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Electron screening of ions is among the most fundamental properties of plasmas, determining the
effective ionic interactions that impact all properties of a plasma. With the development of new
experimental facilities that probe high energy-density physics regimes ranging from warm dense
matter to hot dense matter, a unified framework for describing dense plasma screening has become
essential. Such a unified framework is presented here based on finite-temperature orbital-free density
functional theory, including gradient corrections and exchange-correlation effects. We find a new
analytic pair potential for the ion-ion interaction that incorporates moderate electronic coupling,
quantum degeneracy, gradient corrections to the free energy, and finite temperatures. This potential
can be used in large-scale “classical” molecular dynamics simulations, as well as in simpler theoretical
models (e.g., integral equations and Monte Carlo), with no additional computational complexity.
The new potential theoretically connects limits of Debye-Hückel/Yukawa, Lindhard, Thomas-Fermi,
and Bohmian quantum hydrodynamics descriptions. Based on this new potential, we predict ionic
static structure factors that can be validated using x-ray Thomson scattering data.

PACS numbers: 34.20.Cf, 52.27.Gr, 52.25.Kn, 71.10.Ca

I. INTRODUCTION

Accurate modeling of dense plasmas often requires
very large-scale molecular dynamics (MD) simulations.
Reaching the mesoscopic scales of nonequilibrium trans-
port can necessitate millions to billions of particles [1]. To
achieve these scales while still maintaining a predictive
capability, pair potentials that are simple in form (prefer-
ably analytic), rigorously derived, and wide-ranging are
of immense utility; they are also of use in integral equa-
tions, such as the hypernetted chain equations, and in
Monte Carlo simulations. Moreover, as MD simulations
have as their primary input a potential (or force), it is
essential that a deeper understanding is formulated of
the physical underpinnings of the plethora of available
potentials, which can be derived from include Debye-
Hückel/Yukawa, Lindhard, Thomas-Fermi, Bohmian hy-
drodynamic theories, etc. [2–4]. This is of particular in-
terest today as new high energy-density facilities, such as
the National Ignition Facility (NIF) and the Linac Co-
herent Light Source (LCLS), begin generating high qual-
ity data across large regions of parameter space [5, 6].
In particular, while plasma screening is well understood
at very high temperatures, we desire a description that
spans into the warm dense matter (WDM) regime where
condensed matter behavior appears; WDM occurs in gi-
ant planets, fast ignition experiments, and other labo-
ratory experiments [7]. Insights into plasma screening
across orders of magnitude in temperature and density
also reconcile issues arising in quantum hydrodynamics
(QHD) [8], including recent controversies regarding novel
quantum potentials obtained from the Bohmian formu-
lation [9–14].
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In this paper, we focus primarily on linear screening.
When the screening is describable in terms of a dielectric
response of the form ε(k) = 1 + (λsk)−2, one obtains the
celebrated Yukawa potential (also known as the Debye-
Hückel or screened Coulomb potential)

φ(r) =
Ze

r
e−r/λs , (1)

where Ze is the impurity charge and λs is the screening
length. Since the pioneering work of Debye and Hückel
[15], the Yukawa form has been applied widely to elec-
trolytes, colloids, and dilute plasmas [3, 4]. In a hot, di-
lute system, the screening length associated with the elec-
trons is given by λD =

√
kBTe/(4πe2n) (Debye-Hückel

(DH) screening), whereas in a dense plasma, it is given
more generally by λ−2TF = 4πe2(∂n/∂µ) (Thomas-Fermi
(TF) screening) to account for degeneracy effects. Here,
n is the mean electron density, e is the elementary charge,
kB is the Boltzmann constant, Te is the electron temper-
ature and µ is the chemical potential. We will generalize
the Debye-Hückel/Yukawa model to incorporate gradi-
ent corrections and quantum exchange-correlation effects
in the free energy that extend the Yukawa form toward
moderate electron coupling.

The paper is organized as follows. In Section II, we
derive an analytic generalization of the Yukawa potential
to include finite-temperature gradient corrections in the
free energy and exchange-correlation effects. An analysis
of the potential and numerical results are then presented
in Section III. In Section IV, we compare our model to
similar potentials used in the field within the framework
of quantum hydrodynamics. Finally, conclusions are pre-
sented in Section V.
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II. MODEL FORMULATION

In this section, we proceed in small steps to illustrate
the relative contributions to the overall screening theory.
We begin by reviewing the basic Thomas-Fermi screen-
ing model and its formulation as an orbital-free density
functional theory (OF-DFT) to yield a screened potential
valid over the entire temperature range. In Section II A,
we then add a finite-temperature gradient correction to
the kinetic energy and find that a qualitatively new func-
tional form emerges under certain conditions. Finally, in
Section II B, we include the exchange-correlation (XC)
contribution at long wavelengths and obtain XC correc-
tions while retaining an analytic form useful across wide
ranges of coupling and degeneracy.

To allow us to focus on linear screening properties, we
incorporate the strongly interacting localized states into
an effective nuclear charge Z∗e and examine the proper-
ties of the weakly interacting “free” states [7]. We will
use atomic units (i.e., e = me = ~ = 4πε0 = 1) for the
remainder of this work. Consider the grand potential [16]
for the free electrons n(r) in the presence of an external
potential produced by the ionic cores, which we write as

Ω = T [n] +
1

2

∫∫
dr′dr

n(r)n(r′)

|r− r′|

+

∫
dr [vext(r)− µ]n(r) + Fxc[n], (2)

where T [n] is the kinetic energy functional, the second
term is the Hartree (classical) electron-electron interac-
tion, vext(r) is an external potential arising from the ionic
cores, µ is the chemical potential, which ensures charge
neutrality, and Fxc[n] is the exchange-correlation con-
tribution. To obtain an analytic result, we employ an
“orbital-free” approach in which several approximations
are made for the kinetic energy term; we will return to
the issue of the exchange-correlation contribution in Sec-
tion II B. In the long-wavelength limit, the kinetic energy
contribution takes the local-density (or TF) form [16] of

T ≈ TTF [n] =

√
2

π2β5/2

∫
dr

[
ηI1/2(η)− 2

3
I3/2(η)

]
, (3)

with n(r) =

√
2

π2β3/2
I1/2(η(r)), (4)

where the Fermi-Dirac integral of order p is defined as
Ip(η) ≡

∫∞
0
dxxp/(1+ex−η), and β = 1/Te is the inverse

thermal energy of the free electrons (here, kB has been
absorbed into the temperature, so that it is expressed in
energy units). Upon minimizing the functional (2) with
respect to n, by setting δΩ/δn = 0, we obtain the Euler-
Lagrange equation

vext(r) = µ− 1

β
η(r)−

∫
dr′

n(r′)

|r− r′|
. (5)

If we next introduce the perturbations vext ∼ δvext and
n ∼ n0 + δn, where n0 is the mean free electron density,

we obtain the susceptibility (in Fourier space)

χ(k) =
δn(k)

δvext(k)
=

−1

c0 + vee(k)
, (6)

with c0 = (π2
√

2β)/I−1/2(η0), (7)

where vee(k) = 4π/k2, k = |k| and η0 = η(n0) from the
relation (4). Taking the external potential to be from a
collection of point ions yields the relation

δn(k) = −vee(k)χ(k)
∑
n

Z∗eik·Rn , (8)

where the ions are located at positions Rn. Using the
approximation n ≈ n0 + δn and the Poisson equation
∇2Φ = −4πρ, we can solve for the total electric potential
as

Φ(r) =
∑
n

φn(r−Rn), φn(r) =
Z∗

r
e−r/λTF , (9)

where r = |r|, and the TF screening length can be ex-
pressed explicitly as

λ2TF =
c0
4π

=
π
√

2β

4I−1/2(η0)
. (10)

This well-known result is the dense plasma Yukawa
screening potential with λTF(n0, Te) as the TF screen-
ing length (in the high temperature limit, this naturally
reduces to the Debye length).

Up to this point, the effective ion-ion potential (9)
incorporates linear, electron screening in the absence
of gradient corrections to the free energy or exchange-
correlation effects, where the screening length is obtained
from relations (4) and (10). Accurate Padé approximants
to the relevant Fermi integrals and their derivatives and
inversions can be found in [17, 18]. Note that while the
Yukawa potential captures a great deal of the screening
physics over the full temperature range with a simple
analytic form, it will exhibit several major failures in
the predicted electron screening cloud that are associ-
ated with TF theory. Of note are (i) the electron density
is singular at the ionic core, (ii) the density decays too
rapidly far from an ion, and (iii) the density will always
decay monotonically (see for example Ch. 6 in [19]). All
three of of these pathologies will be addressed in the next
section.

A. Gradient-Corrected Potential

We now improve the TF result through systematic cor-
rections to the grand potential. As the primary weakness
of the TF functional is its treatment of a uniform electron
gas, we include the finite-temperature Kirzhnits gradient
correction [20, 21] to the kinetic energy, which we write
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as

T ≈ TTF [n] + TK [n,∇n], (11)

TK =
3
√

2π2

8
λβ3/2

∫
dr
I ′−1/2(η)

I2−1/2(η)
|∇n|2, (12)

where η is calculated from the relation (4). Note that,
while we are primarily interested in gradient corrections,
we also include a factor of λ to allow the model to span
both the true gradient-corrected TF limit (λ = 1/9) and
the traditional von Weizsäcker correction at Te = 0 (λ =
1), however all calculations presented in this work use
the value λ = 1/9. Now, repeating the above procedure,
we obtain the gradient-corrected susceptibility

χ(k) =
−1

4πλ2TF + πνλ4TFk
2 + vee(k)

, (13)

with ν =

√
8β

3π
λI ′−1/2(η0), (14)

where the prime in (14) denotes differentiation with re-
spect to η0.

The parameter ν characterizes the strength of the gra-
dient correction in the free energy and will obviously de-
pend on the mean density and temperature of the free
electrons. For ν < 1, which occurs for large densities
and/or temperatures, this form readily admits the ana-
lytic potential

φn(r) =
Z∗

2r

[
(1 + α)e−r/λ− + (1− α)e−r/λ+

]
, (15)

where the various coefficients are calculated as

λ2± =
νλ2TF

2± 2
√

1− ν
, α =

1√
1− ν

. (16)

As expected, the TF Yukawa (TF-Y) result is returned
as ν → 0, which is equivalent to the high temperature (or
density) limit with α→ 1, λ+ → 0, and λ− → λTF. Nat-
urally, the traditional DH limit is included in the high-
temperature limit.

For the case ν > 1, we write α′ = 1/
√
ν − 1 (where

α′ ∈ R) and obtain the oscillatory potential

φn(r) =
Z∗

r
[cos(r/γ−) + α′ sin(r/γ−)] e−r/γ+ , (17)

where the length scales are given by

γ2± =
νλ2TF√
ν ± 1

. (18)

Equations (15) and (17) give the exact gradient-corrected
screening (EGS) potential to linear order in the absence
of exchange-correlation effects.

While (15) is functionally similar to TF-Y, (17) is qual-
itatively different, a result directly connected with gradi-
ent corrections beyond TF. In the cool, dilute regime,
the gradient-correction predicts that a weak attraction

between the ions is possible, a result consistent with the
onset of Friedel oscillations [22, 23]. The functional forms
of (15) and (17) will arise within any model that takes
next-order gradient corrections into account [24, 25], as
they merely add higher powers of k2 to the denominator
of (13), and here we have obtained the specific coefficients
in the warm to hot, dense limit.

In Figure (1), we compare all three length scales: the
two new screening lengths (16) and (18) and the classical
Debye-Hückel length λD. The qualitative changes seen
can be understood as lines cutting through the phase
diagram in Figure (3) and crossing the curve λ+ = λ−,
which will be discussed later.

FIG. 1. (Color online) Screening lengths λ± and γ+ for EGS
(green, solid) compared to λTF for TF-Y (blue, dotted) and
λD for DH (blue, dashed). The top shows the lengths as a
function of Te with the fixed mean electron density n0 = 1022

cm−3, while the bottom shows the lengths as a function of n0

with the fixed temperature Te = 1 eV. The bifurcation points
on each EGS curve corresponds to the monotonic-oscillatory
transition.

Using Equation (8), we can also calculate the electron
densities implied by the various pair potentials. For the
traditional TF-Y case, the density fluctuation around a
given ion is given by

δn(r) =
Z∗

4πλ2TFr
e−r/λTF (19)

and has the well-known singularity at the ionic core. Us-
ing the EGS potential for both monotonic and oscilla-
tory cases respectively, the electronic density fluctuation
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around an ion is

δnmon(r) =
Z∗α

4πλ2TFr

[
e−r/λ− − e−r/λ+

]
, (20)

δnosc(r) =
Z∗α′

2πλ2TFr
e−r/γ+ sin(r/γ−). (21)

From these relations, we can immediately see that the
EGS potential correctly predicts a finite cusp at an ionic
center for either case, where the monotonic case is shown
in Figure (2). At large distances from the center, it can
also be shown that the electron density predicted by the
EGS potential will always decay faster than a density
resulting from the linearized TF theory. Finally, we ob-
serve that the oscillatory potential (ν > 1) yields Friedel-
like oscillations in the corresponding density fluctuation.
Hence, the inclusion of the gradient correction (12) to
obtain Equations (15) and (17) is not only a quantitative
improvement over the full range of temperatures, but it
also improves three qualitative features lacking in a TF-
based model: (i) a finite cusp in the electron screening
cloud at an ionic core, (ii) a more rapid decay in the den-
sity far from an ion, and (iii) the possibility of Friedel
oscillations. Note that while the correct cusp condition
is not satisfied for either λ = 1 or λ = 1/9, λ could be
varied to an intermediate value to recover this property.

FIG. 2. (Color online) Comparison of free electron density
deviations from the mean, n0, about a point impurity at the
origin for TF-Y (blue, dashed) and EGS (green, solid), where
n0 = 1022 cm−3 and Te = 5 eV. The inset is the same plot on
a semi-log scale. Note that EGS correctly predicts δn(0) to
be a finite cusp, and as r → ∞, it predicts a lower electron
density. These effects arise due to the fact that the Kirzhnits
correction (12) penalizes not only gradients but low densities
as well.

B. Exchange-Correlation Effects

The new analytic inter-ionic potentials of (15) and
(17) were obtained so far in the absence of an exchange-

correlation (XC) functional. To address this issue, we
must examine how the presence of XC effects alter
the coefficients of (13) and therefore require the long-
wavelength expansion of the full response function. We
can establish the exact connection between the suscep-
tibility and the local field correction (LFC) G(k) given
by

χ(k) =
χ0(k)

1− vee(k)χ0(k) (1−G(k))
, (22)

where χ0(k) is the usual static Lindhard response func-
tion

χ0(k) = −4

∫
dp

(2π)3

[
f0(p + k)− f0(p)

|p + k|2 − |p|2

]
, (23)

with f0(p) ≡
[
1 + eβ(|p|2/2−µ)

]−1
, (24)

and the LFC can be written in terms of the exchange-
correlation function through the relation

G(k) = − 1

vee(k)

δ2Fxc[n]

δn(k′)δn(k′′)
, k = |k′ − k′′|. (25)

The expansion of the inverse Lindhard function can read-
ily be shown to be

χ−10 (k) ≈ −4πλ2TF − πνλ4TFk
2, (26)

and hence the EGS potential can also be viewed as the
long-wavelength limit of Lindhard response theory. Sim-
ilarly, in this limit, the LFC is formally known to be

G(k) ≈ γ0k2 =
(

1− κ0
κ

) πk2
4kF

, (27)

where the Fermi wavenumber is kF = (3π2ne)
1/3, and κ

and κ0 are the isothermal compressibilities for interact-
ing and noninteracting electron gases, respectively [26].
Together, these results yield an exact, long-wavelength
susceptibility of the form

χLFC(k) =
−1

4π(λ2TF − γ0) + πνλ4TFk
2 + vee(k)

. (28)

Note that this has the same functional form as (13) but
with a correction due to the compressibility relation aris-
ing from the LFC. The compressibility corrections yield
a more accurate potential (up to moderate coupling) but
do not change the form. As we can see, the leading
order term (27) enters only into the TF component of
the expansion, however higher order corrections to G(k)
can themselves induce oscillations even in the absence of
quantum gradient corrections [27, 28]. The coefficients
of the EGS potential are hence modified to incorporate
this moderate coupling effect as

λ2± →
νλ2TF

2b± 2
√
b2 − ν

, α→ b√
b− ν

(29)
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for the monotonic case and

γ2± →
νλ2TF√
ν ± b

, α′ → b√
ν − b

(30)

for the oscillatory case, where b = 1− γ0λ−2TF.
While the compressibility is not known exactly, very

accurate predictions have been calculated. For example,
the parameter γ0 can be approximated by neglecting the
correlation contributions and using the fit from [7, 29]
given by

γ0 ≈
1

8
βΘ [h(Θ)− 2Θh′(Θ)] , (31)

where the degeneracy parameter is defined as Θ ≡
Te/EF , with EF = k2F /2, and h(Θ) is given by

h(Θ) =
N(Θ)

D(Θ)
tanh

(
Θ−1

)
, (32)

N(Θ) = 1 + 2.8343Θ2 − 0.2151Θ3 + 5.2759Θ4, (33)

D(Θ) = 1 + 3.9431Θ2 + 7.9138Θ4. (34)

III. RESULTS

A. Regimes of Validity

The TF-Y model can be viewed as the first order cor-
rection to a purely Coulombic system. As Te is lowered
from infinity, the length scale λTF becomes finite and
eventually comparable to the characteristic length scale
of the system (the ion sphere radius, ai = (4πni/3)−1/3).
When ai ∼ λTF, the approximation of bare Coulomb in-
teractions is no longer valid. This crossover is equivalent
to the point at which the number of particles within a
Debye sphere has reached unity.

Now that we have the gradient-corrected potential, we
can apply the same reasoning to establish a regime of va-
lidity for a TF-Y system. Within the framework of the
EGS model, λ− acts as the modified Debye-like screen-
ing length, and the next-order length-scale to arise from
the gradient correction is λ+. The TF-Y model should
then lose its validity when λ+ ∼ λ−. In Figure (3),
we have shown both ai = λTF and λ+ = λ− in the
(ni, Te) parameter space; the latter curve being equiv-

alent to I ′−1/2(η0) = 3π
√
Te/8 when G(k) = 0. We have

chosen to show this with Be and used a TF fit to approx-
imate Z∗ (see Table IV of [30]). As the white line shows,
Coulombic interactions lose validity to Yukawa interac-
tions which in turn lose validity to the EGS interaction
as Te and ni decrease (solid black line). We have also in-
cluded the curve λ+ = λ− with LFCs (dashed black line),
which appears to enhance the importance of the gradient
corrections. Behind each of these curves, we have addi-
tionally plotted a colormap of the electron-electron (e-e)
coupling strength, which is taken as

Γee =
e2

aeTe
, ae =

(
3

4πn0

)1/3

. (35)

Here, the electron kinetic energy is approximated using

Te ≈ 2

∫
dp

(2π)3

(
p2

2

)
f0(p), (36)

where f0(p) is the Fermi-Dirac distribution defined in
(24). From the figure, it is clear that the gradient cor-
rections are larger in regions with stronger e-e coupling.

FIG. 3. (Color online) Phase space regions of screening model
validity for Be. Unscreened Coulombic interactions lose va-
lidity for temperatures and densities below λTF = ai (white),
and similarly, the Yukawa interaction loses validity below
λ+ = λ− (black). For the latter condition, we have shown
the cases with (dashed) and without (bold) local field correc-
tions. Behind these curves, a color plot of Γee is shown to
demonstrate regions of strong e-e coupling.

B. Correlation Functions

Finally, we present ion-ion radial distribution func-
tions, gii(r), and the corresponding static structure fac-
tors calculated from the relation

Sii(k) = 1 + nhii(k). (37)

Here, hii(k) is the Fourier transform of the total cor-
relation function defined by hii(r) ≡ gii(r) − 1. We
compute these correlation functions using the Ornstein-
Zernike equation

hii(r) = cii(r) + n

∫
dr′hii(|r− r′|)cii(r′), (38)

and the hypernetted-chain closure relation

gii(r) = exp {hii(r)− cii(r)− βZiφi(r)} , (39)

where cii(r) is the direct correlation function (see for ex-
ample Ch. 10.3 in [31]). The calculations were performed
for Al with the ionization taken as the valence Z∗ = 3 at
solid density and Te = 0.5 eV as shown in Figure (4). As
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expected, the EGS potential predicts a lower repulsion
between ions than the TF-Y model due to the reduced
electron densities near the ionic centers, however in this
case, the overall screening effects are enhanced from the
diminished densities in the far field.

FIG. 4. (Color online) Radial distribution function (a) and
static structure factor (b) comparisons between TF-Y (blue,
dashed) and EGS (green, solid) models for Al. In each case,
we have set Z∗ = 3, ni = 6 × 1022 cm−3 and Te = 0.5 eV.
The EGS potential predicts a lower repulsion between ions
than the TF-Y model due to the reduced electron densities
near the ionic centers, however the overall screening effects
are enhanced from the diminished densities in the far field.

IV. COMPARISON TO QHD MODELS

Recently, a “novel attractive force” between ions based
on a quantum hydrodynamics (QHD) formulation has
been derived by Shukla and Eliasson (SE) [9–11]. De-
spite issues associated with linearized formulations [12],
which is our interest here, the Bohmian formulation of
QHD predicts an ion-ion potential similar to our (15) and
(17), albeit from a very different starting point. Unfor-
tunately, the Bohmian formulation cannot be rigorously
extended to finite-temperature or include additional con-
tributions in a self-consistent way. The underlying rea-
son for this limitation is that Bohmian QHD arises from
a property of single-particle dynamics, which yields the
so-called quantum force or potential.

We desire a QHD framework that makes a direct con-
nection to the free energy functional, so that we can in-

corporate the results of this paper, when QHD is needed
[32]. Following the QHD formulation of Bloch [33], which
was generalized by Ying [34] within the formalism of
DFT, the equations of motion for the quantum fluid are
written as

∂n

∂t
+∇ · (nv) = 0, (40)

∂v

∂t
+ (v · ∇)v = −∇

(
δF
δn

)
, (41)

where the free energy F = Ω + µ
∫
drn(r) with the

grand potential Ω defined in (2). In equilibrium, these
equations obviously yield the Euler-Lagrange equation
(δΩ/δn = 0) for the density, thus all quantum force terms
arise naturally and self-consistently through the free en-
ergy for a finite temperature many-body system. The
equilibrium linear response of Blochian QHD is therefore
consistent with our formulation.

We can now examine in detail the SE potential within
the context of a free energy. If we neglect the exchange-
correlation contribution and evaluate our expression (13)
at zero temperature and for λ = 1, we do recover the
Bohmian QHD prediction, revealing that Bohmian QHD
is equivalent to the TF model with the von Weizsäcker
correction. This limiting case is consistent with the
fact that von Weizsäcker [35] originally derived his func-
tional to describe one-electron systems (or, opposite-spin,
two-electron systems), and it is therefore not straight-
forward to extend to finite-temperature many-body sys-
tems. Thus, our potentials (15) and (17), being consis-
tent with a QHD theory of the form (40) and (41) that
includes the free energy, greatly improves upon the SE
potential. Perhaps most importantly, it also reveals that
the SE potential is not “novel” in the sense that any cor-
rectly formulated linear screening potential should have
the properties we have discussed, like finite electron den-
sities or the possibility of oscillations, which lead to an
attractive potential.

V. CONCLUSION

In summary, we have connected disparate viewpoints
of linear screening in dense plasmas, including Debye-
Hückel/Yukawa, Lindhard, and Bohmian QHD models.
By formulating the screening problem in terms of den-
sity functional theory and response functions, we are
able to systematically include corrections that incorpo-
rate Coulomb coupling and quantum degeneracy effects.
We have shown that coupling corrections can be included
directly through the local field correction (or equiva-
lently the exchange-correlation potential) in the long-
wavelength limit without changing the functional form
of the Yukawa potential. Furthermore, gradient correc-
tions, which are either quantum or short-wavelength cou-
pling in nature, also yield an analytic, ion-ion potential.
This effective potential, which is represented analytically
in either Equation (15) or (17) depending on the size
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of the parameter ν in (14): improves the fidelity of the
Yukawa model, correctly predicts a finite cusp in the elec-
tron density at ionic cores and allows for the onset of
Friedel oscillations without compromising any computa-
tional complexity in the model.

By comparing our results in the context of “Blochian”
QHD [34] (which naturally incorporates self-consistent
many-body physics, including exchange-correlation, gra-
dient corrections and finite temperatures) to those de-
rived from the “Bohmian” QHD (which is derived from
a one-particle picture), we find that an ion-ion poten-
tial from Blochian QHD (equivalent to EGS) should be
favored over SE and any other Bohm-like formulation,

and hence EGS supersedes SE. An important next step
beyond this work is to numerically validate the predic-
tions with non-linear screening models and experimental
measurements of the structure factor.
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