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In common descriptions of phase transitions, first order transitions are characterized by discon-
tinuous jumps in the order parameter and normal fluctuations, while second order transitions are
associated with no jumps and anomalous fluctuations. Outside this paradigm are systems exhibiting
‘mixed order transitions’ displaying a mixture of these characteristics. When the jump is maximal
and the fluctuations range over the entire range of allowed values, the behavior has been coined an
‘extreme Thouless effect’. Here, we report findings of such a phenomenon, in the context of dy-
namic, social networks. Defined by minimal rules of evolution, it describes a population of extreme
introverts and extroverts, who prefer to have contacts with, respectively, no one or everyone. From
the dynamics, we derive an exact distribution of microstates in the stationary state. With only two
control parameters, NI,E (the number of each subgroup), we study collective variables of interest,
e.g., X, the total number of I-E links and the degree distributions. Using simulations and mean-field
theory, we provide evidence that this system displays an extreme Thouless effect. Specifically, the
fraction X/ (NINE) jumps from 0 to 1 (in the thermodynamic limit) when NI crosses NE , while all
values appear with equal probability at NI = NE .

I. INTRODUCTION

In systems with many interacting degrees of free-
dom, interesting collective phenomena are associated
with phase transitions, e.g., in ferromagnetism. Here, a
suitable macroscopic variable characterizing the state of
the system – the order parameter – typically changes its
behavior in some rather dramatic fashion. In standard
textbooks, phase transitions are classified by the Ehren-
fest scheme: first order, second order, etc. We also learn
to expect certain characteristics associated with each or-
der. Thus, across the first order transition, the order
parameter jumps, while its fluctuations are ‘normal’ (on
either side). Metastability, hysteresis, and co-existence
are other common features associated with this kind of
transition. By contrast, opposite characteristics, e.g., no
discontinuity and anomalously large fluctuations, are as-
sociated with second order transitions.

Though such properties are observed in most physical
systems, there are exceptions. In the context of one-
dimensional Ising models with long range interactions,
Thouless [1–3] found ‘mixed order’ transitions, at which
the order parameter jumps discontinuously and exhibits
large fluctuations. Since then, several systems with such
properties have been discovered [4–10]. In particular,
the term ‘extreme Thouless effect’ was coined recently
[11, 12] to describe a case where, at the transition, both
the jump and the fluctuations are maximal. In this paper,
we report another system displaying such an effect, in
the context of a minimal model of social interactions,
involving dynamic networks with preferred degrees.

In our previous studies of such networks [13, 14], we
introduced the notion that an individual (i.e., node)

adds/cuts links to others according to its ‘preferred de-
gree’: κ. The evolution of the simplest version of such
networks is: In each time step, a random node is cho-
sen and its degree, k, is noted. If k > κ, the node cuts
one of its existing links at random. Otherwise, it adds a
link to a randomly chosen node not connected to it. In
the steady state of a homogeneous system (all nodes as-
signed the same κ), this ensemble of apparently random
graphs displays quite different properties [15] from the
standard Erdős-Rényi case [16]. Taking a small step to-
wards describing an inhomogeneous society, we consider a
heterogeneous system of two subgroups, with N1,2 nodes
assigned different κ’s. Letting κ1 < κ2, we naturally refer
to the first group as ‘introverts’ (I) and the latter one as
‘extroverts’ (E). Despite the simplicity of its rules, such
a system exhibits a rich variety of properties, discovered
mainly through simulations [14]. On the analytic front,
progress has been modest, since the underlying dynam-
ics violates detailed balance and the stationary state will
have non-trivial persistent probability currents [17]. Un-
der these circumstances, to gain some insight, we turn
to limiting cases which embody the main features of the
full system. In this spirit, we consider the ultimate limit:
κ1 = 0, κ2 = ∞. In other words, these are extreme
introverts and extroverts (or XIE, for short). Specifi-
cally, we are able to find an exact expression for the sta-
tionary distribution, obtain analytic predictions for var-
ious quantities which are confirmed by simulations, and
provide good evidence that the transition acrossN1 = N2

displays an extreme Thouless effect. While preliminary
results have been reported earlier [18, 19], we will present
a more detailed study of this model here.

First, for the readers’ convenience, we provide a sum-
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mary of the preliminary findings, by including a complete
description of the model, the master equation associated
with the stochastic process, the exact microscopic dis-
tribution in the steady state, and a mapping to an two-
dimensional Ising model with peculiar interactions. In
Section III, we study the statistical properties of X (the
total number of I-E links), an ‘order parameter’ which
corresponds to the magnetisation of the Ising model. Us-
ing Monte Carlo techniques, we report findings much be-
yond those in ref. [18, 19]: including a power spectrum
study of the time traces of X, as well as some first steps
towards a finite size analysis for X, as a function of NI,E

(the number of I,E’s). These provide further evidence
for the principal characteristics associated with an ex-
treme Thouless effect. The following section is devoted
to investigations of a standard characterization of net-
works: degree distributions. In the Ising language, these
correspond to novel measures of the system, offering a
more detailed picture than the magnetisation. For sys-
tems with NI 6= NE , predictions (i.e., no fitting param-
eters) of a self-consistent mean-field theory are largely
confirmed by simulations. We end with a summary and
outlook, while the Appendices contain many of the tech-
nical details.

II. THE XIE MODEL AND THE STATIONARY
DISTRIBUTION

With the motivations for this model presented in both
the introduction and previous studies [18, 19], we pro-
vide the specifications of our model, using the language
of a social network. Our population consists of N indi-
viduals, divided into two groups: NI introverts and NE

extroverts. Their behavior is ‘extreme,’ in the sense that
the former/latter prefers contacts to none/everyone. The
rules of evolution cannot be simpler:

• In each time step, a random individual is chosen.

• If an introvert is chosen, it cuts a random existing
link.

• If an extrovert is picked, it adds a link to a random
individual not already connected to it.

Note that one link changes at every step, except when
the chosen individual is ‘content,’ i.e., a totally isolated
I or a fully connected E. Obviously, such a contented
pair cannot be present simultaneously in our model. In
this sense, our system may be termed ‘maximally
frustrated,’ a measure [14] we will not pursue here.

In simulation studies, it is customary to define one
Monte Carlo Step (MCS) as N such attempts, so that
each node has an even chance of being chosen after N
attempts. Our main interest will be the statistical prop-
erties of this system at long times, once it settles into
the stationary state. We emphasize again that, in this

FIG. 1. (Color online) The nodes of the two groups are de-
noted by circles: blue open (I) and red closed (E). The black
lines represent the active cross-links and the red dashed lines,
the frozen E-E links. For this network, the sets of k’s are:
kI = {1, 0, 1, 1, 1, 2, 1}, and kE = {6, 5, 4, 4}. Thus, this con-
figuration contributes 1, 5, 1 to ρI (k = 0, 1, 2) and 2, 1, 1 to
ρE (k = 4, 5, 6), respectively.

minimal model, there are just two control parameters:
NI,E. For large N , we may consider different ‘thermo-
dynamic’ limits, e.g., fixed difference NE − NI or ratio
NE/NI . Note also that, though the total number of links
can reach N (N − 1) /2, the maximum number of cross-
links between the two groups is

N ≡ NINE (1)

Clearly, regardless of how the system is initialized, all
the intra-communities links (I-I or E-E) will quickly be-
come static (all absent or present). Only the I-E cross-
links are dynamic, depending on which node happens to
be chosen (illustrated in Fig. 1). In other words, we
may limit our attention to the set of bipartite graphs.
Of course, the total number of cross-links, X (∈ [0,N ]),
fluctuates and should display interesting statistical prop-
erties. The first impression of such a minimal model is
that it must be trivial. In particular, it may be argued
that, since the probability for a link to be cut or added
is proportional to NI/N or NE/N , the fraction

x ≡ X/N (2)

should be simply NE/N . In the rest of this article, we
will show the behavior of x to be dramatically different.
The configuration space here consists of the NI ×NE

incidence matrices, N. We denote its elements by nij

(i ∈ [1, NI ] , j ∈ [1, NE]) which is 1 or 0 when the link
between an introvert node i and an extrovert j is present
or absent, respectively. Clearly, this configuration space
is identical to that of a NI ×NE Ising model on a square
lattice. Following the lattice gas language [20], we will
refer to n = 1, 0 as a ‘particle’ or a ‘hole.’ Meanwhile,
the dynamics of cutting/adding corresponds to a kinetic
Ising model with spin flip dynamics [21] (i.e., without
particle conservation). Since X = Σijnij and N is the
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total number of sites in the Ising system, we have the
mapping

x = (1 +m) /2 (3)

where m ∈ [−1, 1] is the magnetisation. To further this
correspondence, let us define

h ≡ ∆/N ; ∆ ≡ NE −NI (4)

with h playing the role of the magnetic field. Thus, our
interest in how x responds to NI,E translates into finding
a ‘equation of state’ m (h). In this language, the naive
expectation is trivial (and false): m (h) = h.
Of course, unlike in the Ising case, the statistical me-

chanics of the XIE model is defined by dynamical rules
rather than a Hamiltonian. Therefore, to study quanti-
ties of interest, we must first find the distribution of the
stationary state, Pss (N), as opposed to just writing a
Boltzmann factor.
With the dynamics specified, we can write the master

equation for P(N, t), the probability of finding the system
in configuration N at time t:

P(N, t+ 1)− P(N, t) =
∑

{N′}

[W (N,N′)P(N′, t)−W (N′,N)P(N, t)] (5)

where W (N′,N) is the probability for configuration N to
become N

′ in a step (an attempt). For W , we note that
the dynamics for an I node i involves cutting a random
existing link, so that ki, the number of links it has (i.e.,
particles in row i in N) will be needed. Similarly, for a E
node j, we will need pj , the number of holes in column j
in N. Letting n̄ij ≡ 1− nij , we define

ki ≡ Σjnij ; pj ≡ Σin̄ij (6)

Clearly, these variables reveal a not-so-explicit symme-
try in the dynamics of XIE. Similar to the Ising spin
flip symmetry (n ⇔ n̄), there is an additional, transpose
operation:

nij ⇔ n̄ji ⊕NI ⇔ NE (7)

We will refer to this, à la Ising, as ‘particle-hole sym-
metry,’ which will play an important role in discussions
below. A layman’s way to phrase this symmetry is: The
presence of a link is as intolerable to an introvert as the
presence of a ‘hole’ is to an extrovert.
With these preliminaries, the W (N′,N) in Eqn. (5)

reads

∑

i,j

[

Θ(ki)

ki
n̄′
ijnij +

Θ(pj)

pj
n′
ij n̄ij

]

Πkℓ 6=ijδ (n
′
kℓ, nkℓ)

N

(8)
where Θ (x) is the Heavyside function (i.e., 1 if x > 0 and
0 if x ≤ 0) and the product of δ’s ensures that only one
nij may change in a step. It is straightforward to verify
that Eqn. (5) respects particle-hole symmetry.

The dynamics defined by Eqn. (5) is clearly ergodic.
More remarkably, unlike those in less extreme models
of introverts and extroverts [13, 14], it obeys detailed
balance (shown in Appendix A). Consequently, in the
t → ∞ limit, P approaches a unique stationary dis-
tribution, which can be found by applying Pss (N) =
Pss (N′)W (N,N′) /W (N′,N) repeatedly. Imposing nor-
malization, we arrive at an explicit, closed form:

Pss (N) =
1

Ω

NI
∏

i=1

(ki!)

NE
∏

j=1

(pj !) (9)

where Ω = Σ{N}Π(ki!) Π (pj!) is a ‘partition function.’
Note that the particle-hole symmetry (Eq. 7) is manifest
here.
Interpreting Pss as a Boltzmann factor and trivially

assuming β = 1, we can write a ‘Hamiltonian’ [22]

H (N) = −







NI
∑

i=1

ln





NE
∑

j=1

nij



! +

NE
∑

j=1

ln

(

NI
∑

i=1

n̄ij

)

!







(10)
Now, this expression immediately alerts us to the level of
complexity of this system of ‘Ising spins,’ as H contains
a peculiar form of long range interactions. Each ‘spin’
is coupled to all other ‘spins’ in its row and column, via
all possible types of ‘multi-spin’ interactions! We are not
aware of any system in solid state physics with this kind
of interactions. It is remarkable that such a complex H
emerges from an extremely simple model of social interac-
tions. Meanwhile, it is understandable that computing Ω,
let alone statistical properties of macroscopic quantities,
will be quite challenging (Appendix B). Nevertheless, as
the next two sections show, we are able to exploit mean-
field approaches to gain some insight, and to predict some
macroscopic observables. For generic (NI , NE), we find
excellent agreement with simulation data. As in standard
equilibrium statistical systems, these theories fail in the
neighborhood of critical points, which turn out to be the
NI = NE line here.

III. STATISTICS OF X, THE TOTAL NUMBER
OF CROSS-LINKS

In the XIE model, the most natural macroscopic
quantity to study is X , the total number of I-E links. In
addition, its average 〈X〉 can serve as an ‘order parame-
ter,’ since it plays the role of the total magnetisation in
the Ising model. Though there is no natural temperature-
like variable in our model of social networks, there is a
natural external-field-like control parameter: h (or ∆).
Our main interest in this section is how 〈X〉 varies with
NI,E. In other words, what is the ‘equation of state’
m (h;N ) for the XIE model? If it were like the Ising
model below criticality, m (h = 0±;N → ∞) = ±ms,
where 0 < ms < 1 is the spontaneous magnetisation, ac-

companied by ordinary O
(

1/
√
N
)

fluctuations. In the
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FIG. 2. (Color online) The distributions, P (X), compiled
with the time traces of X for three cases with (NI , NE) near
and at criticality: (101, 99) (green dashed line), (99, 101) (blue
dot-dashed line), and (100, 100) (red solid line).

Thouless effect, a discontinuity would be accompanied
by anomalously large fluctuations. Here, we will find
that our m displays an extreme Thouless effect in the
thermodynamic limit, i.e., m (h = 0±;N → ∞) = ±1,
together with extraordinary, O (1), fluctuations around
m (h = 0) = 0.
The preliminary results for N = 200, displayed in Figs.

1-3 in [19] gave a hint of these remarkable properties. To
confirm and to improve on those results, we carry out
much longer runs: discarding the first 5× 107 MCS, tak-
ing measurements every 50 MCS, for up to 1011 MCS (for
the NI,E = 100 case). Using these long traces, X (t), we
find much more information than just the average 〈X〉;
we obtain a much more accurate picture for the whole
steady state distribution P (X): Fig. 2. Not surpris-
ingly, they are sharply peaked and Gaussian-like for the
off-critical cases (green and blue on line), while the dis-
tribution in the NI = NE case (red on line) is essentially
flat over most of the full range, [0,N ]. The flat plateau in
P (X) gives the impression of an unbiased random walk
(bounded by ‘soft’ walls near the extremes of the allowed
region). In stark contrast, characteristic of co-existence
in an ordinary first order transition, M (t) for an Ising
system below criticality spends much of its time hover-
ing around the spontaneous magnetizations, ±Msp, and
makes rare and short excursions from one to the other.
Another principal characteristic is metastability or

hysteresis. Though not shown explicitly here, we ob-
serve neither. When the two nodes ‘change sides,’ i.e.,
(101, 99) → (99, 101), X/N simply marches from ∼ 15%
to ∼ 85% in ∼ 3500 MCS. In other words, on the av-
erage, X changes by about two links per MCS. We also
considered having δ = 4 or 6 ‘defectors’ instead of just
two, in systems with N = 400 and 800. In all cases,
the average ‘velocity’ is approximately δ per MCS. Intu-
itively, we may attribute this to the action of the δ extra
E nodes, but it remains to be shown analytically. In all
respects, there is absolutely no barrier between the two
extremes of X ! As for criticality itself (100, 100), the
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FIG. 3. (Color online) Power spectra, I (ω), associated with
the time traces of X(t). The dashed black line is proportional
to 1/ω2. Note that the spectra associated with the two off-
critical cases (farthest from the dashed line, shown as green
dots and a blue line) are statistically identical, as expected
from particle-hole symmetry. Both scales are log10.

notion of X executing a pure random walk (RW) can be
further confirmed by studying its power spectrum. With
T = 2× 104 measurements (of runs of 2× 106 MCS), we
compute the Fourier transform X (ω) and then average

over 100 runs to obtain I (ω) ≡
〈

|X (ω)|2
〉

. In Fig. 3, we

show plots of log I vs. logω, as well a straight line (black
dashed) representing ω−2. The upper set of data points
(red on line), associated with NI = NE = 100, are statis-
tically consistent with the RW characteristic of ω−2. The
cutoff at small ω can be estimated from the finite range
available to the RW (∼ 7000 here). Since ∆X = ±1
in each attempt, we can assume the traverse time to be
about 70002 ∼= 5 × 107 attempts, or ∼ 2.5 × 105 MCS.
Given that this value is comparable to 1/10 of our run
time, it is reasonable to expect deviations from the pure
ω−2 as we approach ω ∼ 10. By contrast, the power
spectra of the two off-critical cases (lower set of data,
green and blue on line) are controlled by some intrinsic
time scale associated with both the restoration to 〈X〉
and the fluctuations thereabout. Indeed, this I (ω) is en-
tirely consistent with a Lorentzian, i.e., ∝ 1/

(

ω2 + ω2
0

)

.
Given our limited understanding of the dynamics of this
model, estimating ω0 is beyond the scope of this work.
As shown in ref. [19], some characteristics of an ex-

treme Thouless effect (presence of a jump, absence of
metastability and hysteresis, existence of a flat plateau in
P (X), etc.) can be qualitatively understood in terms of
a crude mean field approximation. That approach starts
with the exact

P (X) ≡
∑

{N}

δ (X,Σijnij)Pss (N) . (11)

and replaces every nij by its average X/N in the sum,

resulting in an approximate P̃ (X). Its maximum can be
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used to predict 〈X〉 and so, an approximate equation of
state m̃ (h;N ). Remarkably, at the lowest order in 1/N ,
this approach leads to an extreme Thouless effect [11, 12],
i.e.,

m̃ = sign (h) , (12)

the absence of metastability and hysteresis when h
changes sign, as well as a flat plateau in P̃ (X) for h = 0!

Keeping the next order in F̃ , we find

m̃ (h;N) = sign (h)− 1

hN
+ ... (13)

which provides qualitatively good agreement with most
of the N = 200 data set. Clearly, this mean-field ap-
proach captures some key features of the XIE model,
even though it is not quantitatively reliable.

Before we turn to a much better mean field theory, let
us present the rudiments of a more complete portrait, to-
wards a systematic scaling study. Specifically, we study
m (h;N) in the transition region, using simulations with
N up to 3200. Of course, unlike the Ising model, there
is no natural variable in the social network correspond-
ing to temperature. Nevertheless, the results suggest the
presence of anomalous power laws and possible data col-
lapse.

To study the behavior near criticality, we measure the
average 〈X〉 for all possible values of NI,E which corre-
spond to h ≤ 0.01, with N = 200, 400, ..., 3200. In other
words, we use the appropriate values of ∆ = 2, 4, ...32.
Starting with a half filled set of I-E links, each point was
calculated with a run of up to 5 × 109 MCS with mea-
surements made about every N/4 MCS. Verifying that
our data is consistent with particle-hole symmetry, we
present results only for h > 0 and m ∼= 1. Fig. 4a
shows results within the small regime h ∈ [0, 0.01] and
m ∈ [0.7, 1.0]. We see that, indeed, m (h;N ) approaches
+1 as N → ∞. Note that, we can access smaller h
in systems with larger N , as its minimum is 2/N [23] .
With this set of data, we make two log-log plots (Fig.
4b) showing that (i) for fixed h = 0.01, m → 1 with
N−0.71 and (ii) for fixed ∆ = 2, m → 1 with N−0.36. The
solid lines represent linear fits with correlation coefficient
(R2) greater than 0.999. Using this information, we plot
N0.71m against h−0.34 in Fig. 4c. Though somewhat
rough, this plot does qualitatively indicate data collapse
and provides the first steps towards an in-depth finite
size scaling analysis. Such a study is beyond the scope
of this paper and will be reported elsewhere [24]. If the
exponents found here are confirmed, they signal a signif-
icant deviation from the mean-field values (e.g., Eq.13):
(0.70, 0.36) as opposed to (1, 0). Of course, they also
provide fertile ground for renormalization group analy-
sis, along the lines of ref. [11, 12].

FIG. 4. (Color online) (a) m(h) for various N ’s and allowed
∆’s with h ≤ 0.01. (b) Log-log plots of indicated subset of
points in (a). Solid and dashed lines are linear fits with slope
−0.363 and −0.707, respectively. Both correlation coefficients
are greater than 0.999. (c) Scaled plots of the points in (a),
showing tolerable data collapse. Dashed line is linear, as guide
to the eye.

IV. DEGREE DISTRIBUTIONS: SIMULATION
RESULTS AND A DYNAMIC MEAN-FIELD

THEORY

In this section, we turn to a ‘mesoscopic’ quantity
which offers a more detailed perspective than the macro-
scopic X , as well as major contrasts between Ising-like
statistical systems and those associated with networks.
For the Ising model, a natural quantity to study is the
total magnetisation, which corresponds to X . But, it
is not usual to study the statistics of the magnetisation
in a row or a column. Yet, for the XIE model, the
corresponding quantity is the degree distribution, ρ(k),
which is one of the most common ways to characterise
a network. Thus, we devote the rest of this paper to
these distributions, illustrating with simulation data (for
N = 200), as well as offering a more effective mean-field
theory. Specifically, unlike the mean-field approach for
P̃ (X), we will formulate an approximate dynamics for ρ
and arrive at much better agreement with data, for all

NI 6= NE . In particular, m̃ (0.01; 200) above differs from
data by ∼ 15%, while the theory below produces a value
within 0.02%.
Before presenting the data, let us set the stage for dis-

cussing two degree distributions. In general, associated
with a network with several subgroups or communities,
we can study many such distributions, to describe the
various intra- and inter-community links. For XIE, the
intra-community links are static and so, we need to study
only two: ρI(kI) and ρE(kE), related to the degrees of the
I’s and E’s, respectively. To illustrate, a network with
ρI(1) = 5 and ρE(6) = 1 is shown in Fig. 1. From the ρ’s,
average degrees 〈kI〉 and 〈kE〉 can be found. Note that
〈kI〉 6= 〈kE〉 typically, but they are related, in the steady
state, by the following. Since NI 〈kI〉 is just the average
number of cross-links, while an extrovert has kE−NE+1
links to the I’s, we have

NI 〈kI〉 = 〈X〉 = NE 〈kE〉 −NE (NE − 1) (14)
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This complication can be bypassed, especially in view of
the particle-hole symmetry discussed above, by introduc-
ing a ‘hole’ distribution for the E’s: ζE (pE). Clearly, ζ
is intimately related to ρ, namely, ζ (p) = ρ (N − 1− p).
Meanwhile, NE 〈pE〉 = N − 〈X〉, so that a manifestly
symmetric constraint on ρ, ζ is NI 〈kI〉+NE 〈pE〉 = N .
Next, let us present the simulation results. Starting

with a network with various initial conditions (null graph,
complete graph, random half-filled), we evolve the system
according to the simple rules given above. Not surpris-
ingly, after O (N) MCS, all the I-I links are absent while
all the E-E links are present. To be quite certain that the
system has equilibrated, we discard the first 5×107 MCS.
Thereafter, we measure the degrees of each node every 50
MCS. The distributions are then obtained as the average
over 108 measurements. Shown in Fig. 5(a) are ρ (k) for
three cases: (NI , NE) = (150, 50), (125, 75), (101, 99).
Evidently, each ρ consists of two components, associated
with k ≤ NE and k ≥ NE − 1. Generally, these com-
ponent are disjoint and so, they can be identified unam-
biguously with respectively, ρI and ρE (shown with open
and solid symbols). Note that, in the (101, 99) case, de-
spite having just two members less, the ∼ 100 extroverts
are unable to create enough cross-links, so that there are
essentially no I’s with say, 50 links! Of course, this re-
sult is entirely consistent with our observations above,
showing that a typical I has only about 15 links. Apart
from having these two components, the most prominent
feature is that neither component resembles 3−|k−κ|, the
degree distribution of a homogeneous population with
preferred degree κ [13, 15]. As will be shown, they are
well approximated by Poisson distributions, an analytic
result of our mean-field theory.
What happens when the introverts ‘defect’? Though

the changes appear dramatic, they should not be a sur-
prise, given the underlying particle-hole symmetry in
XIE. Thus, we illustrate in Fig. 5(b) the degree dis-
tribution for (NI , NE) = (99, 101) (blue circles), as well
as the previous case of (101, 99) (green circles). By ex-
changing NI ⇔ NE and plotting the degree distribution
vs. p ≡ N − 1 − k, we find perfect (within statistical
errors) overlap between the blue and green data points.

A. Self-consistent mean-field approximation
(SCMF)

Given the exact steady state distribution (Eq. 9), the
ρ’s can be computed, in principle, from e.g., ρI (kI) =
∑

{N} δ (kI − Σjnij)Pss (N) (for any i). In practice, this

task is as difficult as computing P (X), so that we again
resort to a mean-field approach. The main difference be-
tween the earlier scheme and this one is that the approxi-
mation will be applied to the underlying dynamics of the
model [13, 14] (as opposed to evaluating the sum Σ{N}

above). In other words, we formulate an approximation
on the transition probabilities – for the degree of a partic-
ular node to increase/decrease by unity: R (k → k ± 1).

Once these are determined, we impose the steady state
condition

ρ̃ (k)R (k → k − 1) = ρ̃ (k − 1)R (k − 1 → k) (15)

to find ρ̃ (k) (being an approximate ρ, again denoted by a
tilde) in closed form. The strategy is as follows. Exploit-
ing particle-hole symmetry, we will consider the two dis-
tributions, ρI and ζE , as well as two sets of rates, RI,E .
Each R will depend on an unknown parameter, repre-
senting the average degree of the opposite community.
From these, explicit expressions for ρ̃I and ζ̃E can be ob-
tained. In turn, the average degrees can be computed
and the unknown parameters can now be fixed through
self-consistency. In this spirit, we refer to this scheme as
a SCMF approximation, details of which can be found in
Appendix C. Here, we simply quote the results:

ρ̃I (kI) =
λNE−kI

ZI (NE − kI)!
; ζ̃E (pE) =

µNI−pE

ZE (NI − pE)!
(16)

where λ, µ are constants which can be obtained from
NI,E alone and Z’s are normalization factors (Eqs.
C4,C10). Both are truncated Poisson distributions, since
kI ∈ [0, NE] and pE ∈ [0, NI ]. Instead of quoting λ and µ
from the SCMF calculation, we plot the full distributions
predicted by Eqs. (C5,C9), shown as solid black lines in
Fig. 5(a). We should emphasize that no fit parameters
have been introduced in this approach; the lines depend
only on the control parameters, NI,E. It is clear that the
agreement between theory and simulation data is excel-
lent for NI > NE . By symmetry, it will also be quite
good for cases with NI < NE . Indeed, disagreement be-
tween theory and data is visibly detectable only in the
tails of the next-to-critical case, (101, 99), a sign that cor-
relations can no longer be entirely neglected here. From
these distributions, we easily obtain 〈X〉 using Eq. (14).
Unlike the results from the previous Section, all of these
predictions fall within statistical errors of the data. Since
mean field schemes are not the start of a systematic set
of approximations, it is unclear why the approach here
is so much more successful at capturing the essentials of
the model.
To end this section, let us illustrate, with the sym-

metric case (100, 100), the challenges of ‘criticality.’ As
expected, there are non-trivial obstacles for both Monte
Carlo simulations and theoretical understanding. First
of all, it takes much longer for the system to settle, typ-
ically a hundred-fold longer than the NI 6= NE cases.
To compile a reliable histogram for the ρ (k), shown in
Fig. 6, we take 1010 measurements in a combination of 5
runs, each of which lasts for 1011 MCS (after discarding
the first 107 MCS for the system to settle into steady
states). Note that, to untangle ρI,E in the central pair
of points, we recorded separately whether an I or a E
node has 99 or 100 links. Of course, the distribution is
symmetric, i.e., ρI = ζE . Unlike the off-critical cases,
these distributions display broad and flat plateaux. Un-
doubtedly, the physics underlying these also gives rise
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FIG. 5. (Color online) Degree distributions, ρ, for several cases with NI + NE = 200. Simulation results for the low/high
k components, associated with introverts/extroverts, are denoted by open/solid symbols. (a) The symbols for (NI , NE) are
orange triangles (150, 50), purple squares (125, 75), and green circles (101, 99). The solid black lines are predictions from a
self-consistent mean-field theory. (b) When two introverts ‘change sides,’ a dramatic jump in ρ (k) results, with the case of
(99, 101) shown as blue diamonds.
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FIG. 6. (Color online) Simulation results of the degree dis-
tribution for the symmetric (100, 100) case. The two compo-
nents, denoted by open and solid diamonds, can be associated
with the separate distributions ρI and ρE, respectively.

to the plateau in P (X). Quantitative understanding of
these large fluctuations remains elusive, while the SCMF
prediction for this case is, not surprisingly, far from ideal.

V. SUMMARY AND OUTLOOK

In this article, we report findings concerning an ex-
traordinary phase transition in a minimal model of dy-
namic social networks with preferred degree. Consisting
of extreme introverts/extroverts, who only cut/add con-
nections, these dynamic networks have only the I-E links
and reduce to bipartite graphs. With only two control
parameters, NI,E , this seemingly trivial model displays
surprising behavior. In particular, we find compelling
evidence that, in the limit of large populations, (i) the

likelihood of a link being present, 〈x〉, jumps discontin-
uously, from 0 to 1, when NI drops below NE and (ii)
in the NI = NE case, x assumes all values in [0, 1] with
equal probability. Such remarkable properties have been
observed in other statistical systems, e.g., 1D Ising mod-
els with certain long range interactions [11, 12]. We can
place the similarity between our dynamic XIE model
and equilibrium Ising systems on firmer grounds, by map-
ping their microscopic configurations one-to-one and re-
garding the evolution of the former as Glauber spin-flip
dynamics on the latter. Thanks to restoration of detailed
balance, we are able to find an exact expression for the
XIE stationary distribution, Pss. Interpreting it as a
Boltzmann factor, − lnPss can be regarded as a ‘Hamil-
tonian’ for the spins, though much more complex than
typical Ising models. Statistical properties of our system
can now be explored along standard routes.

To study of the collective behavior arising from such
microscopics, we focus on the degree distributions and x,
the fraction of cross-connections. Since x corresponds to
m (the magnetisation in the Ising model), while h or ∆
(Eq. 4) can serve as an external magnetic field, a nat-
ural question for us is: What is the ‘equation of state,’
m (h)? Though naive expectations lead to the trivial
m = h, both simulations and mean field theories point
towards the contrary: m = sign (h), which is a hall-
mark of an extreme Thouless effect [11, 12]. Apart from
the macroscopic X , we also study degree distributions
ρ (k), ‘mesoscopic’ quantities which are commonly used
in characterizing networks. Remarkably, the predictions
from a mean field approximation, formulated at the level
of the underlying dynamics for ρ (k, t), are in excellent
agreement with data (for all NI 6= NE).

The results of this first study are encouraging and pro-
vide us with good stepping stones towards more system-
atic investigations. The most obvious question may be
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what forms do thermodynamic limits take, assuming they
exist. Preliminary studies [25] suggest that, for fixed h,
the degree distributions (16) approach non-trivial lim-
its. On the other hand, if ∆ were held fixed instead, it
is unclear what the limiting behavior is. How the sys-
tem approach such limits is the next issue. A detailed
study of finite size scaling should be undertaken [24], us-
ing both simulations and theoretical techniques. Pursu-
ing an exact computation of the partition function, and
perhaps P (X), poses a worthy challenge. The failure
of mean-field theory, especially near ‘criticality’ hints at
the importance of correlations. However, there is no spa-
tial structure in our model and so, the usual notion of
correlation length is ill defined. Nevertheless, we have
some evidence of strong correlations, in the sense that
the joint distribution, ρ (kI , kE), can be quite different
from the product ρI (kI) ρE (kE). Systematic investiga-
tions of them are straightforward and worthwhile. From
a theoretical point of view, it would be desirable to de-
velop an understanding for why the SCMF is so much
more successful than the standard mean-field approach
(Section III). Such insights may have impact beyond this
study, as they may reveal how best to formulate mean-
field approximations.
Beyond exploring these questions, we can extend the

XIE model in an orthogonal direction, arguably of
purely theoretical interest (at present). We may treat
H as a genuine Hamiltonian in a standard study of crit-
ical phenomena in thermal equilibrium. In other words,
we propose to study the statistical mechanics of a L×L
system associated with the Boltzmann factor

P ∝ exp {−β [H−BX ]} (17)

Here, β is the usual inverse temperature variable, while
the bias B plays the role of a symmetry breaking, ‘mag-
netic field’ (similar, but not identical to h in the XIE).
It is interesting to note that, while the critical control pa-
rameters of a typical system (e.g., Tc in Ising, Tc and pc
for liquid gas) are not known, they are given precisely by
βc = 1 and Bc = 0 here. For this ‘purely theoretical’ sys-
tem, work is in progress [24], to explore the usual avenues
of interest: static and dynamic critical exponents, scaling
functions, universality and the classes, etc. In the lan-
guage of renormalization group analyses (which proved
to be highly effective in dealing with other mixed-order
transitions [11, 26]), we already know that H lies on the
critical sheet and can inquire about fixed points and their
neighborhoods, irrelevant and relevant variables (e.g., if
there are others besides β − 1 and B), etc. In addition,
there are unusual challenges, such as the lack of a natural
correlation length in such a system.
Beyond the XIE model and its purely theoretical com-

panion, there is a wide vista involving dynamic networks
with preferred degrees. For instance, instead of assign-
ing one or two κ’s to a population [13, 14], it is more
natural to assign a distribution of κ’s. There are also
multiple ways to model interactions between the vari-
ous groups. For example, even with just two groups, it

is realistic to believe that an individual may have two

preferred degrees, one for contacts within the group and
another for those outside. Surely, this kind of differen-
tial preference underlies the formation of social cliques.
Beyond understanding the topology and dynamics of in-
teracting networks of the types described here, the next
natural step is to take into account the freedom associ-
ated with the nodes, e.g., opinion, wealth, health, etc., on
the way to the ambitious goal of understanding adaptive,
co-evolving, interdependent networks in general. Along
the way, we can expect the unexpected, such as the emer-
gence of the extreme Thouless effect in this XIE model,
arguably the simplest of all interacting social networks.

Appendix A: Restoration of detailed balance

In this appendix, we show that all Kolmogorov loops
are reversible in the XIE model and so, detailed bal-
ance is restored [27]. Since the full dynamics occurs
on the N cross-links, the configuration space consists
of the corners of an N -dimensional unit cube, while
adding/cutting a link is associated with traversing an
edge therein. Clearly, products of the ratios of forward
and reversed transition rates around any closed loop can
be expressed in terms of those around ‘elementary loops’
– i.e., loops around a plaquette on the N -cube. We will
show that the ratio associated with every plaquette is
unity and so, all Kolmogorov loops are reversible.
First, it is easy to see that if an elementary loop con-

sists of modifying two links connected to four different
nodes, then the actions on each link are unaffected by
the other. In other words, rates associated with oppo-
site sides of the square (loop) are the same. Thus, their
product in one direction is necessarily the same as in the
reverse. We need to focus only on situations where the
two links are connected to three nodes, e.g., ij and im.
For any such loop, let us start with a configuration in
which both are absent (nij = nim = 0). Let the states
of node be such that i has ki links, and j and m have pj
and pm ‘holes’, respectively. Then one way around the
loop is adding these two links followed by cutting them,
which can be denoted as the sequence

(

nij

nim

)

=

(

0

0

)

→
(

1

0

)

→
(

1

1

)

→
(

0

1

)

→
(

0

0

)

(A1)

and leaving the rest of N unchanged. The associated
product of the transition rates is, apart from an overall
factor of N4,

1

pj

1

pm

1

ki + 2

1

ki + 1
(A2)

Now, the reversed loop can be denoted as

(

nij

nim

)

=

(

0

0

)

→
(

0

1

)

→
(

1

1

)

→
(

1

0

)

→
(

0

0

)

(A3)
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associated with the product

1

pm

1

pj

1

ki + 2

1

ki + 1
(A4)

which is exactly equal to Eqn. (A2). From symmetry,
we can expect the same results for loops involving two
introverts and one extrovert (i.e., ij and kj). Thus, we
conclude that the Kolmogorov criterion is satisfied and
detailed balance is restored in this XIE limit. Our system
should settle into a stationary distribution without prob-
ability currents, much like the Boltzmann distribution for
a system in thermal equilibrium.

Appendix B: Considerations for computing Ω and
P (X)

Exploiting

k! =

∫ ∞

0

due−uuk (B1)

the ‘partition function’ can be expressed as

Ω =
∑

{nij}

∏

i

∫ ∞

0

duie
−uiu

Σjnij

i

∏

j

∫ ∞

0

dvje
−vjv

Σin̄ij

j

where we have used Eqn. (6). Exchanging the configu-
ration sum and integrals, we can perform the former to
find

Ω =

∫

DuDve−[Σiui+Σjvj ]
∑

{nij}

∏

i,j

u
nij

i v
n̄ij

j

which can be cast as

∫

DuDv exp







−
∑

i,j

[

ui

NE

+
vj
NI

+ ln (ui + vj)

]







Here,

∫

DuDv ≡
∫ ∞

0

∏

i

dui

∏

j

dvj (B2)

is a precursor for functional integrals if we take the con-
tinuum limit ui, vj → u (x) , v (y) and regard the resul-
tant as a two component, 1-D field theory. An attempt to
use standard steepest descent leads to the following com-
plications. As long as NI 6= NE, the maximum of the
integrand in (B) is located at a boundary of the region of
integration. However, for NI = NE , the maximum is a
line given by ui = ū, vj = v̄ and ū+ v̄ = NI,E. Both are
non-standard behavior and require more care to proceed.
Similar considerations can be given to the computation

of P (X), in the sense that its generating function

G (z) ≡
∑

X

zXP (X) (B3)

is given by Ω̃ (z) /Ω, where

Ω̃ (z) ≡
∑

{nij}

zX
NI
∏

i=1

(ki!)

NE
∏

j=1

(pj!) (B4)

i.e.,

∫

DuDv exp







−
∑

i,j

[

ui

NE

+
vj
NI

+ ln (zui + vj)

]







(B5)
Of course, this integral is fraught with the same issues as
in Ω. Obviously, even if G (z) can be found, inverting it
may pose other challenges. Thus, deriving the presence
of a plateau in P (X), as well as anomalous exponents
associated with its edges, will be a non-trivial endeavour.

Appendix C: Degree distributions in a self
consistent mean-field approach

In this appendix, we provide some technical details for
the SCMF scheme. Note that parameters (λ, µ) in the
main text are, in fact, the physically meaningful quanti-
ties (〈pE〉′ , 〈kI〉′) here.
First, consider a particular I node, with ρI (kI) being

the probability to find it having kI links. Then, provided
kI > 0, RI (kI → kI − 1) = 1/N which is the probability
that this node is chosen to act. By contrast, the exact
rate for having a link added (kI − 1 → kI) is more com-
plicated, since it depends not only on all the NE −kI +1
extroverts not connected to it, but also on how many
‘holes’ each has – through 1/pj (in Eq. 8). To proceed,
we make judicious approximations. In the spirit of mean-
field theory, we can replace 1/pj by the average 〈1/pE〉′,
where the prime stands for an average restricted to nodes
with pE > 0. Though we can formulate the theory with
〈1/pE〉′, let us make a further simplifying approximation
and replace it by 1/ 〈pE〉′. So, we write

RI (kI − 1 → kI) ∼=
NE − kI + 1

N

1

〈pE〉′
(C1)

So far, 〈pE〉′ is an unknown parameter. If we had the
distribution of an extrovert’s holes, ζE (pE), then we have
the following relation:

〈pE〉′ ≡
∑

pE>0 pEζE (pE)
∑

pE>0 ζE (pE)
=

〈pE〉
1− ζE (0)

(C2)

But, ζE (pE) is unknown. Nevertheless, at this stage, we
can exploit Eq. (15) and readily find

ρ̃I (kI) =
NE − kI + 1

〈pE〉′
NE − kI + 2

〈pE〉′
...

NE

〈pE〉′
ρ̃I (0)

∝
(

〈pE〉′
)NE−kI

(NE − kI)!
(C3)
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Before continuing to study RE , let us work with this
expression further. Since pI ≡ NE − kI is the number
of ‘holes’ associated with an I node, we recognize this
as a Poisson distribution (truncated at NE) for the hole

distribution. Imposing normalization, we find a compact
closed form, ζ̃I (pI) =

(

〈pE〉′
)pI

/ZIpI !, where

ZI =
∑

NE

ℓ=0

(

〈p〉′
)ℓ

/ℓ! (C4)

is the sum of the first NE + 1 terms of an exponential
series. Despite its simplicity, the notation ζ̃I (pI) may be
too confusing and so, we will quote the final result for ρ̃I
as

ρ̃I (kI) =

(

〈pE〉′
)NE−kI

ZI (NE − kI)!
(C5)

with 〈pE〉′ being a to-be-determined parameter.
Next, we turn to a particular E node and, exploiting

‘particle-hole’ symmetry, consider its hole distribution,
ζE (pE). Since adding a link is decreasing pE by unity,
we again have RE (pE + 1 → pE) = 1/N , the probability
that this node is chosen to act, provided pE > 0. Mean-
while, it is connected to NI − pE (i.e., kE − NE + 1)
introverts, each of which has ki links. As above, we rely
on the same arguments and replace the ki’s by a suitable
average:

RE (pE → pE + 1) ∼= NI − pE
N

1

〈kI〉′
(C6)

where

〈kI〉′ =
〈kI〉

1− ρI (0)
(C7)

Recasting Eq. (15) for ζ̃, we have

ζ̃E (pE) =
〈kI〉′

NI − pE
ζ̃E (pE + 1) (C8)

Again, this recursion relation leads to a (truncated) Pois-
son distribution in NI−pE , and imposing normalization,
we have explicitly

ζ̃E (pE) =

(

〈kI〉′
)NI−pE

ZE (NI − pE)!
(C9)

with

ZE =
∑

NI

ℓ=0

(

〈k〉′
)ℓ

/ℓ! (C10)

Of course, 〈kI〉′ here is also an unknown, to-be-
determined, parameter. Note that, along with Eq. (C5),
this result again confirms the underlying particle-hole
symmetry.
Finally, we make the last approximation. Instead of

the exact (and unknown) parameters, 〈pE〉′ and 〈kI〉′, let
us approximate them by using ρ̃I and ζ̃E in Eqs. (C7,C2)
instead. Since ρ̃I and ζ̃E depend on 〈pE〉′ and 〈kI〉′,
respectively, we may define the functions f and g:

〈kI〉′ ∼=
ΣkI ρ̃I (kI)

1− ρ̃I (0)
≡ f

(

〈pE〉′
)

(C11)

〈pE〉′ ∼=
ΣpE ζ̃E (pE)

1− ζ̃E (0)
≡ g

(

〈kI〉′
)

(C12)

Making a plot of these functions in the 〈k〉′-〈pE〉′
plane, the point of intersection then determines, self-
consistently, the values for these two parameters. In
practice, it is simple to start with, say, a trial value p0 for
〈pE〉′ and compute 〈kI〉′ through Eq. (C5). Inserting this

〈kI〉′ into Eqn. (C9), we compute ζ̃E and the associated
〈pE〉′. If this result is not p0, then vary the latter until
they agree. In other words, this process will lead us to
the solution: 〈pE〉′ = g

(

f
(

〈pE〉′
))

. Substituting these

values (〈pE〉′ and 〈kI〉′) into Eqs. (C5,C9), the degree
distributions can be plotted.
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