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Abstract:  
 
Classical molecular dynamics is used to investigate stationary and time-dependent properties of 
microfields in hot, solid density, electron-ion plasmas.  Even at the high temperatures considered 
here, such simulations require statistical potentials (QSPs) to mimic the essential quantum effects of 
diffraction and exchange symmetry for electrons.  Fortunately, key results relevant to microfield 
distributions are found to be insensitive to different, plausible QSP choices.  Atomic processes in 
plasmas will depend on the time-average of the microfields. It is not clear, a priori, what the time 
duration of this average should be. The question of how best to extract the quasi-static (low-
frequency) microfield from a classical MD simulation is explored in some detail, and the time-
averaging approach we adopt involves both plasma and atomic timescale constraints.  One of the 
major discoveries described in the paper is that for a large time interval, the time-averaged 
microfield does not significantly change. Our discussion of this first published suite of large 
simulations for plasma mixtures focuses on understanding various features and trends revealed by 
data for C/H plasmas having carbon fractions ranging from 0.01 to 1, and different temperatures 
well above TFermi . 
 
 
I.  Introduction   
 
 Fluctuations in a plasma’s charge and current densities give rise to local 
electromagnetic fields.  Equilibrium averages of these fields over macroscopic volumes 
and/or long times are negligible, but on atomic scales local field strengths can be 
sufficient to affect various elementary processes.  The most important and best studied of 
these phenomena is Stark broadening of spectral lines, caused by the stochastic electric 
microfield F(r,t) experienced by individual, radiating atoms/ions in a plasma [1,2].  The 
characteristic strength of these localized fields varies roughly as (density)2/3, so a 
thorough understanding of electric microfields remains essential for the quantitative 
spectroscopy of dense plasmas [3].  Magnetic microfields B(r,t), having strengths under 

thermal conditions of order B / F ~ T /mec
2 , where T  is the plasma temperature in 

energy units, tend not to be important unless a plasma is driven to a highly non-
equilibrium state  [4,5].  
 

During the past few decades, evolving experimental capabilities have enabled 
studies of matter of increasingly complex composition and under ever more extreme 
conditions. Of particular importance are novel high-power laser facilities such as the 



National Ignition Facility (NIF) [6] and the Orion Laser [7], as well as x-ray free-
electron lasers like the Linac Coherent Light Source (LCLS) which feature an 
unprecedented peak brightness that is a factor of more than 109 larger than third-
generation synchrotrons [8].  In the field of plasma modeling, noteworthy additions to 
the computational capabilities for spectroscopy research include the APEX microfield 
method [9,10], and classical molecular dynamics (MD) simulations of non-ideal plasmas 
[11].  The former is now a well-established prescription [12], while the latter is still a 
developing research area.  Recent surveys and conference proceedings [13-15] highlight 
several interesting MD investigations relevant to microfields [e.g., 16-19].  However, the 
limited scope and modest computational size typical of these simulations limit their 
ability to reveal trends involving different plasma conditions, or to obtain reliable 
information about statistically improbable parameter regimes.  Ongoing developments in 
simulation science make such constraints no longer inevitable.   

 
For this work we have used a version of the massively parallel classical MD code 

ddcMD which, when executed on large computer platforms, can efficiently track millions 
of particles for millions of time steps [20,21].  As the centerpiece of Lawrence 
Livermore’s Cimarron Project, ddcMD already has been used in several comprehensive 
studies of high energy density plasma phenomena [21-26].  This paper describes our first 
investigation of electric microfields, using simulations that have 1.5x105 to 2.1x106 
particles, and timesteps Δt ≤ 10−19 sec .  After the plasma had been equilibrated, the 
microfields were recorded periodically to calculate time-correlation functions.  Time-
averaged microfields were calculated by accumulating the microfields at every timestep 
inside the simulation code. 

 
 We focus on solid density, fully ionized C/H mixtures.  One key motivation for 
investigating such mixtures is the continued use of line radiation from high-Z “dopants” 
to diagnose conditions in dense, laser-produced targets [27-29].  A second is to develop 
the foundation for a forthcoming study of the APEX model, as it is applied to multi-
element plasmas [10,12].   

 
A classical system of ions and electrons interacting through Coulomb forces tends 

to collapse.  To avoid this unphysical behavior, Monte Carlo calculations of dense 
plasma properties have been based on ion-only schemes -- the one-component plasma 
(OCP) model [30] of unscreened ions embedded in a uniform electron fluid, or a model 
of ions interacting via Yukawa potentials that represent the static electron screening of a 
polarized electron fluid [31].  The ion-only approach also was used in some early MD 
studies of microfields in high-density plasmas [e.g., 32,33].   A major advance was the 
introduction of so-called quantum statistical potentials (QSPs) to classical MD 
simulations of high-temperature plasmas containing both electrons and ions.  These 
potentials, which “regularize” the Coulomb interaction at short range, originally were 
devised to mimic quantum effects in the calculation of stationary, configurational 
properties of classical Coulomb systems [as discussed by, e.g., 34], but Hansen and 
collaborators [35-37] extended the use of QSPs to the time-dependent domain.  The 
main advantage thereby gained is that one can study consequences of correlations 



among all the charges in a system – something not possible in ion-only approaches – and, 
with MD, to follow the time evolution of these effects.    

 
Although virtually all classical electron-ion MD simulations now use some 

version of QSPs, concerns persist about unintended and perhaps unphysical 
consequences of doing so (see, e.g., [21-26]).  Therefore, in Sec. II we focus on this 
frequently ignored issue and investigate the sensitivity of particle and microfield 
probability distributions, and microfield autocorrelation functions, to various QSPs.  We 
found that for the physical regimes considered in this paper, the choice of QSP does not 
affect the short-time-averaged microfield distribution that is relevant for atomic processes 
in a plasma.   Of course, quantum molecular dynamics (QMD) methods avoid the need 
for QSPs by describing the electrons via (quantum) density functional methods [34].  
However, in QMD only the ions actually are treated dynamically, using a Born-
Oppenheimer scheme that – time-step by time-step – determines just the stationary 
(equilibrium) electron density for the extant configuration of ions.  Because QMD time-
steps are set by ion motions, this more rigorous approach is incapable of investigating 
the faster dynamical electron effects of relevance here. 

 
In Sec. III we turn our attention to different prescriptions for extracting the quasi-

stationary, “slow” microfield distribution from the more rapidly evolving distribution of 
total field strengths.  Because only the slow component contributes to the quasi-static 
Stark splitting of atomic states, this separation must be carried out before electron-ion 
MD results can make direct contact with traditional line broadening methods. We found 
that, within limits that we identify, the slow microfield depends only weakly on the 
averaging time, which is a great benefit for modeling atomic processes influenced by 
dense plasma microfields.  For simplicity, the computations of these two sections are 
restricted to pure carbon plasmas. 

 
 In Sec. IV, we present and discuss simulation results for microfield distributions 
in several carbon/hydrogen plasmas of varying composition and temperature. Here, 
each ion species α  has a specified charge, mass, and number of particles, denoted by 
Zα ,Mα ,Nα{ }, and mean density nα = Nα / Ω, where Ω  is the system volume. The mean 

electron density, ne = Ne / Ω = Zα∑ Nα / Ω = Zα∑ ξα( )Nion / Ω = Znion , is fixed by charge 

neutrality, with ξα = Nα / Nion  being the α  species’ relative concentration.  The present 

simulations have fractional carbon abundances of 0.01 ≤ ξC ≤1, and a range of 

temperatures well above the degeneracy limit given by TFermi = h2 (3π 2ne )
2/3 / 2me .   

 
 Finally, in Sec. V, we collect our principal findings. 
 
 
II.  Microfield Sensitivity to QSPs  
 
 For a homogeneous and isotropic system, ensemble-averaged local densities 
nκ (r)  of various species κ = (e,{α})  surrounding a given charge of species μ  are 



functions only of the scalar distance r, and can be specified in terms of pair distribution 
functions, viz., gμκ (r) = nκ (r) / nκ .  These distributions represent the configurational 

averages of the separations of just the μ - and κ -particle pairs [38], viz., 
 

gμκ (r) = Ω
NμNκ

'  δ r + rμi − rκ j( )
j=1

Nκ

∑
i=1

Nμ

∑ ,       (1) 

 
and knowledge of them enables one to compute corrections to ideal gas results for a 
system’s thermodynamic functions.  In Eqn. (1) rμi  denotes the location of the ith particle 

of species μ , and the prime on the second sum means that the term j=i is to be omitted if 

κ = μ . The averaging process itself involves pair interaction energies uee(r),  ueα (r),  etc{ }  
of all species; for point charges these energies are pairwise additive.  Further, in the 
thermodynamic limit one has gμκ (r) = gκμ (r), and for all practical purposes this equality 

is reproduced by our large simulations.  
 
 The distributionW F[r1]( )  of vector fields that a given particle “1” experiences 

likewise depends on a configurational average involving other particle positions, and 
because of homogeneity and isotropy its relation to the distribution P(F)  of scalar field 
strengths is  

P(F) = 4πF 2W F[r1]( ) = 4πF 2 δ fi1 − F[r1]
i≠1
∑⎛⎝⎜

⎞
⎠⎟

,      (2) 

 
where the summation represents contributions fi1 to the total field F[r1]  of all other 

particles, for a particular set of separations {ri1 = r1 − ri }.  There is enough similarity of 

form between Eqs. (1) and (2) to suggest that the sensitivity of the gμκ{ } to different 

QSPs will be indicative of how much QSPs influence various species’ microfield 
distributions.   
 
 To demonstrate this connection, we used the hypernetted chain (HNC) 
approximation [38] with different QSPs to compute the three pair distributions in fully 
ionized carbon plasmas; many studies have established the good agreement between 
such HNC results and the distributions extracted from MD.   Our reference potentials 
are those adopted by Hansen and collaborators [38]: 
 

uee
S (r) = T (ln2)exp −(4πr2 ) / (ln2)Λee

2⎡⎣ ⎤⎦{ } ,       (3) 

uκμ
DB (r) = (ZκZμe

2 / r) 1− exp(−2πr / Λκμ )⎡⎣ ⎤⎦ ,       (4) 

 

where Λκμ = 2πh2 /MκμT is the thermal de Broglie wavelength of a particle whose mass 

Mκμ is the reduced mass of the pair (κ , μ) .  These expressions originally were developed 



to incorporate separate quantum phenomena in a classical Boltzmann factor that 
approximates the two-body Slater sum in a system’s configuration integral: Superscript S 
identifies that part of the QSP representing the effect of (anti)symmetry on the (e,e) 
interaction in an unpolarized gas [39,40], and superscript DB, the part representing 
regularization of the Coulomb term by diffractive smearing, in the form derived by 
Dunn and Broyles [41].   
  
 The given form of uS is fairly standard (with simulations either including it, or 
not), but there are two other diffractive QSPs frequently used in classical MD.  One, the 
potential of Kelbg [42], 
 

uκμ
K (r) = (ZκZμe

2 / r) 1− exp(−4πr2 / Λκμ
2 ) + (2πr / Λκμ )erfc 2 π r / Λκμ( )⎡

⎣
⎤
⎦ ,   (5) 

 
is obtained from a perturbative solution of the two-particle Bloch equation.  Numerically, 
uK  is similar enough to uDB [43] that we do not include it in the comparisons that follow.  
The other, introduced and employed by Calisti, Talin, and collaborators [44,45], is 
phenomenological and constructed to improve the modeling of atomic 
ionization/recombination energetics in MD simulations.  For an ionic core of charge Ze 
one defines a regularization length δZ such that Ze2 /δ Z equals the energy of binding of 
an electron to that core, and then sets the (e,Z)  QSP to be 
 
ueZ
CT (r) = (−Ze2 / r) 1− exp(−r /δ Z )[ ].        (6) 

 
 
With this choice, there is no dependence on plasma parameters, and no regularization of 
the interaction between charges of like sign.  At high temperature δZ  can be 
substantially larger than ΛeZ  (the difference growing with increasing temperature), in 

which case this modified Coulomb attraction is much weaker than that specified by 
either Eqn. (4) or (5). 
 
 Figure 1 displays HNC pair distribution functions in a fully ionized carbon 
plasma ξC = 1( )  for various QSP choices.  The conditions are T=200eV and 

approximately normal C solid density, nC = 1023 / cm3 , so the typical distance between 

carbon nuclei is (3 / 4πnC )1/3 = 2.53a0 .  The first panel (1a) shows all three distributions, 

gee(r),  geC (r),  and  gCC (r) , as determined by our reference choice,  “DB+S”, Eqs. (4) and 
(3); each of the other panels shows one these three pair distributions, but computed from 
the coupled HNC equations with different QSPs.  Consider, first, the distribution of C+6 
pairs.  On the scale of these curves, diffractive softening of the Coulomb interaction has 
no discernible effect on gCC (r), and neither does the inclusion of the (e,e) symmetry 

interaction uS .  In contrast, the plotted (e,e) pair distributions show sensitivity both to 
diffractive softening (DB vs. CT) and to the symmetry interaction (DB+S vs. DB).  The 
largest difference, by far, involves the geC (r)curves corresponding to alternative 



regularizations of the (e,C+6) interaction (CT).  Under the specified conditions, the 
difference between small-r screening lengths is considerable, δC = 0.33a0  vs. 

 ΛeC / 2π = 0.15a0, and the consequent, twice greater depth of uDB vis-à-vis uCT leads to an 

order-of-magnitude electron density enhancement near each nucleus.   
 
 Since temperature is the lone QSP variable for hot and dense (but non-
degenerate) systems, statements in the above paragraph also apply, at least qualitatively, 
to the plasma conditions and compositions we will study in Sec. IV.  We decided, 
therefore, that our P(F)  sensitivity studies could be limited to just three QSP choices: 
CT, DB, and DB+S.  Comparisons involving the first two of these three highlight 
differences arising just from alternative regularizations of the Coulomb interactions; 
those involving the last two, just the influence of quantum symmetry constraints on (e,e) 
pairs; and those involving the first and third, the combined effects of all plausible QSP 
differences – (1) regularization, or not, of the (e,e) and (ion,ion)  Coulomb interactions; 
(2) inclusion, or not, of the (e,e) symmetry constraint; and (3) the alternative approaches 
to regularizing the (e,ion) interaction. 
 
 In Figure 2a we have plotted the distribution of scaled microfields, 
P(β ) = P(F / F0 ) = F0P(F), experienced by C+6 ions in a plasma with the same conditions 

as given above; here and everywhere below, fields are measured in atomic units, viz., 
β = F / F0 , with F0 = e / a0

2 = 27.2 Volt / a0 .  These are the total field strengths computed 

by our MD code, with contributions from all particles.  The different regularizations of 
the Coulomb interaction, as defined in Eqs. (4) and (6), clearly have a large effect.  In 
particular, the probability of high fields at C+6 ions is much reduced by the weaker (e,C+6) 
attraction afforded by uCT .  On the other hand, the influence of the (e,e) symmetry 
constraint on the total field distribution at carbon ions is minimal.  In Figure 2b we see 
that in this plasma the total field distribution at electrons is insensitive to the different 
QSP choices we considered. 
 
 Complementary, time-dependent microfield information is contained in the 
field’s autocorrelation function [19,46,47],  
 
A(t) = F(t) ⋅F(0) F(0) ⋅F(0) .        (7) 
 
 
Dominant features of A(t)  can be expected near the timescale of collective motions by 
electrons, te = 1/ω e , where ω e  is the usual electron plasma frequency, and near the 

corresponding ion timescale, tion = 1/ω ion, where for a mixture 

 

ω ion = ωα
2

α∑( )1/2
= ω e ξαZα

2me / ZMα( )α∑⎡⎣ ⎤⎦
1/2

.       (8) 

 
 In Figure 2c we show this normalized quantity A(t)  for fields at C+6, determined 
by data from separate, but otherwise equivalent, simulations with the three different 



QSP choices.  At all times, the autocorrelations found with and without the (e,e) 
symmetry interaction (DB+S and DB) are essentially the same.  That the CT curve 
exhibits somewhat slower de-correlation at early times can be explained as follows:  
Relative to that of CT, the DB Coulomb regularization yields more electrons close to 
each nucleus, as indicated by the curves for geC (r).  Not only are these additional nearby 

electrons producing stronger total fields F , as shown in Fig. 2a, but also their individual 
contributions to F  are changing faster because of their enhanced proximity.  Taken 
together, these facts lead to quicker de-correlation in the DB cases.  However, for all 
three QSPs the prompt electron de-correlation is complete within the timescale 
te = 0.023 fs .  Following that, there is a time interval of order many te  during which the 

total field’s autocorrelation function exhibits a plateau and changes very little.  Only 
much later, when t ≈ tC = 1/ωC = 1.4 fs  and ionic de-correlation is complete, is there a 

merging of curves representing different regularizations of the (e,ion) Coulomb 
interaction (DB or CT).  Similar comments apply to autocorrelations we obtained from 
MD simulations of the C/H plasma mixtures described in Sec. IV. 
 
 
III.  Extraction of the Slow Microfield Component   
 
 The distribution of strengths of the total microfield due to each of a plasma’s 
constituent species is straightforward to determine from an MD simulation.  However, 
as noted in the introductory remarks, this is not the quantity relevant to traditional line-
broadening calculations.  Such work treats rapidly changing Stark perturbations as 
collisions that alter the wave train of a radiating ion, and slowly changing Stark 
perturbations as the cause of a quasi-static splitting of the radiator’s levels [see again, 
1,2].  The fast/slow microfield division – into what often is referred to as its high-
frequency and low-frequency components – unfortunately is not just a matter of 
identifying the electrons’ and the ions’ contributions to the distribution of the total field 
F  at an ion of interest.  As emphasized by Baranger and Mozer [48], some part of the 
electrons’ microfield must be subtracted from the high-frequency component and 
included with the low-frequency one, because each perturbing ion carries with it a quasi-
static shielding cloud composed of an ever-changing group of electrons.  The Coulomb 
coupling parameter ΓeZ = Ze2 / aZT , with the ion sphere radius aZ  being defined by 

4πaZ
3ne / 3 = Z , is a measure of the efficacy of this shielding and, therefore, of the 

importance of the subtraction process.  Although the complicating effects of any bound 
electronic states (whose existence is necessary to spectroscopy) are not considered in the 
simulations, we note that these states seldom occur for ions when conditions are such 
that ΓeZ exceeds unity [49].   

 
 In a version of the one-component plasma (OCP) model, mobile electrons are 
completely uncoupled from a uniform background charge density representing the ions, 
and hence ΓeZ = 0 .  In this model, the computed microfield is that of the electrons only 

and perforce it approximates the high-frequency component.  The Holtsmark 
distribution represents the OCP’s limiting case of uncorrelated electrons.  On the other 



hand, if every “particle” in a system corresponds to an ion shielded by a fixed electron 
screening cloud, the computed microfield approximates just the low-frequency 
component.  The weak coupling (small ΓeZ ) Yukawa screening models of Baranger and 

Mozer [48], of Hooper [50], and APEX [9,10,12], are in this category.  
 
 Dufty [51] used time dependent properties of a plasma’s charge density 
fluctuations to formally separate the electrons’ dynamic, “collisional” effects from the 
static, (ion) “Stark” effects on a spectral line profile, but as yet there are no explicit 
calculations based on his final expressions.  More recently, Nersisyan et al [52] published 
the PMFEX microfield method. It allows one to drop the constraint of fixed, Yukawa 
screening and to calculate equilibrium contributions to the total microfield from both 
electron and ions, using potentials of mean force, uκμ

MF (r) = −T ln[gκμ (r)].  However, as it 

stands, this approach is not useful for spectroscopy because there is no way to carry out 
the requisite short-time averaging of the total field. 
 
 Multi-component MD simulations do not involve such issues, and therefore offer 
the ability to test directly the accuracy and limitations of various microfield models. 
Within the past decade, Calisti and colleagues [19,44] have carried out MD simulations 
to obtain time-dependent microfields in hydrogen plasmas, using a straightforward 
definition of the slow and fast fields that a radiator is experiencing at time t.  We 
adopted their concept, but use an integral that involves only past times, ′t ≤ t , 
 

Fslow
[τ ] (t) = 1

τ
F(t ')dt '

t−τ

t

∫ ,           and      Ffast
[τ ] (t) = F(t) − Fslow

[τ ] (t).    (9) 

 
These authors argued that a good choice for the averaging interval τ  would yield only a 
weak correlation between the ion component of F  (which dominates Fslow ) and the 

remaining, electron component (which dominates Ffast ), and they expected τ to lie 

between the proton and the electron response times, tH = 1/ωH and te = 1/ωe .  

Unfortunately, their simulations for a system with ΓeH = 0.2  showed only a gradual and 

ongoing de-correlation of Fe  and Fion  throughout that interval, and left unanswered the 

question: what is the best choice of averaging interval τ ?  (Of course, the correlation of 
these fields goes to zero eventually because, over macroscopic times, thermal microfields 
produce no net forces.) 
 
 To explore the averaging issue further, we first used the reference QSPs (DB+S) 
to compute distributions of Fslow

[τ ]  experienced by C+6 ions in a solid density carbon 
plasma, for a wide range of τ -values and for three temperatures, T = 83, 200, and 830eV 
(corresponding to ΓeC = 0.78,  0.32, 0.08).  These simulation results are displayed in the 

panels of Figure 3.  Readily apparent at all temperatures is a decrease in the mean 
strength of the slow field with increasing intervalτ , as more and more of the fluctuating 
(vector) field is averaged out.  Also evident is the trend that, as T increases and electrons 
become less localized near the ions, it takes longer for strong fields, due mostly to 



electrons, to be diminished by time averaging.  It is possible for both of these results to 
be anticipated on the basis of comments pertaining to Fig. 2.  But, what is unexpected is 
the Fslow

[τ ]  “τ  plateau” – the limited range of τ -values over which there is little change in 

the Fslow
[τ ]  distribution – suggesting completion of the Ffast / Fslow  separation.  Here, this 

plateau occurs between about 0.2 and 0.6 fs, well within the interval (te, tC ).   

 
 According to the autocorrelation data plotted in Figure 4a, at each temperature 
the τ plateau of Fslow

[τ ]
  distributions is located near the end of the temporal plateau 

exhibited by A(t) .  Our efforts to improve on just a visual estimate of an optimal τ -value, 
in the sense that small deviations about this value result in minimal overall changes to 
P(Fslow

[τ ] / F0 ) , led us to devise a “gradient of the distribution” metric. For two 

distributions, constructed from fields having tau-values τ1 and τ 2 , the gradient is 

defined as P(Fslow
[ τ1] / F0 )− P(Fslow

[ τ2 ] / F0 )
2

/ log(τ1)− log(τ2 ) , where ...
2
 indicates the L2 

norm.  The distribution gradient is shown in Fig. 4b.  For smaller τ -values, the 
microfield distribution is changing rapidly, leading to large gradient values. For larger τ
-values, the distributions change less and, in this case, the gradient exhibits a minimum 
at τ -values around 0.5 to 1.0 fs; this coincides with the end of the temporal plateau 
exhibited by A(t) .   

 Without a substantial set of Fslow
[τ ]  distributions, and/or specific total field 

autocorrelation function information, some estimate of the optimal averaging interval is 
needed if Fslow  is to be determined via Eq. (9).  The general constraint te < τ < tion is not 

sufficient to this end.  The optimal interval also must satisfy certain atomic criteria 
because bound states are involved when Fslow

[τ ]  is employed to determine Stark shifts for 

spectroscopy [3].  Specifically:  
 

(i) Let torb(Z,n)  be the Bohr orbital period of an electron bound to an ionic core of 

charge Z and having principal quantum number n; then, torb(Z,n) < τ  is needed 

to insure that this level retains stationary properties in the presence of temporal 
Fslow  variations.  [53]. 

(ii) Let ΔE = hΔω  be the unperturbed energy of transition between two extant 
levels in a plasma ion of spectroscopic interest (a “radiator”); then, τ  Δω >1 is 
needed to insure that the Stark effect these levels experience due to Fslow  is 

quasi-static.  
 
 Both inequalities can be quantified once the concept of plasma continuum 
lowering is introduced.  In brief, continuum lowering (CL) represents the leading order 
of a plasma’s “environmental impact” on the bound states of its embedded ions – 
charges surrounding a radiator produce an electrostatic potential that is roughly constant 
over atomic dimensions, and this potential effectively reduces binding energies (i.e., 
lowers the continuum).  The simplest CL picture is one of pressure ionization, whereby 
the only levels remaining have Bohr orbits contained within the ion sphere [54]. This 



gives a density -- but not temperature -- dependence to the uppermost bound level, i.e.,
nmax

2 = (ZaZ / a0 ) , and, hence, to the constraint involving the orbital period,   
 

τ > torb(Z,nmax ) = (2πnmax
3 / Z 2 )(a0 /αc) = (2π 3)te .             (10) 

 
By setting the minimum frequency difference to be that between levels nmax and nmax −1, 

and then using the same expression for the uppermost level in the presence of pressure 
ionization, the second of the above constraints becomes 
 

τ > 1
Δω[(Z,nmax ), (Z,nmax −1)]

≈ torb (Z,nmax )
2π

= te 3 .             (11) 

 
The similarity of these two results, and the fact that more realistic CL theories tend to 
yield greater lowering of the continuum (viz., smaller values of nmax ) [24], together 

indicate that τ > tatom = 10te  represents a conservative constraint due to atomic 

phenomena.   
 
 Unless other criteria are available we recommend the geometric mean expression,  
 

τ * = tatomtion  ≥  20te   ,                                                                                                    (12) 

 
for estimating of the optimal averaging interval.  It always gives a τ-value in harmony 
with the above constraints, and its value for the solid density carbon plasma, τ * = 0.56 fs , 
agrees with the results plotted in Fig. 4.  It should be noted, though, that this formula 
does not contain any temperature dependence, such as is suggested by the curves in Fig. 
4b.  And, it should be recognized that use of the microfield Fslow

[τ ] , with anyτ < tion , 
excludes the so-called “ion dynamics” [13] – the broadening effect of perturber ions’ 
motions on the cores of spectral lineshapes.  
 
 We also looked at two numerical schemes, based solely on information available 
at a simulation’s current time-step, which might provide accurate distributions of Fslow .  

In one of these, whose fields we label Fslow
[e] , we subtract from the F  at each C+6 ion the 

fields of all electrons currently within its ion sphere; in some sense, these electrons are 
“in collision” with the central C+6.  In the other, whose fields we label Fslow

[all ], we subtract 
from F the fields of all other charges currently within that sphere.  Field strength 
distributions for both of these simple models are compared in Fig. 5 with that for Fslow

[τ ] , 

with τ = 0.6 fs , for the 200 eV, solid density carbon plasma.  Included in this figure is the 
distribution forFion , as well as the first of several distributions we obtained from MD 

simulations of equivalent ion-only systems involving Yukawa interactions,  
 
uαγ
Y (r) = (ZαZγ e

2 / r)exp(−ker),                 (13)     



 

with screening due just to electrons: ke = 4πe2ne /T .   
 
 Several points are apparent from the plots in Fig. 5.  First, the important extent to 
which partial screening by electrons reduces the total ionic field Fion is indicated by the 

difference between that field’s distribution and those for the various Fslowalternatives.  
Moreover, in this case the actual (dynamic) electron screening is approximated very well 
by a (static) Yukawa model.   However, neither of the single-time definitions,Fslow

[e]  and 

Fslow
[all ], is particularly accurate: the former overestimates the likelihood of strong fields 

while the latter underestimates it.   Such behavior limits their use in plasma lineshape 
studies, since strong fields control the prominent wings of Stark broadened lines.  Still, 
for certain purposes one or the other of these simple pictures may suffice. 
 
 Lastly, the sensitivity of Fslow  to different QSP choices was checked.  Figure 6 

shows curves for P(Fslow
[τ ] / F0 )  that result when the different QSP interactions (DB+S, DB, 

or CT) are used in the carbon plasma simulation.  Here, in sharp contrast to the curves 
of Figure 2a, we see very little difference among distributions. This welcome news is due, 
we believe, to the fact that Fslow  is primarily a screened ionic field, and the distribution of 

ions – as represented by ion-ion pair functions gαγ (r) – is itself insensitive to the QSP 

alternatives. 
 
 
IV.  Microfields in Carbon/Hydrogen Mixtures 
  
 We now shift focus to properties of microfields in plasmas with more than one 
ion species, in order to explore composition-related issues and trends. Results described 
below involve the single QSP choice, DB+S, and for the most part low frequency fields 
are Fslow

[τ ] , with the MD’s autocorrelation functions being used to determine τ .  

 
 This large set of simulations involves fully ionized carbon/hydrogen mixtures, 
with the C+6 number fraction being ξC = 1

100, 1
3, 2

3,  or 1, and the temperature being 

T = 83,  200,  or 830eV .  In all cases, the total ion density is fixed

nion = nH + nC = 1x1023cm−3, so the pure carbon plasmas discussed earlier represent a 
subset of these conditions.  There were at least 104 carbon ions in each of the simulations, 
and unless noted otherwise our microfield data pertain to these particles.  For reference, 
some important plasma parameters are collected in Table 1; note that these simulations 
span a wide range of (e,C+6 )coupling strengths, 0.04 ≤ ΓeC ≤ 0.78.    

  
 Figure 7 shows distributions of the scaled total field, P(β ) = P(F / F0 ) , 

experienced by the C+6 ions in C/H plasmas having various conditions: In panel 7a are 
curves for all four carbon fractions ξC  at the single temperature T = 83eV , and in 7b are 



curves for the same fractions, but at T = 830eV .  In the lower panels are distributions of 
the scaled total field at carbon ions when the carbon fraction is fixed at ξC = 1

3 (panel 7c), 

or at ξC = 1
100(panel 7d), but temperature varies.  The upper panels reveal that at fixed 

temperature, low or high, strong total fields, i.e., those for which β = F / F0 >1, are 

relatively improbable when carbon is just a trace impurity, ξC = 1
100 ; higher carbon 

fractions do yield greater probabilities of strong fields, but the increase of those P(β )–
values is modest as ξC  increases from 1

3 to unity.  The lower panels reveal that at either 

of the fixed carbon fractions, ξC = 1
3 or ξC = 1

100 , stronger total fields are more likely 
when the temperature is low.  To understand these trends, we note that holding T fixed 
while increasing ξC  has the effect of increasing electron-ion coupling, since in this case 

ΓeC = const ⋅[1+ 5ξC ]1/3.  The same is true when ξC  is held fixed and the temperature is 
lowered, since now ΓeC = const /T .   In both cases the increased electron-ion coupling 

means that each carbon ion has more close electrons, thus enabling a larger total, 
electron plus ion, field to occur.  Lower temperatures also enhance the consequences of 
ion-ion repulsion, thereby lessening ionic contributions to the total field.  
 
 As before, we find that the microfield distribution trends are connected to the 
behavior of the pair distribution functions gκμ (r){ } for the various plasma conditions and 

compositions.  In the upper panels of Fig. 8 are plotted HNC results for the three pair 
distributions involving C+6 ions, for all the carbon fractions, and for T=200eV; in the 
lower panels are the same pair functions, but at fixed fraction, ξC = 1

3 , and for the 

temperatures T = 200 and 830eV .  (HNC solutions for lowest temperature, 83eV, did not 
converge).  Note that the distribution of electrons about a carbon ion shows, as is 
expected from the comments above, a much stronger dependence on T than onξC .  For 

the repulsive ion-ion cases, pair distribution variations with T and with ξC  are more 

comparable. 
 
 In the three panels of Fig. 9 we show distributions of the instantaneous total 
fields experienced by all three species, when carbon is a trace impurity (ξC = 1

100) and 

has little effect on the results for electrons or protons.  At the highest temperature,
T = 830eV  (top panel), the plasma is nearly ideal and all three distributions, being 
dominated by e and H+, are essentially the same.  At the intermediate temperature, 
T = 200eV (center panel), there is a more substantial density enhancement of electrons 
near the carbon ions, and this results in a tendency of C+6 to experience total fields 
somewhat stronger than those experienced by the electrons or protons; the singly 
charged particles, however, still exhibit identical total field distributions.  At the lowest 
temperature (bottom panel), the carbon disparity is enhanced further.  These distribution 
features certainly would not be unexpected for pure Coulomb systems.  But, our 
simulations employ QSPs (DB+S) that affect the various pair interactions differently:  
Electron pairs also are subject to the symmetry term, Eq. (3), while proton pairs are not; 
plus, the Coulomb regularization, Eq. (4), is much more influential when the pair 
interaction involves an electron.  With reference to Fig. 2, it is clear that any/all of these 



QSP differences affect total field distributions in the C/H plasmas much less than the 
alternative regularization (CT), Eq. (6), does. 
 
 Figure 10 presents scaled distributions P(Fslow

[τ ] / F0 )  for several τ -values, at three 

representative (T,ξC )  combinations (see also Fig. 3 for pure carbon plasma results).  As 
temperature and the carbon fraction both increase in these successive panels, there 
clearly is a reduction in the separation of distributions (note the changing vertical axis 
scales).  However, even at the printed scale of these plots, each case shows evidence of a 
plateau in the same interval as before, 0.2 < τ ( fs) < 0.6 .  Inspection of analogous results 
for all the other simulated C/H conditions suggests that temperature is the more 
important parameter here, and this impression is supported by the “autocorrelation 
gradient” results plotted in Fig. 11; these curves include those shown in Fig. 4b.   
Additionally, the gradient plots exhibit relative minima atτ -values somewhat higher 
than one would infer from the corresponding sequences of P(Fslow

[τ ] / F0 )  distributions, but 

still close to the prediction of Eq. (12).   
 
 We have emphasized that the microfield quantity of prime interest for plasma 
spectroscopy is the distribution P(Fslow ).  Results from MD simulations offer the ability 

not only to evaluate other, less computationally demanding prescriptions for obtaining 
this information, but also to produce such distributions under conditions for which other 
methods may be unreliable or inappropriate (e.g., only MD has the potential to study 
systems out of thermal equilibrium).  To this end, Fig. 12 presents several comparison 
plots.  Each panel contains a set of low-frequency microfield distributions, at the 
location of a C+6 ion, for specific (T,ξC )  conditions in dense C/H plasma: The three left 

panels show distributions at the fixed carbon fraction, ξC = 1
100 , and varying temperature, 

T = 83,  200,  or 830eV ; the three right panels, distributions at ξC = 2
3  and the same three 

temperatures.  At fixed ξC , the difference between the Fion  probability distribution and 

that for either the dynamically screened field Fslow
[τ ]  or the static, Yukawa screened field

FY  is greater at lower temperatures.  And, at fixed temperature, these differences are 
greater when the carbon fraction is higher.  As in the discussion pertaining to Fig. 7, 
both trends correlate with changes in the electron-carbon coupling parameter ΓeC , 

whose smaller values (see Table 1) reflect weaker screening of C+6.  Hence, in the plasma 
with the lowest carbon abundance and the highest temperature, differences among the 
distributions for all three of the above microfield quantities are minimal. 
 
 The close agreement, in all these simulations, between the distributions for FY  

and Fslow
[τ ]  is perhaps surprising, and raises two questions.  (1) Why does a simple static 

screening approximation so accurately mimic the true dynamical electron situation, over 
a wide range of conditions?  (2) Why are the differences between the posited ion-ion 
interaction of the Yukawa scheme, Eq. (11), and the MD’s effective ion-ion interaction 
(the potential of mean force), uαγ

MF (r) = −T lngαγ (r), unimportant for any of the conditions 

explored?  The answer to the first question, we believe, is that the timescale to establish a 



given ion’s field Fslow
[τ ]  is of order τ *, and in the dense plasmas of interest here this 

timescale is much larger than the timescale te = 1/ωe  needed to establish the ion’s quasi-

stationary screening cloud.  The answer to the second question, we believe, involves the 
fact that the field Fslow

[τ ]  at an ion is produced mostly by distant charges ( r > aZ ), as 
discussed in connection with Fig. 5. Therefore, for slow microfields the very different 
small-r behaviors – divergent Yukawa potential vs. convergent potential of mean force – 
are of little consequence.  Further, when plasma coupling is weak, the HNC theory 
yields potentials of mean force that have Yukawa forms at long range [38].  
 
 As part of a forthcoming, MD-based study of the APEX microfield method for 
multi-ionic systems, we now are performing plasma simulations that involve higher Z 
radiators, more complicated mixtures, and more extreme conditions.  These data should 
prove useful also for guiding possible extensions, to plasma mixtures, of existing 
schemes that produce fast numerical fits for single-species Yukawa microfield 
distributions [31,55]. 
 
 
 
V.  Summary 
 
 In this paper we addressed, through numerous large MD simulations, the issue of 
how QSP choices affect the probability distributions of microfields that arise in a plasma 
mixture; our specific cases involved dense and fully ionized C/H of varying composition 
and temperature.  We showed that trends observed in the microfield distributions had 
counterparts in related plasma pair distribution functions, and that these trends could 
largely be understood in terms of differing values of the electron-ion coupling parameter, 
ΓeZ = Ze2 / aZT .  Next, we highlighted the question of how to compute the distribution of 

quasi-static (low-frequency) fields at an ion, which is essential for the standard treatment 
of Stark broadening of spectral lines.  The best definition, we contend, involves a 
running time average of the total microfield at each ion over an interval τ , whose 
magnitude we studied in some detail.  We argued that this interval is fairly narrowly 
constrained.  Moreover, it includes a small range of τ -values – a τ -plateau – for which 
the resulting distribution P(Fslow

[τ ] ) changes very little, and is not sensitive to the different 
QSPs we considered.   
 
 With this information in hand we then carried out a suite of simulations to 
explore how changing a plasma mixture’s composition and/or temperature affects 
microfield distributions at the different charge species.  In our discussion of various 
trends exhibited by these mixture results, we observed again the important role played 
by the electron-ion coupling parameter.  Also, for each mixture, the τ -plateau in its 
P(Fslow

[τ ] ) distributions was located.  We noted some evidence involving both the field 

distributions and their autocorrelation functions that the range of optimal τ -values is 
more sensitive to temperature (at fixed composition) than it is to composition (at fixed 
temperature); this point merits further attention.   Lastly, we reported excellent 



agreement between our electron-ion MD simulations and our MD simulations involving 
just Yukawa-screened ions, for several C/H mixtures and temperatures, and discussed 
likely reasons why this is so. 
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Table I.  Plasma parameters for the C/H mixtures discussed in Sec. IV. 
  
 
  

 ξC = 1 ξC = 2/3 ξC = 1/3 ξC = 1/100 

Z  6.0 4.3 2.7 1.0 

aC [a0] 2.5 2.8 3.3 4.5 

te [fs] 0.023 0.027 0.034 0.055 

           83eV 0.78 0.70 0.60 0.44 

ΓeC  :200eV 0.32 0.29 0.25 0.18 

         830eV 0.08 0.07 0.06 0.04 

 
  



Captions for Figures 
 
Figure 1.  (Color online) HNC pair distribution functions in a fully ionized carbon 
plasma at 200 eV and 1023 carbon atoms/cm3 for various QSP choices. (a) Reference 
choice “DB+S”, and (b) to (d) gCC(r), geC(r), and gee(r) for different QSPs. 
 
 
Figure 2.  (Color online) Effect of the QSP on the total field probability distribution and 
autocorrelation function, for solid density carbon plasma at T=200 eV. 
 
Figure 3. (Color) Slow microfield distributions at different temperatures T, for a range of 
averaging intervals τ. 
 
Figure 4. (Color online) (a) Autocorrelation and (b) distribution gradient in a carbon 
plasma as a function of time. These plots illustrate the very large dynamic range that the 
microfield simulations need to cover.   
 
Figure 5. (Color online) Microfield distributions resulting from different schemes to 
approximate the slow microfield. 
 
Figure 6. (Color online) Slow microfield distributions at C+6 resulting from different QSP 
interactions. 
 
Figure 7. (Color online) Distributions of the scaled total field F experienced by the C+6 
ions in C/H plasmas having various conditions. 
 
Figure 8. (Color online) HNC calculations of the C/H pair correlation functions: (a) – 
(c) for fixed T = 200 eV; (d) – (f) for fixed carbon abundance ξC = 33%.  
 
Figure 9. (Color online) Distributions of the total field experienced by electrons (e), 
hydrogen ions (H), and carbon ions (C) at different temperatures, in C/H plasma with 
carbon abundance ξC = 33%.  
 
Figure 10. (Color online) Slow microfield distributions at C+6 for different temperatures 
and carbon abundance fractions. 
 
Figure 11.   (Color online) Distribution gradients in C/H plasma mixtures as a function 
of time for (a) T =  83 eV, (b) T = 200 eV, and (c) T = 830 eV. 
 
Figure 12. (Color online) Scaled microfield distributions at C+6  ions in C/H plasmas 
with various temperatures T and carbon fractions ξC.  Labels denote fields F = Fion, Fslow

[τ ] , 
and FY. 
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