex R, L( ) =

−ln 1−η 2R σ s( )3⎛
⎝
⎜ ⎞

⎠
⎟+

3η 2( )
1−η 2R σ s( )3

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2
L

σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟, R ≤ σ s / 2,

− ln 1−η( ) + 9η2

2 1−η( )2
− ηβP

ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ −

3η 1+ 2η( )
1−η( )2

+ 3ηβP
ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+
3η 2 +η( )
2 1−η( )2

− 3ηβP
ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+ ηβP
ρ

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

+ 3η
2

βP
ρ

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+ 2 +η

1−η( )2
− 2βP

ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+ −
1+ 2η( )
1−η( )2

+ βP
ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

L
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟,

R > σ s / 2.

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 (16) 

For R > σs/2 this expression conforms to the results of Benzi et al. obtained following an 

alternate expansion [38]. In the limit of an infinite cylinder, the chemical potential per unit length 

is 

 limL→∞

βμcav
ex R, L( )σ s

L
=

3η 2( )
1−η 2R σ s( )3

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

,
R ≤ σ s / 2,

3η
2

βP
ρ

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+ 2 +η

1−η( )2
− 2βP

ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2R
σ s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+ −
1+ 2η( )
1−η( )2

+ βP
ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

, R > σ s / 2.

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

 (17) 

The corresponding expression for the cylinder contact correlation function normal to the surface 

of an infinite cylinder is 
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 Gc
∞ R( ) =

1+ η 2( ) 2R σ s( )3

1−η 2R σ s( )3⎡
⎣⎢

⎤
⎦⎥

2
, R ≤ σ s / 2,

βP
ρ

+ 1
2

2 +η

1−η( )2
− 2βP

ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

σ s

2R

⎛

⎝
⎜

⎞

⎠
⎟, R > σ s / 2.

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

 (18) 

Eqs. (16) – (18) can be specialized to the hard-sphere solvent by substituting in the hard-sphere 

equation-of-state (Eq. (15)) in for the pressure. We note that while Gc
∞ R( )  in Eq. (18) is 

continuous at R = σs/2 its first derivative is not, which can potentially result in qualitative errors 

in the description of cylinder solvation. 

In addition to predicting the equation-of-state of a HS fluid cSPT also predicts an 

expression for evaluating the interfacial free energy against a flat, hard interface. By comparing 

Eq. (18) with Eq. (8), the interfacial free energy is 

 βγ∞σ 2 = 3η
π

2 +η

2 1−η( )2
− βP

ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, (19) 

which can be compared to simulation measurements of the interfacial free energy to assess the 

accuracy of cSPT at describing the solvation of macroscopic surfaces. 

 

Revised Scaled-Particle Theory. When applied to solvents with realistic interactions 

many of the assumptions underlying the development of cSPT are more uncertain and can result 

in erroneous predictions, like the surface tension of water exhibits a non-monotonic dependence 

on temperature [7] and qualitatively incorrect shapes of the contact correlation function for 

organic liquids [15,23,24]. To address these difficulties, Stillinger took an empirical outlook and 
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built a SPT framework applied to cavities in aqueous solution that utilized the experimentally 

determined water oxygen pair correlations to account in part for the solvent structure in 

conjunction with the known interfacial free energy, bulk pressure, and density of water [7]. 

Following Stillinger’s philosophy, we developed a revised SPT (rSPT) description of cavity 

solvation that combines results from molecular simulations for small cavity solvation, to account 

for multi-body solvent correlations, with the phenomenological curvature expansion for large 

cavities [12]. Revised SPT has been successfully used to describe cavity solvation in water [12], 

organic [15], and LJ [11,14] solvents over a range of temperatures and pressures. A full 

description of the development of rSPT to describe spherical cavity solvation is provided in Refs. 

[11,12,14,15]. Here we describe the application of rSPT to infinitely long cylindrical cavities.  

Revised SPT describes cavity solvation from microscopic to macroscopic radii by 

smoothly interpolating the excess chemical potential between values directly determined from 

particle insertion averages evaluated from simulations for microscopic cavities and the 

thermodynamic curvature expansion for macroscopic cavities. For an infinitely long cylindrical 

cavity, the excess chemical potential per unit length as described by rSPT is 

 limL→∞

βμcav
ex R, L( )σ

L
= −ln p0

∞ R( ) f R( ) + Γ R( ) 1− f R( )⎡
⎣

⎤
⎦. (20) 

In this expression, f (R)  is a switching function equal to 1 below Rsim and 0 above Rmacro that 

smoothly interpolates between these two bounds. We adopt a cubic form for the function  

that smoothly switches the simulation and macroscopic chemical potentials between Rsim and 

Rmacro, 

f R( )
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  (21) 

The probability p0
∞ R( )  in Eq. (20), evaluated from molecular simulations for microscopic 

cavities, represents the infinite cylinder length limit of the cylinder insertion probability raised to 

the power of σ/L, i.e., p0
∞ R( ) = limL→∞ p0 R, L( )σ /L

. While p0 R, L → ∞( ) is zero for a cylinder of 

any radius greater than zero, since cavity overlap with one or more solvent molecules is 

guaranteed in this limit, the free energy of cavity solvation is expected to be proportional to the 

cylinder length with increasing size. Resultantly, p0 R, L( )  is expected to exponentially decay to 

zero with increasing cylinder length so that p0
∞ R( )  is a well-defined function of radius alone. 

The remaining function in Eq. (20), Γ(R), represents the macroscopic curvature expansion for 

excess chemical potential given as 

 Γ R( ) = βPπσ R2 + βγ∞ 2πσ R + βλ2πσ − βω2πσ
R

− βϕπσ
R2 . (22) 

We truncate this expression after order R-2 contributions where molecular packing and specific 

correlations are assumed to dominate. As above, P is the bulk solvent pressure, γ∞ is the 

interfacial free energy for creating a hard, flat surface in the solvent, while λ, ω, and ϕ are 

higher-order contributions in a curvature expansion of the free energy.  

For cavities larger than the solvent, the contact correlation function is readily accessible 

by direct simulation of an explicit hard cylinder in solution. In this case, rSPT is more accurately 

applied by fitting to simulation contact values rather than the chemical potential as implied by 

f R( ) =

1, R < Rsim ,

1− 3
R − Rsim( )2

Rmacro − Rsim( )2
+ 2

R − Rsim( )3

Rmacro − Rsim( )3
, Rsim ≤ R ≤ Rmacro ,

0, R > Rmacro.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
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Eq. (20). By differentiating Eq. (20) with respect to R, the rSPT expression for the contact 

correlation function is 

 Gc
∞ R( ) = −

f R( )
2πρσ R

∂ ln p0
∞ R( )

∂R
−

ln p0
∞ R( )

2πρσ R

∂ f R( )
∂R

+ βP
ρ

+
βγ∞

ρR
+ βω

ρR3
+ βϕ

ρR4

⎛

⎝
⎜

⎞

⎠
⎟ 1− f R( )⎡
⎣

⎤
⎦ 

 − βPR
2ρ

+
βγ∞

ρ
+ βλ

ρR
− βω

ρR2
− βϕ

2ρR3

⎛

⎝
⎜

⎞

⎠
⎟
∂ f R( )

∂R
. (23) 

The range of cavity radii for which Gc
∞ R( )  can be accurately determined from cavity insertion 

and smoothly knit together with the phenomenological macroscopic expansion determines the 

switching bounds Rsim and Rmacro. While the solvent density and pressure are taken from the bulk 

solvent simulations, the remaining parameters γ∞, λ, ω, and ϕ are obtained from a least squares 

fit to the solvated cylinder simulation results.  

  

Simulation Details 

To examine the application of SPT to cylindrical cavity solvation we have performed 

simulations of the HS and LJ solvents. In the case of the HS fluid we considered densities 

ranging from gas to liquid-like, while for the LJ fluid we examined a single liquid state point 

close to vapor-liquid coexistence. In addition to simulations of cylindrical cavities we have also 

modeled spherical cavities in a HS solvent in order to test the accuracy of the end cap 

approximation. In the case of spherical cavities in the LJ solvent, we use results we previously 

reported in the Ref. [14]. Below we describe the series of simulations conducted for each system.   

For the HS fluid, four different sets of grand canonical Monte Carlo simulations [39] 

were performed to evaluate averages required to fit rSPT to contact correlations for both 

spherical and cylindrical cavities. Simulations were performed with the solvent chemical 
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potential adjusted so that the nominal average bulk density is ρσ3 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, and 0.85. In the first two sets of simulations, the pure solvent was simulated to evaluate 

spherical and cylindrical cavity insertion probabilities, p0 R( )  and p0
∞ R( ) , respectively. To 

evaluate spherical cavity insertion probabilities, a periodic cubic cell 10σ in length on a side was 

simulated. Following at least 109 solvent insertion, deletion, and translational moves within the 

grand canonical ensemble for equilibration, a total of 5x109 solvent insertion, deletion, and 

translational moves were performed for evaluation of thermodynamic averages. Spherical cavity 

insertion probabilities were periodically evaluated by attempting 2000 random insertions 

following every 25,000 grand canonical moves. 

Evaluation of cavity insertion probabilities is more challenging for an infinitely long 

cylindrical cavity since an infinite number of solvent centers can fit within a cylinder of finite 

radius, leading to a zero probability of insertion. As noted above, however, p0
∞ R( )  ≈ p0 R, L( )σ /L

 

is expected to be finite in the infinite length limit. To evaluate p0 R, L( )σ /L
 we have performed 

simulations of cubic cells 6σ and 8σ in length on a side. Grand canonical simulations were 

conducted for the same equilibration and production lengths as for the spherical cavities. 

Similarly, 2000 infinite cylindrical cavity insertions were attempted every 25,000 grand 

canonical moves. For each insertion attempt we randomly selected the x-, y-, or z-axis to align 

the cylinder and randomly choose a point on the plane normal to the alignment axis to center the 

cavity. Within the simulation errors we found quantitative agreement between the probabilities 

p0 R, L( )σ /L
 obtained for the 6σ and 8σ simulation box sizes, giving confidence our estimates of 
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the infinite cylinder limit, i.e., p0
∞ R( ) , are accurate. We subsequently used our results for the 6σ 

box for rSPT analysis.  

In a second set of simulations, we determined contact correlation functions at discrete 

cavity radii by direct simulation of explicit spherical and cylindrical cavities solvated in the HS 

solvent.  Grand canonical Monte Carlo simulations were performed at the same densities listed in 

for the insertion simulations above. Explicit spherical and cylindrical cavity solvent excluding 

radii of 0.25σ, 0.5σ, 0.75σ, 1σ, 1.5σ, 2σ, 2.5σ, 3σ, 3.5σ, 4σ, 4.5σ, and 5σ were simulated. The 

cylindrical cavities were aligned along the x-axis of the simulation box to model an infinite rod. 

For the spherical cavity simulations, the cell side length was set to the cavity diameter plus 12σ 

to provide a buffer between the periodic images.  For the cylindrical cavity, the box length in the 

x-direction along the cylinder length was 10σ, while the box length in the y- and z-directions was 

set to the cylinder diameter plus 16σ. For both the spherical and cylindrical cavities, the 

simulations were equilibrated by performing at least 109 solvent insertion, deletion, and 

translational moves. Following equilibration, 1010 solvent insertion, deletion, and translational 

moves were performed for evaluation of thermodynamic averages. 

To examine the effects of solvent attractions we performed simulations of cylindrical 

cavities in a LJ solvent near coexistence where attractions are expected to play a significant role. 

Following the HS simulations, we performed two sets of simulations with and without the cavity 

explicitly included to evaluate the averages required to fit rSPT. We have previously performed 

extensive simulations of spherical cavities in the LJ solvent [14], so here we only performed 

simulations of cylindrical cavity solvation. The LJ solvent was modeled using the cut-shifted 

interaction  
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 ϕcut r( ) =
ϕLJ r( ) −ϕLJ rc( ) , r < rc ,

0, r ≥ rc ,

⎧
⎨
⎪

⎩⎪
 (24) 

with no long range interaction corrections. In this expression ϕLJ r( ) = 4ε σ 12 r12 −σ 6 r6( )  is the 

full interaction, ε and σ in the context of the LJ solvent are the well-depth and diameter, 

respectively, and rc = 2.5σ is the LJ interaction cut-off separation. Our simulations in the LJ fluid 

were performed in the grand canonical ensemble at a temperature of kT/ε = 0.85 with the 

chemical potential adjusted to give a liquid density of ρσ3 = 0.70 and a corresponding pressure 

of Pε/σ3 = 0.023, which we previously found lies just above the solvent vapor pressure at this 

temperature [14]. Additional state points were not considered since these simulations take 

considerably longer than the HS solvent owing to the range of the LJ potential. 

To determine the cylindrical cavity insertion probabilities the same simulation procedures 

as for the HS solvent described above were used, with the same box sizes to check the accuracy 

of our estimate for the infinite cylinder length limit. For the second set of simulations, an explicit 

cylindrical cavity was included in the simulation box to directly determine the solvent contact 

densities. For the cylindrical cavity, the box length in the x-direction along the cylinder length 

was 10σ, while the box length in the y- and z-directions was set to the cylinder diameter plus 

12σ. Explicit cylindrical cavity radii of 0.25σ, 0.5σ, 0.75σ, 1σ, 1.5σ, 2σ, 2.5σ, 3σ, 3.5σ, 4�, 

4.5σ, and 5σ were examined.  These simulations were equilibrated by performing at least 109 

solvent insertion, deletion, and translational moves. Following equilibration, 1010 solvent 

insertion, deletion, and translational moves were performed for evaluation of thermodynamic 

averages. 
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Results and Discussion 

Hard-Sphere Solvent. The contact correlation’s of a HS solvent at ρσ3 = 0.8 in contact 

with a spherical cavity and an infinitely long cylindrical cavity as a function of their radii is 

reported in Figure 2. The contact correlation determined by explicit simulation of solute cavities 

show the contact density monotonically grows with radius for both the spherical and cylindrical 

cavities. The growth of the contact correlations appear to approach an asymptotic plateau with 

increasing radius, consistent with the expected contact density for a flat interface of βP/ρ = 7.75 

(Table 1) as dictated by the wall theorem [40]. Compared against the spherical solute the 

cylinder’s contact correlation grows more quickly with increasing radius. This difference can be 

rationalized in terms of the lower curvature of a cylinder (1/R) that is closer to a flat surface 

compared to the curvature of a sphere (2/R). Classic SPT qualitatively captures the spherical and 

cylindrical contact correlations, although the contact values are generally greater than that 

observed from simulation (Figure 2). This over prediction of the contact value reflects the over 

prediction of the pressure by Eq. (15) (Table 1), ultimately giving rise to a larger predicted 

contact value of the HS density at a flat wall. Spherical rSPT on the other hand provides an 

excellent quantitative description of the contact correlation of the HS solvent solvating a 

spherical cavity (Figure 2), in agreement with previous studies of spherical cavity solvation in 

water [12], hexane [15], and the LJ liquid [11,14]. Utilizing the rSPT fit to the spherical cavity 

we can predict the contact correlation of the cylinder using the end cap approximation (Eq. (12)). 

As can be seen in Figure 2 the end cap approximation provides an excellent quantitative 

prediction of the radial contact correlation of the cylindrical cavity. 

End cap approximation predictions of the cylinder contact correlation as a function of the 

HS solvent density utilizing rSPT fits to spherical cavity contact correlation are excellent (Figure 
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3a). The largest discrepancy between the predicted contact correlations and those observed by 

direct simulation is found for cylindrical cavities of radius 0.25σ. Revised SPT applied to 

cylindrical cavities overcomes this discrepancy, however, by incorporating small radii insertion 

results from simulation into fits of Eq. (23) to the explicit simulation contact values (Figure 3b). 

The differences between simulation, the rSPT fits, and end cap predictions for small cavities (R < 

0.5σ) are more clearly observed when Gc
∞ R( ) −1 is plotted versus radius on a log-log scale 

(Figure 4). While rSPT accurately describes the contact correlation, the end cap approximation 

under predicts the contact values for radii less than ~0.5σ. More importantly we observe a 

steeper slope on the logarithmic scale for the end cap approximation than observed from the 

cylindrical rSPT fit, indicating this approximation over predicts the scaling exponent of the 

dependence of the contact correlation on radius. 

To derive an approximate form for Gc
∞ R( )  in the small radius limit we consider a 

permeable cylindrical observation volume embedded within the solvent under periodic boundary 

conditions, analogous to the simulations used to determine small cylinder insertion probabilities 

for rSPT. As the observation cylinder’s radius approaches zero we assume that the maximum 

number of solvent centers observed within the volume is two, although multiple solvent centers 

may potentially fit in principle. The probability pi of observing i = 0, 1, or 2 solvent centers 

within the observation volume satisfy the equations [41] 

 p0 + p1 + p2 =1, (25a) 

 p1 + 2 p2 = n = ρπ R2L, (25b) 

 p1 + 4 p2 = n2 = ρπ R2L + ρ 2 g r − ′r( ) d r d ′r
V
∫∫ , (25c) 
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where n indicates the number of solvent centers within the observation volume (V = πR2L) at any 

instant, and g r( )  is the solvent radial distribution function. Assuming the solvent radial 

distribution function is described by the low density HS radial distribution function (a step 

function jumping from 0 to 1 at r = σ) and the integral in Eq. (25c) can be treated as psuedo one-

dimensional for small radii cylinders, the mean square number of solvent centers is 

approximately 

 n2 ≈ ρπ R2L + ρ 2π 2R4L2 − 2ρ2σπ 2R4L  (26) 

The probability the solute observation volume is empty is subsequently given as 

 p0 R, L( ) =1− ρπ R2L + ρ2π 2R4L2

2
− ρ2σπ 2R4L . (27) 

Substituting Eq. (27) into Eq. (10) and expanding in terms of the cylinder radius, the leading 

contribution to order R2 of the contact correlation is 

 Gc
∞ R → 0( ) ≈ 1+ 2ρσπ R2 + order R4( ) . (28) 

The contact correlation is thereby expected to grow as the radius squared in the small radius 

limit, while the end cap approximation predicts a cubic dependence, e.g., Eq. (18). This 

difference reflects the differing dependence of the volume of a cylinder and sphere on radius. We 

note that while assuming only one solvent particle at most is found within the observation 

volume in the small radius limit, i.e., p0 R, L( ) =1− ρπ R2L, yields the correct contact value of 

one when the radius is zero, the R2 contribution to Gc
∞  also includes cylindrical length 

contributions that diverge in the infinite cylinder limit. Incorporation of pair correlations (Eq. 

(26)), albeit in an approximate manner, permits evaluation of the leading order dependence of the 

contact correlation on the cylinder radius, however, the higher order terms (R4 and above) 
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diverge. It may be surmised that increasing orders of multi-body correlations must be utilized to 

evaluate higher order radial contributions, attributable to the fact that an infinite number of 

solvent molecules can fit within an infinitely long cylinder with a non-zero radius. 

Despite the approximations made, Eq. (28) provides a significantly improved prediction 

of the contact correlation in the small radius limit compared to the end cap approximation 

(Figure 4). For the lowest density simulated (ρσ3 = 0.1) Eq. (28) provides a nearly quantitative 

prediction of the contact correlation up to R = 0.5σ, reflecting the accuracy of the assumptions 

underlying Eqs. (25) and (26) at low density. Even at the highest density simulated Eq. (28) 

provides a semi-quantitative description of the small radius contact correlation. More 

importantly, Eq. (28) more accurately captures the contact correlation small radius scaling 

behavior than predicted by the end cap approximation, providing physical insights into the short 

comings of the end cap approximation for small radii cylinders.  

The interfacial tension for creating flat interface in the HS solvent obtained by fitting 

rSPT to either the cylindrical or spherical cavity contact densities are in excellent agreement with 

each other over the entire range of densities simulated (Figure 5 and Table 1). Moreover, our 

results generally agree with those obtained from HS simulations following alternate 

thermodynamic routes [42-44]. Despite the fact that cSPT over predicts the contact correlation 

for both spherical and cylindrical cavities, the cSPT interfacial tension prediction (Eq. (19)) is in 

excellent agreement with the rSPT fits (Figure 5 and Table 1), differing by less than 1% at the 

highest densities simulated. At densities approaching HS freezing (ρσ3 ≈ 0.94) Eq. (19) is known 

to become more inaccurate [44]. 

The excess solvation free energy per unit length for cylindrical cavities in HS solvents is 

readily obtained by integrating the contact correlations described above using Eq. (9). The free 
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energy for cylinders at a solvent density of ρσ3 = 0.8 is reported in Figure 6. The free energies 

obtained depend approximately quadratically on the cylinder radius. This dependence results 

from the dominance of the macroscopic pressure contribution to the free energy (βP/ρ = 7.75 at 

this state point as noted above, significantly greater than the ideal gas pressure or a liquid near 

vapor coexistence), even for cavities with radii less than 3σ. Given the accuracy of rSPT at 

reproducing the cylinder contact correlations (Figure 3b), rSPT is expected to provide the most 

accurate quantitative value of the cylinder solvation free energy. The free energy obtained from 

the end cap approximation is in near perfect agreement with that obtained from rSPT, differing 

by less than 0.02% at R = 3σ. Classic SPT, on the other hand over predicts the rSPT free energy 

by 4.8% at R = 3σ. This difference reflects cSPT’s over prediction of the HS solvent pressure 

(Table 1), which could be alleviated by substituting the simulation pressure or a more accurate 

HS equation of state in the expression for the contact correlation. Substitution of pressures 

differing from Eq. (15), however, can lead to discrepancies in the predicted interfacial free 

energy and solvation properties of solvent-sized and smaller cavities. 

 

Lennard-Jones Solvent near Coexistence. The rSPT fit to simulation values of the contact 

correlation for infinitely long cylinders in a LJ solvent at kT/ε = 0.85 and Pσ3/ε = 0.023, close to 

liquid-vapor coexistence, is reported in Figure 7a. The overall fit is excellent over the range of 

cylinder radii simulated, giving further confidence in the utility of rSPT applied to a range of 

solvents. In difference to the HS solvent, the cylinder contact correlation function in the LJ 

solvent exhibits a maximum at a radius just slightly greater than σ/2. Following the maximum 

the contact correlation rapidly falls to values below one at radii comparable to the solvent 

diameter, indicative of a vapor-like layer surrounding the cylinder. With growing radial size the 
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contact density is expected to asymptotically approach the bulk compressibility factor for the 

saturated liquid ( βP ρ  = 0.0387), which is necessarily less than the bulk liquid density as a 

result of condensed phase attractions that nearly perfectly balance the ideal gas contribution to 

the pressure along the saturation curve. The interfacial free energy obtained from fitting rSPT to 

cylinder contact densities is in good agreement with that we obtained previously fitting to 

spherical cavities (Table 1) [14], differing by only 5%. The surface tension of the LJ solvent is 

positive in difference to the hard sphere solvent, which is manifested as the decay in the contact 

correlation function to the bulk compressibility limit for the LJ solvent (Figure 7a) rather than 

the monotonic rise towards the limit observed for the HS solvent (Figure 2). 

While cSPT provides a reasonable semi-quantitative description of cylinder solvation in 

the HS solvent, its description of the cylinder contact correlation function in the LJ solvent is 

problematic (Figure 7b). Classic SPT using an effective diameter of σs = 1σ significantly over 

predicts the contact densities observed for cylinders of increasing size, resulting from a 

significant over prediction by more than a factor of 2 of the interfacial free energy (Table 1). 

Moreover, cSPT applied to cylinder solvation predicts a sharp cusp at the maximum in the 

contact correlation for cavities with a radius of R = σs/2. While the approximations used to 

extend cSPT from spherical to cylindrical cavities maintain continuity of the contact correlation 

function at the joining point between the microscopic and macroscopic descriptions of solvation, 

they do not enforce continuity of the first derivative of the contact correlation required to ensure 

a smooth function. This results in the cusp observed for cavity solvation in the LJ solvent. A 

discontinuity in the first derivative of the cSPT prediction for the contact correlation function 

occurs at the joining point for the HS solvent as well, but since the contact correlation in the HS 

solvent is monotonically increasing over all cylinder radii the discontinuity is not readily 
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observed by eye (Figure 2). If we fit the effective cSPT solvent diameter to the interfacial tension 

obtained from rSPT (Table 1) we obtain an unphysically low value of σs = 0.792σ, well inside 

the excluded volume of any individual solvent particle. The cylinder contact correlation function 

predicted by cSPT using the fitted solvent diameter accurately tracks the rSPT result for radii 

greater than 2σ (Figure 7b), which is not surprising given that the fitted diameter brings cSPT 

into conformity with the expected macroscopic radial dependence. For molecular scale cylinders 

with radii less than 2σ, however, the fitted cSPT under predicts Gc
∞ R < 2σ( )  while retaining the 

joining cusp. 

The end cap approximation provides an improved prediction of Gc
∞ R( )  utilizing the 

contact correlation function previously obtained from rSPT applied to spherical cavities (Figure 

7a) over cSPT [14]. Specifically, the end cap approximation is in near quantitative agreement 

with the cylindrical rSPT fit for radii greater than 1σ. For radii near 0.5σ the end cap 

approximation over predicts the contact density by ~30%. More importantly, the end cap 

approximation predicts Gc
∞ R( )  is smooth with a maximum near 0.5σ, in qualitative agreement 

with the cylindrical rSPT fit. An interesting consequence of the end cap approximation (Eq. (12)) 

is that the predicted Gc
∞ R( )  will intersect Gcap R,0( )  at the radius for which Gcap R,0( )  is a 

maximum. Comparing the cylindrical and spherical rSPT contact correlation fits to simulation, 

however, this prediction is incorrect (Figure 7a). 

The cylinder excess solvation free energies per unit length in the LJ solvent determined 

by integrating the cylinder contact correlation is reported in Figure 8. Along the saturation curve 

the pressure of the LJ solvent is considerably less than that in the HS solvent. For the cavity radii 

reported in this figure (R < 3σ) then, interfacial rather than pressure effects dominate the free 
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energy. As a result the solvation free energy is effectively linear with radius for cylinders just 

larger than the solvent diameter, with a magnitude significantly less than that reported for the HS 

solvent (Figure 6). Using an effective solvent diameter of 1σ cSPT predicts too strong a 

dependence of the free energy on radius compared to rSPT. While cSPT correctly reproduces 

changes in the free energy with changes in cylinder radii for sizes greater than ~1.5σ using the 

fitted solvent diameter of 0.792σ, the absolute free energy measured relative to a cavity radius of 

zero is under predicted by a constant difference of Δβμcav
ex σ / L  = -2.4. These trends follow from 

the over predicted interfacial free energy using σs = 1σ (Table 1) and the under predicted contact 

structure for molecular sized cavities using σs = 0.792σ (Figure 7b). The end cap approximation, 

on the other hand, provides a significantly improved prediction of the cylinder free energy over 

the entire range of cylinder sizes reported in Figure 8, differing only by a smaller constant 

difference of Δβμcav
ex σ / L  = 0.9 for radii lager than 1σ. The superior prediction of the end cap 

approximation over cSPT using the fitted solvent diameter, in turn, can be traced to the improved 

description of the cylinder contact correlation and incorporation of higher order curvature 

contributions (Figure 7a). 

 

Conclusions 

We have presented a detailed analysis of the solvation of hard sphero-cylinder solutes 

over a range of densities in the case of the HS fluid and at a single liquid state point close to 

liquid-vapor coexistence in the case of the LJ fluid. Three SPT based approaches were developed 

to describe cylinder solvation: An analytical approach founded on the cSPT originally developed 

by Reiss and coworkers; an extension of the rSPT we previously developed to correlate radial 

solvent contact densities about an infinitely long cylindrical solute; and a physically grounded 
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approximation, referred to as the end cap approximation, that extends results for spherical solutes 

to sphero-cylinders of any desired length. Results from these three approaches were compared 

against molecular simulations of infinitely long cylinders. Fitting of rSPT was shown to 

quantitatively describe the cylindrical contact correlations observed from simulation, yielding 

accurate interfacial free energies consistent with results obtained from spherical solutes and 

following an alternate thermodynamic approaches. As such, free energies obtained from rSPT 

can be considered quantitatively accurate.  Nevertheless, the cylinder rSPT expression developed 

here only applies to infinitely long cylinders. The cSPT and end cap predictions, on the other 

hand can be applied to sphero-cylinders of finite length. Comparing the predictions of cSPT to 

infinitely long cylinders against rSPT fits, cSPT was found to over estimate the free energy of 

cylinders in HS fluids as a result of the over estimation of the solvent pressure. In the case of the 

LJ solvent, cSPT predicts physically unrealistic cusps in the solvent contact correlation that 

cannot be alleviated even when the effective solvent diameter is considered an adjustable 

parameter. The end cap approximation on the other hand provides essentially quantitative 

agreement for the solvation free energy of cylinders in both solvents. The contact correlations 

predicted by the end cap approximation, moreover, were more physically reasonable than those 

predicted by cSPT with improved quantitative agreement over a wider range of cylinder radii. 

The end cap approximation subsequently can be thought of as an accurate, predictive bridge 

between spherical and sphero-cylindrical cavity solutes. 
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Table 1. Compressibility factor (β�/ρ) and interfacial free energy (βγ∞σ2) for creating a flat 

interface against a hard surface for the simulated systems. The first column reports the 

simulation densities. The second and third columns report the compressibility factors determined 

from simulation and cSPT (Eq. (15)).  The fourth and fifth columns report the interfacial free 

energies determined from fits of rSPT to cylindrical and spherical geometries, while the final 

column reports the interfacial free energy predicted by cSPT (Eq. (19)). The top rows report 

results for the HS solvent and the final row reports results for the LJ solvent. The numbers in 

parentheses identify the simulation error in the last reported digit. 

 
 
 β�/ρ βγ∞σ2 
 −−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
 ρσ� simulation cSPT cylinder sphere cSPT* 
  
HS solvent 
 0.100 1.24268(5) 1.23989 -0.0056(2) -0.0055(1) -0.0049 
 0.200 1.5501(2) 1.5547 -0.0223(5) -0.0220(3) -0.0242 
 0.300 1.9635(4) 1.9724 -0.0650(4) -0.661(7) -0.0682 
 0.400 2.5187(1) 2.5341 -0.1550(7) -0.1547(9) -0.1534 
 0.499 3.2642(3) 3.3011 -0.309(1) -0.312(2) -0.3066 
 0.599 4.2871(3) 4.3686 -0.572(2) -0.579(1)  -0.5729 
 0.699 5.7140(2) 5.8859 -1.012(2) -1.024(2) -1.0285 
 0.799 7.7501(4) 8.0926 -1.74(3) -1.767(5) -1.8052 
 0.848 9.086(1) 9.563 -2.38(8) -2.357(9) -2.3783 
 
LJ solvent (kT/ε = 0.85) 
 0.700 0.0387(2) N/A 0.441(5) 0.419(7) 1.0169 
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

* σs = 1σ for all calculations presented in this column. 
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Figure Captions 

 

Figure 1.  Sphero-cylindrical cavity scaled-particle theory growth scheme. In the first step, an 

empty spherical cavity is grown in solvent from nothing to a final radius R. The variable r 

measures the intermediate radius of the growing cavity from 0 to R in Eq. (1). In the second step, 

the spherical cavity is elongated along the central cylindrical axis to a final length of L. The 

variable λ measures the intermediate length of the extending sphero-cylinder from 0 to L in Eq. 

(3). The shaded end of the sphero-cylinder indicates the region over which the contact 

correlation function is averaged to determine the mean end cap contact correlation function, 

Gcap R,λ( ) , used in Eq. (3). 

 

Figure 2. (Color online) Comparison of the contact correlation for a HS solvent against spherical 

and infinitely long cylindrical cavities at a density of ρσ3 = 0.8. Results are reported for 

simulations, cSPT (Eqs. (13) and (18)), fit of spherical rSPT to the spherical cavity simulations 

[11,14], and predictions of the cylindrical contact correlation using the end cap approximation 

(Eq. (12)). The symbols are identified in the figure caption. Simulation error bars are smaller 

than the symbols. The spherical rSPT fit used cubic switching function (Eq. (21)) parameters of 

Rsim = 0.75σ and Rmacro = 1σ. 

 

Figure 3. (Color online) Contact correlations for a hard sphere solvent against an infinitely long 

cylindrical cavity as different densities. The solvent densities reported are ρσ3 = 0.1, 0.3, 0.5, 0.7 

and 0.85, with the direction of increasing density indicated by the red arrow. The filled circles 

indicate simulation results. Simulation error bars are smaller than the symbols. The lines 
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indicate: a) Predictions of the end cap approximation (Eq. (12)) using rSPT contact correlations 

fitted to spherical cavity simulations; and b) Fits of the cylindrical rSPT (Eq. (23)) to the 

simulation results. The blue arrow in a indicates the small radius region where the end cap 

approximation under predicts the contact correlation. The spherical rSPT fits used cubic 

switching function (Eq. (21)) parameters of Rsim = 0.75σ and Rmacro = 1σ, while the cylindrical 

rSPT fits used Rsim = 0.4σ and Rmacro = 0.65σ. 

 

Figure 4. (Color online) Small radius behavior of the cylindrical contact correlation of an 

infinitely long cylinder with a HS solvent. The results in a and b indicate results obtained at 

densities of ρσ3 = 0.1 and 0.85, respectively. Results are reported from simulation of explicit 

cylinders in solution, fits of the cylindrical rSPT (Eq. (23)) to the simulation results, predictions 

of the end cap approximation (Eq. (12)), and the low density probability expansion (Eq. (28)). 

The symbols are identified in the figure caption. 

 

Figure 5. (Color online) Surface tension of a hard sphere solvent as a function of the fluid 

density. Results from cSPT (Eq. (19)) and fits of rSPT to both spherical and cylindrical contact 

correlations from simulation are reported. Data are reported in Table 1. The symbols are 

identified in the figure caption. Revised SPT fit error bars are smaller than the symbols. 

 

Figure 6. (Color online) Solvation free energy per unit length of an infinitely long cylindrical 

cavity in a HS solvent at ρσ3 = 0.8. Results are reported for cSPT (Eq. (17)), the end cap 

approximation, and cylinder rSPT. The end cap and cylinder rSPT results are obtained by 
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substituting the contact correlations analogous to those reported in Figure 3a and 3b, 

respectively, into Eq. (9). The symbols are identified in the figure caption. 

 

Figure 7. (Color online) Comparison of the contact correlation for a LJ solvent against spherical 

and infinitely long cylindrical cavities. The solvent is at a reduced temperature of kT/ε = 0.85 and 

pressure of Pσ3/ε = 0.023 (ρσ3 = 0.699), which lies on the liquid side of the liquid-vapor 

coexistence curve.  a) Results are presented for the contact correlation from simulations of an 

explicit cylinder, the cylinder rSPT fit (Eq. (23)) to the simulation results, previously reported 

spherical rSPT in Ref. [14], and predictions of the end cap approximation using the spherical 

rSPT contact correlation (Eq. (12)). b) Comparison of the cylinder rSPT fit in a against cSPT 

predictions (Eq. (18)) obtained for σs = 1σ and 0.792σ. The symbols are identified in the figure 

caption. The cylindrical rSPT fit used cubic switching function (Eq. (21)) parameters Rsim = 0.4σ 

and Rmacro = 0.65σ. While the rSPT fit was carried out to a maximum simulated cavity radius of 

5σ we only show results up to 3σ here to more clearly view the results for smaller radius solutes. 

 

Figure 8. (Color online) Solvation free energy per unit length of an infinitely long cylindrical 

cavity in a LJ liquid at kT/ε = 0.85 and Pσ3/ε = 0.023. Results are reported from the cylinder 

rSPT fit to the simulation results, predicted from the end cap approximation, and cSPT using σs 

= 1σ and 0.792σ (Eq. (17)). 
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Figure 4. 
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Figure 5. 
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Figure 8. 
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