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The random Lorentz gas is a minimal model for transport in heterogeneous media. Upon increas-
ing the obstacle density, it exhibits a growing subdiffusive transport regime and then a dynamical
arrest. Here, we study the dimensional dependence of the dynamical arrest, which can be mapped
onto the void percolation transition for Poisson-distributed point obstacles. We numerically de-
termine the arrest in dimensions d = 2 − 6. Comparing the results with standard mode-coupling
theory reveals that the dynamical theory prediction grows increasingly worse with d. In an effort
to clarify the origin of this discrepancy, we relate the dynamical arrest in the RLG to the dynamic
glass transition of the infinite-range Mari-Kurchan model glass former. Through a mixed static and
dynamical analysis, we then extract an improved dimensional scaling form as well as a geometrical
upper bound for the arrest. The results suggest that understanding the asymptotic behavior of the
random Lorentz gas may be key to surmounting fundamental difficulties with the mode-coupling
theory of glasses.

I. INTRODUCTION

Increasing crowding with static obstacles results in
subdiffusive and arrested transport of a system’s mobile
components, whether they be macromolecules in cells [1],
fluids in nanopores [2], or tracers in glasses [3]. These as-
pects of the physics of heterogeneous media are also min-
imally captured by the random variant of the Lorentz gas
(RLG), which since its introduction as a model for elec-
tron transport in metals has become a staple of statistical
mechanics and mathematical physics [4, 5]. In the RLG,
a spherical particle of radius σ (the tracer) elastically
bounces off Poisson-distributed point obstacles (scatter-
ers). When scatterers are sparse, the tracer motion is dif-
fusive after just a few collisions [6], but upon increasing
the number density of obstacles, ρ, the tracer first de-
velops an increasingly long subdiffusive regime and then
becomes fully localized beyond a finite ρp [7–9]. Inter-
estingly, the onset of dynamical arrest in the RLG can
be mapped onto the void percolation transition for over-
lapping, Poisson-distributed spheres (as can be seen by
exchanging the tracer’s size with the scatterers’), which
provides a static interpretation for the phenomenon.

Despite the simplicity of the RLG, theoretical descrip-
tions of its dynamical arrest are fraught with difficulty.
No static results for ρp, and only estimates of ρp from
the dynamical mode-coupling theory (MCT) in dimen-
sions d = 2 − 3 have been reported [10, 11]. Most of
what we know about the dynamical arrest thus comes
from the critical universality of simple percolation and
numerical studies [7, 12–15]. The tantalizing closeness
between numerics and the MCT estimate for ρp in d = 3
RLG nonetheless conjures up theoretical optimism.

Enthusiasm for this similitude should, however, be
tempered by the realization that a similar agreement for
simple glass formers becomes deeply problematic when d
increases [16–19]. (i) In the asymptotic high-d limit, stan-

dard MCT gives that the packing fraction of the dynam-
ical glass transition for simple hard spheres (HS) scales
as ϕMCT

d = 0.22d22−d [16, 17], which is inconsistent with
the exact static scaling obtained from the replica theory
(RT), ϕRT

d = 4.8d2−d [20, 21]. (ii) For d > 4, numeri-
cal determinations of ϕd grow increasingly distant from
MCT estimates, whichever approximate structural de-
scription is used [19]. From these two observations, one
might be tempted to argue that MCT is thus only a low-
d description of sluggish dynamics. However compelling
this hypothesis may be, it is also problematic. First, in
the standard MCT the approximations used for the struc-
ture of dense liquids are relatively poor in low d, but be-
come exact in the high-d limit [16]. Second, the behav-
ior of glassy systems grows increasingly single-particle-
based and mean-field-like in that limit, as does the MCT
description. Hence from a theoretical viewpoint, many
would expect that increasing d should enhance – not de-
crease – the reliability of a MCT-type description.

This inconsistency with standard MCT for HS glasses
leaves a stain on the robustness of all MCT calculations
in finite dimension [22, 23]. A key hurdle for surmounting
this difficulty lies in the absence of a systematic, small-
parameter expansion of the MCT kernel, and hence of a
well-controlled solution to glassy and hindered dynamics
in the high-d limit. If only for the ubiquity of MCT and
for the lack of alternate microscopic descriptions [11], this
difficulty ought to be better physically understood, and
ideally resolved, in order for a systematic understanding
of dynamical sluggishness in both glasses and heteroge-
neous media to emerge. In this paper, we shed light
on the physics of MCT by considering the RLG, which
is one of the simplest models studied with the theory.
In addition to extending numerical and MCT results for
the RLG, we propose a connection, in the high-d limit,
between the RLG and the infinite-range Mari-Kurchan
(MK) model for glass formation [24, 25] (initially pro-
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posed by Kraichnan [26]), whose static behavior has been
exactly solved in that same limit [20, 21, 27].
The plan for the paper is as follows. In Sect. II, we

detail the numerical results for the void percolation tran-
sition in d = 2− 6. In Sect. III, the MCT calculation for
the corresponding transition in the RLG are extended to
arbitrary d. In Sect. IV, we establish an analogy between
the RLG and the MK model, which allows us to obtain
a more reasonable estimate for ρp. A brief conclusion is
presented in Sect. V.

II. NUMERICAL METHODS AND RESULTS

We first numerically determine the transition thresh-
olds in d = 2–6. Note that for notational simplicity, we
exploit the equivalence between the RLG and void perco-
lation to describe Poisson-distributed point obstacles as
overlapping spheres of volume fraction Φ = ρVdσ

d, where
Vd is the volume of a d-dimensional ball of unit radius,
and a scaled volume fraction ϕ = Φ/2d. The void volume
fraction is then [13, 28] η = e−Φ.
Systems of Poisson-distributed monodisperse (overlap-

ping) spheres ranging from N = 64 to 256,000 were gen-
erated. The number of replicates varies from 5000, for
small low-d systems, to 28, for d = 6 with N = 32, 000.
The percolation transition is pinpointed by first identi-
fying the network of voids through a Voronoi tessella-
tion [12, 29, 30], which is obtained particle by particle
in order to minimize memory usage in d = 4–6 [31].
Voronoi vertices are the network nodes, and the edges
of the Voronoi polyhedra that do not pass through any
sphere connect these nodes. In order to minimize finite-
size effects near the transition [32], a percolating path is
said to exist only if the network continuously wraps from
one side of the periodically repeating box to another, con-
currently for all spatial directions. For each realization, a
binary search in particle diameter locates the percolation
threshold to within a convergence criterion of 10−5L for
a simulation box of side L. The infinite-size threshold
ηp = e−Φp is then determined by finite-size scaling [33].
The standard relationship [15]

|η̄p(N)− ηp| ∼ N− 1
dν , (1)

where ν is the correlation length exponent, could be used
to extract ηp, but we use instead the scaling between the
average η̄p(N) and the standard deviation ∆ηp(N) of the
distribution

|η̄p(N)− ηp| ∼ ∆ηp(N), (2)

in order to eliminate the ν dependence from the analy-
sis [15].
Numerical results are provided in Table I and in Fig. 1.

For d = 2, the void percolation threshold is related to the
overlap percolation threshold for spheres, ηop = 1− e−Φo

p,
as ηp+ ηop = 1 [34], because a percolating cluster of voids
cuts overlapping sphere clusters into local ones, and vice

versa. Our value ηp = 0.3261(6) [35] agrees with the pre-
viously reported value ηop = 0.67634831(2) [36] within a
relative error of 0.2%. For d > 2, no such relation ex-
ists, but our result for d = 3, ηp = 0.0302(2), is also
consistent with earlier estimates ηp = 0.031(2) [12] and
ηp = 0.0301(3) [14]. Results for the critical exponent
in Eq. (1) are ν = 1.37(6) and 0.90(2) in d = 2 and
3, respectively (Fig. 1), agreeing with ν = 1.33(10) and
0.84(3) for d = 2 and 3 [12], ν = 0.902(5) for d = 3 [14],
and with ν = 1.33 and 0.88 from lattice percolation [15].
For d ≥ 4, finite-size effects are too large to indepen-
dently determine the value of the exponent (Fig. 1).

(c) d = 6

0.00002

0.00004

0.00006

η̄ p
(N

)

0.0 0.00001 0.00002
∆ηp(N)

(d)

10−6

10−4

10−2

∆
η p
(N

)

102 103 104 105

N
102 103 104 105

(a) d = 4

0.002

0.004

0.006

0.008

0.002

0.004

0.006

0.008

η̄ p
(N

)

0.0 0.001 0.002
∆ηp(N)

(b) d = 5

0.0001

0.0002

0.0003

0.0004

0.0001

0.0002

0.0003

0.0004

η̄ p
(N

)

0.0 0.00005 0.0001

∆ηp(N)
0.0 0.00005 0.0001

FIG. 1. (Color online) Determination of ηp in d = 4− 6 (a-c)
from fitting Eq. (2) (lines) to the large system size results [14].

(d) Critical scaling ∆ηp ∼ N−
1
dν (from Eqs. (1) and (2)) in

d = 2 − 6 (top to bottom). In d = 2 − 3 ν is extracted by
fitting Eq. (1) to the numerical results (lines), but in d = 4−6
large finite size effects prevent reliable fitting, so the lattice
percolation values, ν = 0.68, 0.57, and 0.50, respectively, are
used instead (lines) [15].

TABLE I. Numerical and MCT results for the void percola-
tion thresholds in d = 2− 6 (numbers in parenthesis indicate
twice the regression error on the last reported digit).

d ηp Φp ΦMCT
p

2 3.261(6)×10−1 1.121(2) 1.093

3 3.02(2) ×10−2 3.500(6) 2.528

4 2.11(2) ×10−3 6.161(10) 4.498

5 1.26(6) ×10−4 8.98(4) 6.899

6 8.0(6) ×10−6 11.74(8) 9.719
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FIG. 2. (Color online) Numerical void percolation thresh-
old ϕp (circles) compared with the numerical MCT predic-
tion (squares), the analytical MCT prediction under the gen-
eralized hydrodynamic approximation ϕ̄MCT

p = d2−d (black
solid line), and our estimated asymptotic high-d scaling ϕ∞

p ≃

3.7d2−d (dashed line).

III. MODE COUPLING THEORY (MCT)

A. MCT equations

In this section, we obtain the MCT prediction of the
RLG dynamical arrest in arbitrary d. By construction,
this calculation requires fewer approximations than de-
termining the dynamical transition of standard glass for-
mers [7, 10, 37–39]. Because collisions are elastic, the
tracer kinetic energy is conserved and only the direction
of its velocity v changes with time t. The MCT equa-
tion for the intermediate scattering function F (q, t) =
〈eiq·[r(t)−r(0)]〉, where r(t) is the tracer position at time t
and q = |q| is the measurement wave vector, then reads

F̈ (q, t)+Ω2
qF (q, t)+Ω2

q

∫ t

0

dt′M(q, t−t′)Ḟ (q, t′) = 0, (3)

where Ω2
q = q2v2/d is the microscopic collision frequency.

The memory kernel, M(q, t), is a correlation function of
generalized fluctuating forces that is obtained by Mori-
Zwanzig projection operators [11]. Under the standard
MCT approximations [40],

M(q, t) ≡ Fq[F (p, t)]

= ρq−4

∫

dk

(2π)d
(q · k)2c2(k)δ(q − k− p)F (p, t),

(4)

where c(k) is the Fourier transform of the direct corre-
lation function, c(r), between the tracer and the scatter-
ers. The direct correlation function can be expanded
to arbitrary order in density in terms of Mayer func-
tions [41], but for the RLG only the hard-core exclusion
of the tracer affects c(r), and thus the expansion for c(r)
terminates at the second order. The Poisson-distributed
scatterers cancel all higher-order terms. Hence, we have

c(r) = −θ(σ − r) for all d, where θ(x) is the Heaviside

step function, and c(k) = − (2πσ/k)
d
2 Jd/2(kσ), where

Jn(x) is a Bessel function of the first kind.
In bipolar coordinates, the d-dimensional integral in

Eq. (4) reduces to a double integral

Fq[F (p, t)] = ρ

∫ ∞

0

dk

∫ q+k

|q−k|

dpV (q, k, p)F (p, t), (5)

with

V (q, k, p) =
2Ωd−1

(4π)d
kp

qd+2
[4q2k2 − (q2 + k2 − p2)2]

d−3
2 ×

× [(q2 + k2 − p2)c(k)]2,
(6)

where Ωd = 2πd/2/Γ(d/2) is the surface area of a d-
dimensional unit sphere, with the gamma function Γ(x).
The order parameter for the transition, the so-called

nonergodicity parameter f(q), is defined as the long-time
limit of the correlation function f(q) = limt→∞ F (q, t).
A self-consistent equation for f(q) can be derived from
Eq. (3),

f(q)

1− f(q)
= Fq[f(p)]. (7)

The nonergodicity parameter f(q) is zero in the diffusive
phase, ρ < ρp, and increases continuously to a nonzero
value across the transition.

B. Numerical solution

The percolation threshold is numerically determined
by solving the MCT Eqs. (5), (6), and (7), while f(q) is
determined by iterating the equation

f (i+1)(q) =
Fq[f

(i)(p)]

1 + Fq[f (i)(p)]
(8)

with the initial condition f (0)(q) = 1. The numeri-
cal method used here is similar to the one used for HS
in Ref. [16]. The integrals in Eq. (5) are replaced by
Riemann sums with maximum wave vector σkmax =
max(40d1/2; 4d; 0.2d3/2). Note that for d < 64, we use
a logarithmic binning at small wave vectors, such that
the j-th grid point kj = k0 × δj . When the grid size
kj − kj−1 > δk = kmax/Nk, we switch to linear bins with
fixed bin size δk (the same binning procedure applies to
wave vector p). This scheme is chosen to account for
the change in behavior of the critical nonergodicity pa-
rameter fp(q) with dimensions. In small d, fp(q) decays
quickly around q = 0, but in large d it becomes fairly flat
asymptotically converging to a step function in infinite
dimensions (see Fig. 3 and Sect. III C). In summary,

• for d ≤ 6, k0 = 10−5, δ = 1.05, Nk = 100;
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• for 6 < d < 64, k0 = 10−4, δ = 1.1, Nk = 100;

• simple linear bins δk = kmax/Nk are used for 64 ≤
d ≤ 128 with Nk = 200, and for d > 64 with Nk =
300.

To locate the transition density ϕMCT
p , we

assume that f(q) vanishes asymptotically if

mini

{

maxq

∣

∣

∣

f(i+1)(q)−f(i)(q)
f(i+1)(q)

∣

∣

∣

}

> 10−4, and other-

wise saturates to a finite value [16]. The first regime
corresponds to the diffusive phase with ϕ < ϕp, while
the second corresponds to the localized phase with
ϕ > ϕp. A simple bracket search is then used to locate
the critical point. The search is continued until the
relative precision reaches 10−3, and the final ϕMCT

p is
the mean of the two bracketing bounds. In order to
compare with the numerical results, the MCT estimates
for d = 2 − 6 are listed in Table I and plotted in Fig. 2.
A very close numerical agreement is found in d = 2,
but the dimensional scaling reveals this agreement to be
fortuitous.
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FIG. 3. (Color online) The critical nonergodicity parameter
fp(q) in large dimensions. As d increases, fp(q) converges to
a step function fp(q) = θ(q0 − q), with the cutoff wave vector

scaling as q0σ ∼= 0.15d3/2, which is fully consistent with the
HS result [16].

C. Large-dimensional scaling

In large d, the dimensional dependence of the MCT
critical densities can be fitted to ϕMCT

p = 0.22d22−d

(Fig. 4). Surprisingly, this scaling form coincides pre-
cisely with that for the HS dynamical transition from
MCT [16, 17]. Here, we show that the two transitions in-
deed become identical within the standard MCT frame-
work, but that this behavior is physically inconsistent.
In the large d limit, we rescale wave vectors as k̃ =

kσ/d for convenience. The MCT equation then becomes
(see Ref. [16] for a detailed derivation)

m(q̃) =
2dϕ

πdq̃2

∫ ∞

1
2

dk̃
k̃

√

4k̃2 − 1
[f(p̃+) + f(p̃−)] (9)

1
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ϕ
M
C
T

p
/d
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FIG. 4. (Color online) Dimensional behavior of the numeri-
cal MCT critical packing fraction ϕMCT

p (squares). The blue

solid line is the asymptotic large-d scaling ϕMCT
p = 0.22d22−d.

The black solid line is the MCT result with the generalized
hydrodynamic approximation, ϕ̄MCT

p = d2−d.

with p̃± = (q̃2 + k̃2 ± 2
√

2
d q̃k̃)

1
2 , and the long-time limit

of the memory kernel m(q̃) satisfies

m(q̃) =
f(q̃)

1− f(q̃)
. (10)

The solution of this equation at the transition has a wave
vector cutoff q̃0, such that fp(q̃) = θ(q̃0 − q̃) (see Fig. 3).
Applying this form to f(p̃±) in Eq. (9) gives an upper

bound to the integral, which is k̃1 =
√

q̃20 − q̃2 for q̃ < q̃0,

k̃1 = 2
√

2
d for q̃ ∼ q̃0, and non-existing for q̃ > q̃0. Hence,

mp(q̃) =































2d+1ϕMCT
p

πdq̃2
g(q̃), q̃ < q̃0

2d+
3
2ϕMCT

p

πd
3
2 q̃0

, q̃ ∼ q̃0

0, q̃ > q̃0

(11)

with [16]

g(q̃) =







√

q̃20 − q̃2, q̃ < q̃0

constant, q̃ → q̃0.
(12)

Matching mp(q̃ → q̃0) with mp(q̃ ∼ q̃0) gives the di-

mensional scaling of the cutoff, q̃0 ∼ d
1
2 , and controls

the dimensional scaling of the critical density. In addi-
tion to the numerical validation of the HS results [16]
(see Figs. 3 and 4), we provide a simple derivation of the
scaling form. Indeed, because mp(q̃0) is of order 1, we
have, from Eq. (11),

ϕMCT
p ∼ q̃20d2

−d, (13)

or, by plugging in the dimensional scaling of q̃0,

ϕMCT
p ∼ d22−d. (14)
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More generally, we can show that in the large dimen-
sional limit the MCT equations for the dynamical arrest
are identical for the RLG and for the HS. Comparing
Eq. (9) with the large-d MCT equation for HS [16],

mHS(q̃) =
2dϕ

πdq̃2

∫ ∞

1
2

dk̃
k̃

√

4k̃2 − 1
fHS(k̃)×

× [fHS(p̃+) + fHS(p̃−)],

(15)

reveals that the only difference is fHS(k̃). However, be-

cause fHS
d (k̃) = θ(q̃0 − k̃) [16], this term is unity within

the integration bounds, [ 12 , k̃1], when the integrand is
nonzero. Hence, Eqs. (11) and (15) give exactly the same
result, which explains the coincident scalings.
Based on above results, it is also straightforward to

obtain the dimensional scaling for the localization length
rs, defined as the long-time limit of the mean-squared
displacement (MSD) [41],

r2s ≡ 1

2d
lim
t→∞

〈[r(t)− r(0)]2〉

= lim
q→0

1− f(q)

q2
= lim

q→0

f(q)

q2m(q)
,

(16)

where we have used Eq. (10). At ϕp, Eq. (11) implies

that mp(q → 0) ∼ d2dq̃0ϕp

(qσ)2 . Using this result together

with fp(q → 0) = 1, we obtain

r2s,p ∼ σ2

d2dq̃0ϕMCT
p

, (17)

or, by plugging in the dimensional scaling of q̃0 and
ϕMCT
p ,

r2s,p ∼ σ2

d
7
2

, (18)

While this scaling is qualitatively consistent with the
discontinuous nature of the glass transition in the HS
model, it is, however, inconsistent with the percolation
transition being a continuous transition. The localiza-
tion length should then instead be strictly infinite at the
critical point. At the quantitative level, the MCT pre-
dictions are also different from the exact static results for
HS [20, 21],

ϕRT
d = 4.8d2−d, (19)

and

r2s,p = ART
d =

0.576σ2

d2
. (20)

Interestingly, if we assume that the scaling of the wave
vector cutoff is instead q̃0 = q0σ/d ∼ 1, then Eqs. (13)
and (17) give ϕMCT

d ∼ d2−d and AMCT
d ∼ σ2/d2, re-

spectively. The scaling forms are in line with the static
results. Because the wave vector is an inverse length
scale, our analysis thus shows that the key discrepancy
between the MCT and the static results arises from the
difference in characteristic length scale. Physically, this
length scale corresponds to the typical cage size in which
particle motions are confined.

D. Generalized hydrodynamic approximation

We next solve the MCT equations analytically with
an additional approximation – the generalized hydrody-
namic approximation. This approximation has been con-
ventionally used for the RLG model to obtain the critical
density in d = 2 and 3 [10, 38, 39], and here we general-
ize it to all dimensions. The generalized hydrodynamic
approximation replaces the memory kernel Eq. (4) by its
q → 0 limit [10, 38, 39],

M̄(t) ≡ lim
q→0

q2M(q, t) ≡ F̄ [F (k, t)]

= ρ

∫ ∞

0

dk

(2π)d
k2c2(k)F (k, t)

∫

dΩd(q̂ · k̂)2

=
ρ

d

∫

dk

(2π)d
k2c2(k)F (k, t),

(21)

where q̂ = q/q and k̂ = k/k, and we have used

∫

dΩd(q̂ · k̂)2 = Ωd−1

∫ π

0

dθ(sin θ)d−2 cos θdθ

= Ωd−1

π1/2Γ
(

d−1
2

)

Γ
(

d
2 + 1

) =
Ωd

d
.

(22)

Note that the integral in Eq. (22) should be independent
of q̂, and therefore one can choose any arbitrary direction
of q̂. For computational convenience, we choose it to

be aligned with the zenith direction of the k̂-coordinates

such that q̂ · k̂ = cos θ.
Using Eqs. (7) and (21), one can derive a self-consistent

equation for the parameter m̄ = limt→0 M̄(t),

1 =
ρ

d

∫

dk

(2π)d
c2(k)

(

1− m̄

k2 + m̄

)

. (23)

At the percolation transition, m̄p = 0 [38], and thus
Eq. (23) can be expanded perturbatively with respect to
m̄p around the transition. The zeroth-order expansion
gives a relation for the percolation threshold,

1 =
ρ̄MCT
p

d

∫

dk

(2π)d
c2(k). (24)

By Parseval’s theorem,
∫

dk
(2π)d

c2(k) =
∫

drc2(r) = Vdσ
d,

and thus Eq. (24) gives ρ̄MCT
p = d

Vdσd [42], or

ϕ̄MCT
p = d2−d. (25)

As can be seen in Fig. 2, the MCT solution with this ap-
proximation only fortuitously agrees with the simulation
result in d = 3.
Further expanding Eq. (23) to first order gives the crit-

ical scaling of m as well as the localization length rs.
Indeed, from the first-order equation,

(ρ− ρ̄MCT
p )

d

∫

dk

(2π)d
c2(k) =

ρ

d

∫

dk

(2π)d
c2(k)

k2
m̄, (26)
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FIG. 5. (Color online) Schematics of (a) the cage net-
work suggested by the finite-dimensional analysis of the MK
model [25], where balls represent cages and tubes the hopping
channels. For the MK model (b), the central green circle is
the caged particle, blue circles are its neighbors, and the ar-
row represents a possible hopping path; for void percolation
(c), the central green point is the point-like tracer and blue
circles are scatterers; for the RLG (d), the tracer and scat-
terer sizes are exchanged. The MK model (b) is mapped onto
void percolation (c) by rescaling the diameter of neighbors
σ → 2σ, and replacing the central particle by a point. A sim-
ilar mapping can also be done from the MK model (b) to the
RLG (d).

we obtain

m̄ =
εp
B

+O(ε2p), (27)

where εp =
ρ−ρ̄MCT

p

ρ̄MCT
p

is the relative distance to the perco-

lation transition, and

B =
σ2

2(d+ 2)(d− 2)
. (28)

Using Eq. (27), we also obtain that near the percolation
transition, rs scales as

r2s = lim
q→0

f(q)

m̄
= Bε−1

p , (29)

where we have used limq→0 fp(q) = 1. Equation (29)
is consistent with the form in Ref. [10]. Here we pro-
vide the explicit d-dependence of the pre-factor, which

further gives its high-d scaling, i.e., r2s ∼ σ2

2d2 ε
−1
p . In con-

trast with the standard MCT result Eq. (18), the gen-
eralized hydrodynamic approximation does give that the
localization length diverges at the transition.

IV. RELATIONSHIP BETWEEN THE RLG
AND THE MK MODEL

In order to obtain a static description of the dynami-
cal arrest, we relate the behavior of the RLG near the

void percolation transition to that of a simple glass-
former, the MK model. The infinite-range MK model
adds a quenched random shift to each pair 〈ab〉 of clas-
sical hard spheres of diameter σ, which results in a total
interaction energy U =

∑

〈ab〉 u(|ra − rb + Λab|), with

e−u(r) = θ(r − σ), where Λab is a random vector uni-
formly distributed over the system volume. Although
finite-dimensional, this model is by construction mean-
field in nature. The cavity reconstruction formalism,
which builds up the local environment experienced by a
particle along the continuation of the MK liquid branch
(the replica-symmetric phase) above the dynamical glass
transition ϕd [25, 43], further reveals that each parti-
cle is surrounded by Poisson distributed neighbors rat-
tling in cages with a typical size A = r2s that scales as

A − Ad ∼ ε
1/2
d [44] in the glass phase (the cage size is

infinite in the liquid phase), where Ad is the cage size
at ϕd and εd = (ϕ − ϕd)/ϕd. For this model, which
is exactly equivalent to HS in large d, the RT gives
Eqs. (19) and (20). Hence, from the perspective of a given
(arbitrarily-chosen) particle, which we label the tracer, in
that regime the MK model has the same static structure
(e.g., pair correlation function) as the RLG, but with the
tracer and scatterers having all the same diameter σ (see
Fig. 5). Unlike for the RLG, however, “scatterers” in the
MK model are free to move. In addition, the tracer and
scatterers are indistinguishable, in the sense that all of
them have the same average dynamics.
To make the comparison between the RLG and the MK

model more transparent, we introduce an intermediate
model, the rattling random Lorentz gas (RRLG). This
model is equivalent to the RLG, except that scatterers
are now allowed to rattle within spherical, ball-shaped
cages of fixed size Ad. Because the (uncorrelated) rat-
tling of scatterers increases the probability that the tracer
escapes its cage, thanks to the widening the “hopping
channels” [25] (see Fig. 5a), we can effectively rescale the
scatterer diameter as σ → σ − κ

√
Ad [25]. The RRLG

should thus undergo a percolation transition at a density
ϕRRLG
p rescaled with respect to the RLG,

ϕRRLG
p = ϕp

[

1

1− κ
√
Ad/σ

]d

. (30)

The rescaling constant κ has an upper bound κ = 2 which
corresponds to the largest displacement a particle could
make in a ball-shaped cage [25]. As in the MKmodel [25],
we expect hopping, and thus also κ, to vanish in the limit
d → ∞. Combining this result with Eq. (20), we find that
in this limit,

ϕRRLG
p ≃ ϕpe

κd
√

ART
d /σ ≃ ϕp. (31)

At the dynamical transition ϕd, the tracer is arrested
by its neighbors who rattle in cages of size Ad. This
is equivalent to the MK model setup in the asymptotic
high-d limit, because in this limit, cage shapes and the
fluctuation of cage sizes become irrelevant [21, 25]. Note
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that this equivalence does not hold at densities other than
ϕd, because in the MK model the cage size A changes
with ϕ, while in the RRLG it is fixed, by construction.
In Ref. [25], we have shown that in d = 2 − 6 caging is
imperfect at ϕd, because the tracer can explore a net-
work of well-separated cages connected by narrow chan-
nels, which suggests that ϕRRLG

p > ϕd. Hopping is, how-
ever, strongly suppressed in the limit d → ∞, and hence
the tracer is completely localized at ϕd. It follows that
ϕRRLG
p < ϕd when d is large. Interestingly, this analy-

sis implies a crossover dimension that separates the two
regimes. We get back to this aspect in the Conclusion.
For now, in order to make further progress determining
ϕp we need to determine the evolution of the localiza-
tion length between ϕp and ϕd. A static description is
not currently available, but MCT suggests a scaling form
for relating the two. Using Eq. (29), a hybrid static-
dynamical description gives the asymptotic high-d rela-
tion

ϕd = ϕRRLG
p (1 +

Ad

B
) (32)

(we use the generalized hydrodynamic approximation re-
sult, because it is consistent with the continuous nature
of the percolation transition). Combining this relation
with Eqs. (19), (20), (28), and (31), we obtain the large-
d transition density,

ϕ∞
p ≃ 3.7d2−d. (33)

Note that this result has the same dimensional scaling
form as the generalized hydrodynamic MCT result in
Eq. (25), but the prefactor better agrees with the nu-
merical results as d increases (see Fig. 2).
We note in passing that using the relation between

the RLG and the MK model discussed above, one can
also obtain a more general geometrical upper bound to
the void percolation threshold in large dimensions. The
fact that no tracer can diffuse if it is fully blocked by
its nearest scatterers indeed provides an upper bound for
ϕd. In the limit d → ∞, we thus only need to consider
scatterers located on the spherical shell of radius l =
σ+

√
Ad. The onset of caging then reduces to a classical

spherical covering problem, i.e., the minimal number of
spheres n of radius σ that form a covering of a sphere with
radius l needs to be determined. For d ≥ 3, and l̃ ≡ l/σ >

1, Rogers proved the upper bound, n ≤ (d ln d)l̃d [45, 46],
and hence

ϕp < ϕd ≤ d ln d2−d. (34)

Note that the dimensional scaling, Eq (33), is consistent
with this upper bound.

V. CONCLUSION

Previous studies of hard sphere glass formers have
shown that standard MCT gives an asymptotic high-d

FIG. 6. (Color online) Schematic plots of the accessible space
for the tracer in the RRLG at different densities (left panels)
and corresponding MSD behavior (right panels, logarithmic
scale, ϕ increasing from top to bottom) in dimensions (a) d <
dc, (b) d > dc, and (c) d = ∞. The MSD is expected to ex-
hibit different regimes: (1) at short times, before any collision
occurs, ballistic motions gives δr2(t) ≡ 〈[r(t) − r(0)]2〉 ∼ t2;
(2) in the delocalized phase, the tracer is diffusive at very
long times, δr2(t) ∼ t; (3) close to the percolation transition,
the fractal nature of the void space gives a subdiffusive scal-
ing, δr2(t) ∼ t2/z with z > 2; (4) by contrast to the RLG,
the rattling contribution from scatters should give rise to a
caging plateau on timescales shorter than hopping; (5) in the
localized phase the MSD reaches a second plateau that cor-
responds to the typical size of the cage network. At ϕd, the
typical cage size (the first plateau) is equal to Ad (red dashed
lines) in the MK model. Across dc, ϕd and ϕRRLG

p switches

order. In d = ∞, ϕp = ϕRRLG
p , and the two plateaux merge

into a single one. We expect the MK model to have an almost
identical behavior as the RRLG at and above ϕd, although
with shrinking cages with ϕ.

scaling for the dynamical glass transition that is incon-
sistent with the exact static scaling form and with sim-
ulation results. In this study, we extend the MCT cal-
culation to the RLG model, in arbitrary dimensions. By
comparing our results with those for HS, we find sev-
eral inconsistencies within MCT, as well as discrepan-
cies between MCT and numerical data or other theories:
(i) in d = 2 − 6, the MCT prediction for the percola-
tion threshold ϕp in the RLG has a different dimensional
dependence than the numerical results; (ii) for d → ∞,
MCT predicts that the percolation transition in the RLG
is identical to the glass transition in HS and the MK
model, although they should physically be different; (iii)
MCT predicts that the localization length changes dis-
continuously at the percolation transition even though
it should be a continuous transition; (iv) the generalized
hydrodynamic approximation gives MCT results that are
quantitatively and qualitatively different from the full so-
lution.

Resolving these various inconsistencies is crucial to
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finding a rigorous dynamical theory of the dynamical ar-
rest. Unfortunately, such task is anything but easy. Even
in the large dimensional limit, where a dynamical mean-
field solution should be exact, the approximations used
in deriving MCT are not well controlled nor fully under-
stood. Nonetheless, our analysis provides several insights
into accomplishing this objective. (i) For the RLG, the
static approximations for the liquid structure are com-
pletely avoided, which suggests that adjusting this ap-
proximation in other systems is not essential to fixing
MCT, i.e., an exact description of the HS liquid struc-
ture in finite d would not resolve the problem. (ii) If we
generally write the MCT kernel as M = V ·Fh, with the
standard MCT vertices V , then the theory becomes iden-
tical for h = 1 (RLG) and h = 2 (HS/MK), in large di-
mensions. If this property holds for any integer power of
h, then adding additional powers of F would not resolve
the problem either. This result suggests that the main
approximations determining the large-d behavior of MCT
most likely lie in the vertices themselves. (iii) Our anal-
ysis shows that the key discrepancy between the MCT
and the static solution arises from the different charac-
teristic length scales, i.e., the cages sizes, obtained from
the two theories. If this length scale can be unified, then
the scalings of the transition densities should automati-
cally coincide (up a constant pre-factor). Potential fix to
the standard MCT, thus include the generalized mode-
coupling theory [47, 48], where the factorization approx-
imation of the memory kernel is avoided by explicitly
including higher-order dynamical correlations [49], and
the mean-field approach proposed in Ref. [24].
Based on the relationship between the MK model and

the RLG, we have also argued that the dynamic glass
transition of the MK model takes place in the local-
ized regime of the RLG (or RRLG) when d → ∞, i.e.,
ϕp = ϕRRLG

p < ϕd. This conjecture is proposed based
on the understanding that the static mean-field theory is
exact in the high-d limit, and that the dynamical glass
transition is then sharply defined [20, 21]. The situation
is qualitatively different from what is observed in low-d
mean-field models, such as the MK model, where par-
ticles are not fully arrested at the (theoretical) ϕd [25],
and hence ϕp < ϕd < ϕRRLG

p . The role of hopping on
the liquid dynamics is thus expected to change qualita-
tively when going from the low- to high-d, and similarly
for the RRLG (Fig. 6). Both the crossover dimension dc
and the dynamical behavior of the RRLG in the different
regimes will be examined in future studies. It may also
be interesting to study the rounding effect of the percola-
tion transition in the RRLG model, as was recently done
in the RLG with a soft potential [50].
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