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Fluids with competing short-range attractions and long-range repulsions mimic dispersions of charge-
stabilized colloids that can display equilibrium structures with intermediate range order (IRO), in-
cluding particle clusters. Using simulations and analytical theory, we demonstrate how to detect
cluster formation in such systems from the static structure factor and elucidate links to macrophase
separation in purely attractive reference fluids. We find that clusters emerge when the thermal cor-
relation length encoded in the IRO peak of the structure factor exceeds the characteristic lengthscale
of interparticle repulsions. We also identify qualitative differences between the dynamics of systems
that form amorphous versus micro-crystalline clusters.

I. INTRODUCTION

Complex fluids frequently possess one or more frus-
trating interaction lengthscales that, regardless of origin,
generate micro- to mesoscale structural heterogeneity.
Archetypical examples include microemulsions [1], block
copolymers [2, 3], confined fluids [4, 5], and colloidal dis-
persions, including proteins [6–11], wherein the surfac-
tant size, block length, pore size, and screened electro-
static repulsions set the respective length scales of frus-
tration. Despite their contextual differences, all exhibit
similar transitions between homogeneous fluid states and
emergent heterogeneous phases with density correlations
characterized by intermediate range order (IRO), typi-
cally identified by the presence of a pre-peak at low but
finite k in the static structure factor S(k) [12].

In the case of a pore-glass confined binary fluid sys-
tem [13], the experimental emergence of IRO has been
rationalized via the behavior of the fluid thermal cor-
relation length ξT , which quantifies the range of corre-
lated concentration fluctuations and the associated IRO
peak width in S(k). In particular, it was demonstrated
that the crossover in the temperature-density (T − ρ)
plane from dispersed fluid to strong IRO corresponds to
the conditions at which ξT reaches the pore size, i.e.,
the characteristic frustrating lengthscale. Such condi-
tions enable strong, preferential segregation of the wall-
attracted species from the other component which, in
turn, migrates into the pore centers. Additionally, the
IRO (T − ρ) crossover conditions corresponded to state
points close to where the unconfined fluid reference sys-
tem would otherwise exhibit liquid-liquid macrophase
segregation.

Here, we extend thermal correlation length concepts to
a simple model system characterized by IRO: the short-
range attractive, long-range repulsive (SL) fluid, which
mimics charge-stabilized colloids with van der Waals, de-
pletion, and/or hydrophobic attractions. Various stud-
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ies have demonstrated that the long-range repulsive in-
teraction suppresses macrophase separation–which would
occur for strong short-range attractions alone–in favor
of IRO structures including clusters [14–18]. However,
an ongoing challenge has been to distinguish between
generic IRO (i.e., presence of any pre-peak) and clus-
tering specifically, particularly in a way accessible to ex-
periments [12, 17]. One such criterion [17] suggests that
clustering emerges when the IRO peak reaches a magni-
tude S(k∗SL) ≥ 2.7; this bears similarity to the empirical
Hansen-Verlet single-phase rule for tracing macroscopic
freezing boundaries in simple fluids [19].

Section II presents the SL models under consideration
and the simulation protocol and theoretical methodology
used to characterize their behaviors. In Section III we
propose a new conceptual framework and accurate crite-
rion for clustering: namely, clusters form when the ther-
mal correlation length ξT encoded in the IRO pre-peak
of S(k) exceeds the characteristic lengthscale of the frus-
trating interparticle repulsive interaction. We find that
this criterion also bolsters previously proposed connec-
tions between emergent IRO in SL fluids and macroscopic
phase separation in corresponding reference attractive
(RA) models [17] lacking long-range repulsions. Finally,
we show that the criterion makes useful predictions for
fluids that form either amorphous or micro-crystalline
clusters, despite striking qualitative differences in the dy-
namic behaviors of these two types of systems. The pa-
per concludes in Section IV with a brief summary of our
results and their relevance to experiment.

II. METHODS

Various SL interaction models are known to exhibit
IRO; here we consider a canonical example given by the
pairwise potential [14]

ϕSL(x) ≡ 4ε(x−2α − x−α) +A
e−x/ξR

x/ξR
(1)

where x = r/d is a non-dimensionalized particle sep-
aration, d is the measure of particle size, ε quantifies
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the attractive strength, and A and ξR respectively char-
acterize the repulsion magnitude and range. We set
α = 100 in Eq. 1 to mimic archetypical colloids gov-
erned by core repulsions with an attraction ranges of
O(1%) of the core diameter induced via depletant effects.
The long-ranged Yukawa tail mimics screened electro-
static interactions common to charge-stabilized suspen-
sions. The corresponding RA potentials [17] are defined
by ϕRA(x) ≡ H(x0−x)ϕSL(x), where H is the Heaviside
step function and x0 is the nearest point for x > 1 where
ϕSL(x) is zero, which eliminates the repulsive tail.

Model SL fluids defined by Eq. 1 can lose stabil-
ity to micro-crystalline cluster phases at high attraction
strengths [14], in contrast to many experimental systems
of interest (e.g., proteins) that do not easily crystallize.
To study the latter, we also examine a simple ternary
mixture of SL particles designed to frustrate crystalliza-
tion. The mixture pair potentials are described by

ϕSL|i,j(xi,j) ≡ 4[ε+(1−2δi,j)∆ε](x
−2α
i,j −x

−α
i,j )+A

e−xi,j/ξR

xi,j/ξR
(2)

where δi,j is the Kronecker delta, i, j = −1, 0, 1 corre-
spond to small, medium (d = 1), and large particles re-
spectively, xi,j ≡ x−(1/2)(i+j)∆d, and perturbative pa-
rameter shifts to interaction size and energy, ∆d = 0.158
and ∆ε = 0.25, help to thwart crystallization and pro-
mote mixing, respectively. We use systems comprising
20% small, 60% medium, and 20% large particles. This
combination of ∆d and composition represents a three-
component approximation of 10% polydispersity in par-
ticle size.

In examining both models, we set various combi-
nations of the repulsive range ξR and the thermally
non-dimensionalized repulsive strength βA (where β =
1/kBT and kB is the Boltzmann constant) while vary-
ing the non-dimensionalized attractive strength βε. This
treatment mimics systems for which the short- and
long-range aspects of constituent interactions are ap-
proximately orthogonal, such as colloids with screening
lengths set by particle-solvent interactions and attrac-
tions tuned via introduction of depletants [18].

To generate equilibrium particle configurations, we
perform 3D molecular dynamics simulations of N =
2960 particles interacting via Eqns. 1 and 2 in the
NVT ensemble with periodic boundary conditions using
LAMMPS [20]. Due to the steepness of the repulsion,
we use an integration time-step of 0.0005, and due to
the long-range repulsion, we include interactions out to
a cut-off distance of rcut = 8.0. For all state points, the
temperature is fixed at kBT = 1.0 via a Nosé-Hoover
thermostat with time-constant τ = 1.0. We calculate
the structure factor S(k) from simulations by numerical
Fourier Transform (FT) inversion of the radial distribu-
tion function g(r). To determine whether state points
are fluid, clustered, or percolating, we calculate cluster
size distributions (CSDs), which quantify the probabilis-
tic formation of n-particle aggregates, where particles are

considered part of the same aggregate if their centers are
within the narrow range of the attractive well. Similar to
other studies [14, 15, 17, 18], a system is considered clus-
tered with aggregates of preferred size n∗ by the presence
of a local maxima in the CSD at n∗ occurring in the range
1 � n∗ � N , and is considered percolated (at the level
of the box) by a CSD peak comprised of all particles, i.e.,
n∗ ' N .

To obtain analytical results for a broader range of po-
tentials, we also derive theoretical thermodynamic and
pair structure results via the Ornstein-Zernike (OZ) in-
tegral equation relation h(k) ≡ c(k) + ρc(k)h(k), where
h(k) ≡ FT[g(r) − 1], c(k) ≡ FT[c(r)], g(r) is the ra-
dial distribution function, c(r) is the direct correlation
function and ρ is the number density. The OZ rela-
tion is closed via the Percus-Yevick hard sphere refer-
ence, non-linear optimized random phase approximation,
c(r) ≈ exp[−βϕ(r)]− 1 +G(r), where G(r) = 0 for r > d
while for r ≤ d it is optimized to enforce h(r) = −1
(thus, we approximate Eqn. 1 with a literal hard core
for r ≤ d) [21]. In carrying out these calculations, we
consider only the Eqn. 1 potential since non-crystalline
states are avoided due to the enforcement of homogene-
ity. This closure yields a spinodal locus at all densities,
an important feature for the RA cases.

III. RESULTS AND DISCUSSION

To begin our discussion, we first consider the behav-
ior of the structure factor S(k) for SL fluids with dif-
ferent relative (integrated) repulsive strengths and corre-
sponding RA systems (see Fig. 1a-c) as predicted from
integral equation theory. The two SL fluids exhibit pre-
peaks characteristic of IRO at wavelengths k∗SL > 0, in-
dicating preferential structuring on microscopic length-
scales of 2π/k∗SL ≈ 12.6d and 5.0d, respectively. In con-
trast, for the RA fluids lacking long-range repulsions,
the short-range attractions drive ordering on the macro-
scopic lengthscale, corresponding to the peak at k∗RA = 0.
Crucially, we see that for the very weak repulsive case
(ξR = 10, βA = 5 × 10−4) , the S(k) for the SL fluid
traces the RA curve down to low-k, supporting the con-
ceptual notion of SL fluids as perturbations to underlying
RA fluids for which only the principal ordering length-
scale has been shifted.

To understand why one should naturally expect SL
fluids to aggregate on smaller lengthscales than their
RA counterparts, we examine in Fig. 1(d) the Fourier
space analogs of the SL and RA pair potentials, ω(k) =
FT[ϕ0(r)], where ϕ0(r) = H(r − d)ϕ(r). Viewing the
potentials in this way makes explicit the idea that struc-
tural oscillations of different lengthscales are weighted by
the energy profile ω(k), which is evidenced by the close
reciprocal correspondence between basins in ω(k) (Fig.
1(d)) and peaks in S(k) (Fig. 1(a)). This connection
can also be made more formal by considering microstate
configurational energies (see Appendix A).
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FIG. 1. (Color online). (a) Structure factors S(k) for refer-
ence attractive (RA, red dashed) and short-range attractive
long-range repulsive (SL, blue solid) fluids at packing frac-
tion φ = 0.125 for repulsions with ranges ξR and strengths
βA. Curves are derived from integral equation theory, where
the ξR = 10 curves are shown for attraction βε = 4.35 and
the ξR = 2 curves (shifted vertically) are shown for βε = 4.75.
(b,c) S(k) curves from (a) replotted to highlight k → 0 be-
haviors. (d) Fourier transforms βω(k) of the potentials from
(a) with ξR = 2 curves shifted vertically. (e) RA and SL
potentials βϕ(r) for the ξR = 2 case.

Moving beyond the above discussion concerning
generic IRO, we demonstrate in Fig. 2 that particle clus-
tering emerges when the thermal correlation length ξT
surpasses the characteristic lengthscale of interparticle
repulsion ξR. Here, we estimate ξT from the well-known
S(k) approximation (inverse expansion) near k∗ [21]:

S(k) ≡ S(k∗)

1 + (k − k∗)2d2ξ2T
(3)

That ξT is a correlation length is evident by consider-
ing the real-space form of Eqn. 3, limr→∞[g(r) − 1] ∝
r−1 exp[−r/dξT ] cos[rk∗−θ], where g(r) is the radial dis-
tribution function, θ is a constant, and ξT gives the char-
acteristic decay-length of static correlations while the co-
sine term reflects modulated structure. In practice, ξT
can be extracted from S(k) by fitting S(k∗)/S(k) to the
form 1 + (k − k∗)2d2ξ2T about k∗.

In Fig. 2(a), we catalog the phase behavior as a func-
tion of attractive strength βε for various packing fractions
φ. It is evident that for the lower-density isochores, the
ξT ≥ ξR criterion demarcates when clustering begins in
our polydisperse system, as indicated by a characteristic
CSD peak with increasing attractions (Fig. 2(c)) and re-
flected by a growing IRO pre-peak in S(k) (Fig. 2(d)).
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FIG. 2. (Color online). (a) Symbols show thermal correla-
tion lengths ξT for SL simulations of polydisperse (filled) and
monodisperse (unfilled) systems with attractive strengths βε
and packing fractions φ = 0.050, 0.125, and 0.250. Symbol
shapes indicate whether the state point is dispersed fluid (tri-
angles), clustered (circle), or percolated (diamond), and the
horizontal dashed line indicates ξT = ξR. Solid lines show ξT
calculated via theory. (b) Phase behavior calculated via the-
ory for potentials from (a), including RA macrophase spinodal
(red unfilled squares); SL curves (blue filled squares) corre-
sponding to ξT = 2 and ξT = 5; and S(k∗SL) = 2.7 curve
(black x). ‘L+G’ indicates liquid-gas coexistence, ‘C’ indi-
cates clustered phase, and ‘F’ indicates fluid phase. (c) Clus-
ter size distributions indicating probability p(n) of n-particle
cluster formation and (d) S(k) profiles from polydisperse sim-
ulations at φ = 0.125.

As is intuitively expected and seen by others [15, 17, 22],
for denser isochores like φ = 0.250, it is challenging
to identify precisely when “clustering” begins because
the CSD indicates box-wide percolation (geometrically
merged clusters) even down to relatively low βε. Fig.
2(a) also shows that correlation lengths of monodisperse
and polydisperse systems coincide upon approach to the
ξT = ξR threshold, where this boundary also approxi-
mately identifies where the monodisperse fluid loses sta-
bility with respect to formation of micro-crystalline clus-
ters.

In Fig. 2(b), we also examine phase behaviors for the
SL and RA fluids derived for a wider βε − φ parame-
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FIG. 3. (Color online). (a) Phase diagrams calculated via
theory, comprising RA macrophase spinodals (unfilled red
symbols) and SL ξT = ξR curves (filled blue symbols) for
ξR = 10 and two repulsive strengths βA. (b) RA spinodals
and curves along which S(k∗SL) = 2.7 (filled black symbols)
for same systems as in (a). (c) Phase diagram calculated via
theory comprising RA macrophase spinodal (unfilled red tri-
angles); SL curves corresponding to macrophase spinodal at
low φ (right-pointing blue triangles) and ξT = ξR = 2 at
high φ (left-pointing blue triangles); and disorder line (pur-
ple squares) in the fluid region (see text). ‘L+G’ indicates
liquid-gas coexistence, ‘C’ indicates clustered phase, and ‘F’
indicates fluid phase.

ter space via theory, which reveals close correspondence
between the SL ξT = ξR boundary and the spinodal as-
sociated with RA macrophase separation. Their similar
shapes (and, in this case, locations), suggest that the SL
ξT = ξR boundary echoes the RA thermodynamic in-
stability, where the frustrating repulsion has erased (or
highly suppressed) liquid-gas coexistence in favor of clus-
tering. (We also include the ξT = 5 curve to demonstrate
the general propagation of the RA spinodal shape with
increasing βε.) As a further comparison, the empirical
clustering condition S(k∗SL) ≥ 2.7 is also shown. While
it lies within similar proximity to the RA spinodal, it
possesses a noticeably different, shallower contour.

To elucidate deeper connections between the contours
in Fig. 2(b), we explore in Fig. 3 whether the ξT = ξR
and RA spinodal boundaries truly converge for ultra-
weak repulsions, which might be expected if the latter
can be considered a natural weak-repulsion limit of the
former. In Fig. 3(a-b), we examine two potentials with
different repulsive strengths: for βA = 1 × 10−2, the
repulsion is evidently “strong” and there is no overlap

FIG. 4. (Color online). Cluster phase simulation snapshots of
polydisperse (a) and monodisperse (b) systems at φ = 0.125
with attractive strength βε = 5.2 and repulsions defined by
ξR = 2 and βA = 0.20. Particles comprising a single cluster
(determined at time t) are rendered opaque in their positions
at times t (left) and t′ = t + ∆t (right). The lag time is
∆t = 25τd, where τd = d2/D is the characteristic time for
d = 1 particles to diffuse and D is the long-time bulk diffu-
sion coefficient determined via mean-squared displacements.
Colors correspond to small, medium (d = 1), and large par-
ticles, which are shaded yellow, red, and blue, respectively.
Visualizations created with VMD [23].

between the ξT = ξR and RA spinodal boundaries (note:
this highlights that these boundaries do not generally
overlap as in Fig. 2(b)). However, as repulsion strength
is lowered to βA ≤ 1 × 10−5, the two curves collapse
and become truly indistinguishable, reflecting a deep SL-
RA connection. In Fig. 3(b), we also show correspond-
ing S(k∗SL) = 2.7 curves. Clear discrepancies in shape
are apparent when comparing the RA spinodals and the
S(k∗SL) = 2.7 boundaries, and the two types of curves
increasingly move apart as βA is reduced.

To further generalize the connection of the RA spin-
odal to the phase behaviors of SL systems, we con-
sider in Fig. 3(c) a less long-ranged weak repulsion
(ξR = 2, βA = 5× 10−3), which exhibits intriguing prop-
erties: a true SL spinodal separation occurs for φ ≤ 0.09,
while for higher volume fractions there is a ξT = ξR clus-
tering boundary. The low-density fluid also exhibits a
disorder line, below which the IRO peak is present and
above which the IRO peak transitions to a k∗SL = 0 peak.
The intimate correspondence between the SL boundaries
and the RA spinodal further reflects that the condition
ξT = ξR reflects a muted thermodynamic instability,
which for very weak repulsions can also emerge within
the SL fluid itself.

Finally, we consider the morphologies and lifetimes of
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the clusters that form in polydisperse and monodisperse
SL systems. Clusters in the former exhibit amorphous
and irregular shapes, as exemplified by the simulation
snapshots in Fig. 4(a), which correspond to the system
in Fig. 2 at conditions slightly above the clustering tran-
sition. Here, it is evident based on the time-lag snap-
shots that the clusters are transient and continuously
redistribute particles to create new clusters at the ex-
pense of others. By significantly increasing the attractive
strength βε, one can eventually observe arrested, perco-
lating, amorphous gels as exemplified by the simulation
snapshots for φ = 0.125 systems in Fig. 5. Interestingly,
our model gels may be thermoreversible with no local
crystallinity, possibly providing a simpler alternative to
valence-limited gel-formers [24]. Thermoreversibility is
highly desired to facilitate fabrication of massively re-
configurable, reversible materials.

In contrast, monodisperse systems at similar attraction
strengths can undergo highly regular clustering via local
crystallization, as exemplified in Figure 4(b). While the
crystalline nature of such simulated clusters has been ob-
served previously by others [14, 15, 18], we do note that
the relatively weaker repulsion examined here drives for-
mation of much larger clusters that are more obviously
crystalline in nature. The crystalline clusters are rela-
tively static objects once formed, as demonstrated by the
time-lag snapshots, in direct contrast to the amorphous
clusters.

IV. CONCLUDING REMARKS

In closing, we have presented a new framework for
understanding and detecting cluster phases in SL fluids
based on the thermal correlation length ξT . This frame-
work should prove useful for probing micro-structural
transitions in diverse systems governed by frustrated
interactions, e.g., lattice spin models with opposing
nearest-neighbor and higher-order couplings. We have
also presented the first non-microcrystallizing SL fluid,
which exhibits amorphous transient clusters; this should
prove useful for examining the (zeroth order) physics of
real dispersions known to be resistant to crystallization,
e.g., proteins.

Finally, we remark that the ξT = ξR clustering crite-
rion can be implemented in experiments provided that, in
addition to extracting ξT from an S(k) profile (described
earlier), one can also obtain a reasonable measure of the
repulsive lengthscale between particles ξR. For systems
accurately described by simple screening models, ξR can
be directly estimated. Otherwise, one can first obtain
the r-space total correlation function h(r) via an inverse
FT of S(k). Likewise, one can calculate the direct corre-
lation function c(k) = ρ−1 − [ρS(k)]−1 and then obtain
its r-space equivalent c(r) = FT−1[c(k)], which provides
information about the interparticle interactions because
limr→∞ c(r) ≈ ϕ(r) [21]. By plotting ln{|rh(r)|} and
ln{|rc(r)|} versus r (where |x| is the absolute value of x)

FIG. 5. (Color online). Cluster phase simulation snapshots
of polydisperse systems at φ = 0.125 with various attractive
strengths βε and repulsions defined by ξR = 2 and βA = 0.20.
In all snapshots, particles comprising a single cluster (deter-
mined at time t) are rendered opaque in their positions at
time t. For cases (a) and (b) that are not gelled, the same
particles are also shown in their positions at t′ = t+ ∆t. The
lag time in (a) and (b) ∆t = 25τd, where τd = d2/D is the
characteristic time for d = 1 particles to diffuse and D is
the long-time bulk diffusion coefficient determined via mean-
squared displacements. For cases (c) and (d), the configura-
tions are dynamically arrested and τd cannot be practically
measured within the timescale of simulations. Colors corre-
spond to small, medium (d = 1), and large particles, which
are shaded yellow, red, and blue, respectively. Visualizations
created with VMD [23].

and comparing their (negative) slopes, one directly com-
pares the range of interparticle correlations (as captured
by ξT ) and the characteristic range of the interparticle
interactions, respectively. Thus, given an S(k) profile ex-
hibiting an IRO peak, if ln{|rh(r)|} decays more slowly
than ln{|rc(r)|}, then the ξT associated with IRO exceeds
the characteristic (repulsive) lengthscale ξR.
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APPENDIX A: FOURIER-SPACE
CONNECTIONS BETWEEN ω(k) AND S(k)

An N particle configuration [ri] that does not violate
the hard core constraint is weighted according to the

Boltzmann factor exp[−βΩ([ri])], where:

Ω([ri]) ≡
1

2

N∑
i 6=j=1

ϕ0(|ri − rj |) (A1)

is the total potential energy due to the non-hard-core
portion of the pair potential ϕ0(r). Eqn. A1 can be
recast using the definition of the 3D dirac delta function
δ(x):

Ω([ri]) ≡
1

2

N∑
i 6=j=1

∫
dR1

∫
dR2δ(ri −R1)ϕ0(|R1 −R2|)δ(rj −R2) (A2)

Since Eqn. A2 is a convolution with respect to R1

and R2, it can be recast as a single integral in Fourier
space using the Fourier transformed potential ω(k) ≡
FT[ϕ0(r)]:

Ω([ri]) ≡
1

2

N∑
i 6=j=1

1

(2π)3

∫
dke−ik·riω(k)eik·rj (A3)

Moving the sum inside the integral in Eqn. A3 and
using the definition of the non-ensemble averaged total
correlation function,

h̃(k; [ri]) ≡ (ρN)−1
N∑

i 6=j=1

exp[−ik · (ri − rj)] (A4)

one can subsequently write

Ω([ri]) =
Nρ

2(2π)3

∫
dkω(k)h̃(k; [ri]) (A5)

which makes explicit the role ω(k) plays in favoring [ri]
states possessing certain oscillatory structural correla-
tions. Namely, any thermodynamically favorable con-
figuration [r∗i ], as weighted by exp[−βΩ([ri])], is cap-
tured by the equilibrium average total correlation func-
tion h(k) ≈ h̃(k; [r∗i ]). In turn, ω(k) sets the ener-
getic “preference” for configurations structured at certain
wavelengths k, which appear as peaks in the structure
factor since S(k) ≡ 1 + ρh(k).
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