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Abstract

Three-dimensional excitable systems can selforganize vortex patterns that rotate around one-

dimensional phase singularities called filaments. In experiments with the Belousov-Zhabotinsky

reaction and numerical simulations, we pin these scroll waves to translating inert cylinders and

demonstrate the controlled repositioning of their rotation centers. If the pinning site extends only

along a portion of the filament, the phase singularity is stretched out along the trajectory of the

heterogeneity which effectively writes the singularity into the system. Its trailing end point follows

the heterogeneity with a lower velocity. This velocity, its dependence on the placement of the

anchor, and the shape of the filament are explained by a curvature flow model.

PACS numbers: 05.45.-a, 82.40.Ck, 82.40.Qt
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I. INTRODUCTION

Processes far from equilibrium can create complex patterns that are difficult to predict

from their atomistic or local dynamics. This emergence of spatial complexity often results

from comparably simple transport processes. A classic example are reaction-diffusion media

which generate dissipative structures such as stationary Turing patterns, traveling waves,

and spatio-temporal chaos [1–3]. These structures are universal in the sense that they are

observed across a wide range of physical, chemical, and biological experiments. Specifically,

rotating spiral waves of excitation are observed in systems as diverse as active galaxies [4],

catalytic reactions [5], and bee colonies [6]. In addition, they can orchestrate important

biological functions such as the timing of contraction waves during child birth [7] or induce

life-threatening conditions such as cardiac arrhythmias [8].

While spiral waves have been studied intensively over the past decades, their three-

dimensional counter-parts have attracted less attention. These scroll waves rotate around

one-dimensional phase singularities called filaments. In general, these space curves are not

static but move according to their local curvature κ and difference in rotation phase (“twist”)

[9–11]. In simple cases, this motion obeys

ds

dt
= ακN̂, (1)

where s, N̂ and α denote the filament position, its unit normal vector, and a system-specific

line tension, respectively. Negative values of α can induce a turbulent motion of the filament

[9, 12], whereas positive values cause curve shrinking dynamics for which filament loops

annihilate and filaments connecting external surfaces converge to straight lines.

Recent studies show that filaments can attach to inactive heterogeneities [13, 14]. Most

experiments on this type of vortex pinning employ the Belousov-Zhabotinsky (BZ) reaction

[15] which is an important model of excitable and oscillatory reaction-diffusion media. Scroll

waves, however, exist also in biological systems such as the human heart [8] for which pin-

ning could occur at anatomical features (e.g. blood vessel and papillary muscle insertion

points) as well as infarction-induced remodeled myocardium. Regardless of the specific sys-

tem, pinning of scroll waves implies wave rotation around the heterogeneity whereas simple

filament termination is observed at heterogeneities much larger than the free rotation orbit

[16]. Pinning is subject to topological constraints, alters the rotation frequency, reshapes
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the global wave field, and potentially induces twist [13, 16–18]. Recent studies have also

shown that scroll waves self-wrap around thin cylindrical heterogeneities [19] and unpin due

to advective perturbations such as external electric fields [20].

In this Letter, we report the pinning of scroll waves to moving heterogeneities (realized as

thin glass rods) and show that a partially pinned filament stretches out along the trajectory

of the anchor. The tail end of the filament does not remain stationary but follows the

heterogeneity at a speed that is independent of the anchor speed. Its velocity and shape

depend on geometric aspects and the curvature flow dynamics of the homogeneous system.

These experimental and numerical results open up interesting possibilities for the study of

excitable systems with dynamic heterogeneities.

II. EXPERIMENTAL METHODS

Our experiments use a thick layer of BZ solution in a cylindrical glass vessel (diame-

ter 5.6 cm). The system has a free solution-air interface and its viscosity is increased by

addition of xanthan gum (0.4 % w/v) and agar (0.05 % w/v). The initial concentrations

of the reactants are: [NaBrO3] = 62 mmol/L, [H2SO4] = 175 mmol/L, [malonic acid] =

48 mmol/L, and [Fe(phen)3SO4] = 37.5 mmol/L. Details regarding the chemical prepara-

tion and viscosity measurements have been published in [21]. All experiments are carried

out at room temperature. We use a monochrome video camera equipped with a dichroic

blue filter to monitor the chemical wave patterns. The heterogeneity is a vertical glass rod

(diameter 1.1 mm) attached to a motor-driven linear actuator. The rod is submerged into

the solution from the top down to create a constant gap of depth d between the bottom of

the rod and the surface of the container base [Fig. 1(a)]. In our experiments, we vary the

value of d between 0.2 and 0.75 cm while keeping the height of the medium, h, constant at

1.1±0.1 cm. We also perform experiments in which d is essentially zero.

III. RESULTS AND CONCLUSIONS

Figures 1(b-e) show an image sequence of a pair of counter-rotating scroll waves in a thick

layer of the BZ solution. The local gray levels are the result of light absorption over the entire

thickness of the sample. Absorption changes along this third dimension are not resolved by
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our set-up. The rotation period of the scroll waves is 320±30 s and their wavelength is

about 0.5 cm. Initially both filaments are linear and oriented parallel to the optical axis

of our set-up. The associated wave fields are untwisted. Accordingly the three-dimensional

vortices are detected as simple spiral-shaped patterns (b). We then pin the right vortex to

a glass rod which appears as a small disk-shaped region in (c). We emphasize that the rod

does not touch the bottom of the reaction vessel but by choice, generates a gap d of 0.45 cm.

After five rotation periods, we begin to translate this anchor rightwards at a constant speed

of vr = 0.1 mm/min (d). In response, the pinned scroll wave loses its initial, pseudo-two-

dimensional character and a diffuse, bright (excited) region is formed in the wake of the

anchor. We continue to observe wave rotation around the moving rod (see movie in [22])

but also detect a trailing spiral-shaped feature (e). Notice that the unpinned vortex on

the left is essentially unaffected by these processes. The successful pinning of the upper

portion of the scroll wave to the moving glass rod does not occur for all rod diameters and

always fails for very thin rods. Thicker glass rods, on the other hand, tend to generate

more complex wave patterns that show strong twist due to the larger difference between the

rotation period of free and pinned scroll wave segments.

We interpret the observed deformation of the pinned scroll wave in Figs. 1(d),(e) as the

result of an increasingly deformed filament. While its top portion is anchored to the moving

glass rod, its unpinned connection to the base of the reaction vessel becomes stretched out

along the trajectory of the rod. This stretching process is governed by i) the topological

requirement of a continuous filament connection between the glass rod and the lower sys-

tem boundary and ii) the flux-related requirement that filaments at Neumann boundaries

must terminate in normal direction to the (smooth) boundary. Accordingly, the pattern in

Fig. 1(e) can be understood as a pinned (and probably twisted) scroll wave in the top portion

of the system, a more horizontally oriented filament left of the anchor, and a down-curving

filament terminus near the lower system boundary. The latter two regions account for the

broad and diffuse feature behind the rod and its spiral-shaped termination.

The dynamics of scroll waves pinned to moving heterogeneities are further analyzed in

Fig. 2. Both space-time plots are constructed from intensity profiles along the trajectory of

the rod but describe an experiment with a negligibly small gap underneath the rod in (a)

and the experiment shown in Fig. 1(b)-(e) for which d = 0.45 cm. The moving rod itself

generates the bright, diagonal band that connects the lower left to the upper right corner of
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the plots. The thinner bright bands result from excitation waves of the pinned scroll wave.

Notice the V-shaped features left of the rod in (b) that are absent in (a). These features

are caused by the alternating emission of left- and rightward moving pulses and are hence

evidence for a rotating vortex. Accordingly, they correspond to the trailing end of the scroll

wave filament and allow us to analyze its position and velocity.

Figure 3 analyzes the elongation of partially pinned filaments in more detail. Figure 3(a)

shows the temporal evolution of the distance L between the rod and the trailing filament

end for three representative experiments that differ only in the gap height d. Notice that

L is the length of the filament’s projection into the image plane. The data sets reveal a

linear increase of L. The rate of filament elongation equals the difference vr − vt between

the externally controlled rod speed vr and the reaction-diffusion-controlled velocity of the

trailing filament end vt. Figure 3(b) shows the latter speed as a function of the inverse gap

distance 1/d. In these experiments, the rod speed was kept constant at either 0.1 mm/min

(i.e. 1.67×10−4 cm/s; open circles) or 0.12 mm/min (open square). Overall the data are

well described by vt = δ/d, where δ is a free fitting parameter, and yield an average of δ =

3.0×10−5 cm2/s (solid black line). The red lines are discussed later. Notice that vt cannot

be larger than vr and 1/d cannot be smaller 1/h (here 0.9 cm−1). The rod speed appears to

have no strong influence on the velocity of the trailing filament end (but the data point for

0.12 mm/min was not included in the measurement of δ).

Our experimental results reveal only two-dimensional projections of the spatially three-

dimensional wave patterns and filament shapes. To obtain a better understanding of the

unresolved vertical dimension, we performed numerical simulations using the Barkley model

[23]:

∂u

∂t
= D∇

2u+
1

ǫ

{

u(1− u)

(

u−
v + b

a

)}

, (2a)

∂v

∂t
= D∇

2v + u− v. (2b)

Although this dimensionless model is not derived from a reaction mechanism, the variables u

and v can be associated to the concentrations of the autocatalytic species HBrO2 and ferriin

(Fe(phen)3+3 ), respectively. Our simulations use the parameter set (D, ǫ, a, b) = (1.0, 0.02,

1.1, 0.18) which generates an excitable system in which stable scroll waves exist [24]. Since

the diffusion coefficients D in Eqs. (2a,b) are identical, the filament tension obeys α = D
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and filaments with small curvature and twist do not move in binormal direction [24, 25].

Accordingly, unperturbed, planar filaments perform curve-shrinking dynamics within their

initial plane of confinement. All simulations are based on forward Euler integration with a

time step of 6 × 10−3. The box-shaped system is resolved by 600 × 200 × 150 grid points

at a spacing of 0.2 and has Neumann boundaries. The moving glass rod is modeled as a

translating, cylindrical domain with (u, v) = (0, 0). We neglect the Stokes flow generated by

the heterogeneity because at the given speed (0.1 mm/min), the fluid motion is noticeable

only within a very small region near the spiral center [21]. For instance, the typical rod

speed and diameter in our experiments cause a creeping flow that decays to about 10 % over

a distance of only 1.2 mm which equals approximately one quarter of the pitch of the free

scroll wave.

Figure 4a shows the three-dimensional wave pattern of a vortex that is partially pinned

to a rightward moving heterogeneity (vr = 0.33). This cylinder extends only through the top

half of the system. Solid (orange) regions indicate that the local v values are high (v > 0.2)

and reveal a strongly deformed scroll wave with a rotation backbone that extends from the

vortex anchor leftwards. The initial condition of this simulation was an untwisted vortex with

a straight, vertical filament and a cylinder placement that matched its horizontal coordinates.

The temporal evolution of the wave pattern and the associated filament dynamics show

clearly that the filament remains pinned to the moving anchor and that it increases its

length at a constant speed (see movies in [22]). Furthermore, we find that its lower terminus

moves rightwards at a speed lower than the speed of the heterogeneity.

Our simulations allow us to generate two-dimensional projections that can be directly

compared to our experimental data. For this purpose, we average v over the entire range of

vertical z values for each (x, y) location. A representative example of the resulting image data

is shown in Fig. 4b. The snapshot qualitatively agrees with the experimental data shown in

Fig. 1e. The small differences between our computational and experimental results are likely

due to a more pronounced twist of the simulated vortex and/or local effects caused by the

Stokes flow in our experiments. Figure 4c is a space-time plot generated from the temporal

changes of the projection data. Its overall structure is very similar to the experimental

results in Fig. 2b, thus supporting our earlier interpretation.

In the following, we discuss the physical origins of the observed filament dynamics. Fig-

ure 4d combines seven snapshots of the filament obtained during one rotation period of the
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vortex. The overall pattern resembles a bundle of helices. This structure is the result of the

local rotation around nearly circular trajectory and some weak twist caused by the partial

pinning to the translating anchor. The bundle clearly reveals the stretched out structure

of the filament and shows a sharp, nearly perpendicular transition between a horizontal

mid-section and the pinned top portion. At the lower terminus, the filament is oriented per-

pendicular to the system boundary and highly curved. This curvature controls the motion

of the trailing end point according to Eq. (1). We find that the shape of the filament is well

described by an analytical solution of Eq. (1) that had been previously considered in the

context of freely moving filaments [26] and ideal grain boundary motion in two dimensions

[27]

x(z) = −
α

vt
ln cos

(vt
α
(z − z0)

)

+ x0. (3)

This curve has a constant hairpin-like shape and moves with a constant speed vt that is

related to the asymptotic, maximal height w of the curve according to

vt = πα/(2w). (4)

The solid (red) curve in Fig. 4d is the best fit of Eq. (3) to the helix bundle. Notice that

we only evaluate data with x < 62 because the abrupt transition to the cylindrical anchor

is not captured by this description. We find that the fit captures the shape of the filament

bundle well and the asymptotic height (w = 17.3) of the curve is only slightly larger than the

gap (d = 15) between the anchor and the lower system boundary. Furthermore, the fit yields

α = 1.02 which is very close to the system’s known filament tension of 1.0. We conclude

that Eq. (3) provides a very good description of the shape of the elongating filaments.

Equations (3) and (4) can also be used to interpret our experimental measurements of

vt if we assume that w = d. We first establish the filament tension α from independent

experiments in which we follow the free collapse of scroll rings. In accordance with Eq. (1),

the radius R of their circular filament obeys dR/dt = −α/R and yields α = 2.05×10−5 cm2/s.

On the basis of Eq. (4), this value is used to plot the dashed, red curves in Fig. 3(b).

The graph is nearly identical with the proportionality fit (black curve) and hence a good

description of the experimental data. For comparison, we also graphed the dependence

expected for a trailing filament that terminates with a curvature of 1/d, which might be
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considered a rough, alternative estimate. The speed of such as termination point is given

by vt = α/d. The slope of the corresponding curve (red dotted line in Fig. 3[b]) is π/2

times smaller than the slope predicted by Eq. (4) and does not agree with the experimental

results. Lastly we note that Eqs. (3) and (4) are applicable only to sufficiently elongated

filaments as otherwise our approximation of w = d fails.

In conclusion, we have shown that scroll waves can be pinned to moving heterogeneities.

Partial pinning of a scroll wave stretches the filament along the trajectory of the anchor. In

this process the terminus of the filament is not stationary but follows the anchor at a lower

speed that is determined by the filament’s local curvature at the system boundary. For

the investigated conditions, our study strongly suggest that the latter speed only depends

on the size of the gap between the rod and the lower system boundary (and the system’s

characteristic filament tension). In the framework of this interpretation, the filament will

always expand if πα/(2d) < vr (see Eq. (4)) and not converge to a finite, limiting length.

This conclusion is less surprising if one considers that an infinitely long, straight and vertical

filament is stable in this system. However, very small distances between the filament and

the (upper or lower) system boundary could affect the filament and complicate this simple

picture due to filament-wall interaction. Accordingly, it is unlikely that the simple linear

function in Fig. 3b holds near these limits (d = h and vt = vr). Furthermore, for very short

rods (d ≈ h), the scroll wave is more likely to unpin from the moving anchor. We also note

that for our specific experimental system, larger rod velocities are expected to cause stronger

perturbations due to the Stokes flow near the moving glass rod. This limitation could be

overcome by using a photosensitive variant of the BZ solution [28] for which the glass rod

could be replaced by a laser beam. Unfortunately, the latter heterogeneity will not yield a

well-defined value of d and hence cause other complications.

Our study also shows that the filament of the scroll wave attaches to the lower end of the

moving cylinder. This location is not obvious as termination in normal direction is possible

along the entire length of the glass rod and possibly even at its cap. We interpret this

finding in the light of the recently reported spontaneous self-wrapping of filaments to thin,

stationary glass rods [19]. This still poorly understood process stabilizes the attachment of

the scroll wave’s rotation backbone to the entire cylinder, thus favoring a contact point at the

lower end of the rod. It seems possible that the detachment of scroll waves from moving rods

occurs if this contact point moves in the upward direction. In additional experiments (not
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shown), we indeed observed that a sudden increase in the rod speed can induce detachment

but to date we have no detailed insights into the precise filament dynamics. Clearly more

research is needed to elucidate this behavior.

The continuation of our work should also demonstrate the likely scenario that filaments

can be stretched out along nonlinear trajectories. The latter result would provide a power-

ful tool for preparing arbitrary shapes including examples that reveal filament interaction

and reconnection events [29]. One can also envision several other modes of rod translation

including varying penetration depths, random motion, and paused displacements. The sys-

tematic investigation of the resulting scroll wave dynamics will provide interesting challenges

for future experimental and computational studies.
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[16] E. Nakouzi, Z. A. Jiménez, V. N. Biktashev, and O. Steinbock, Phys. Rev. E 89, 042902

(2014).

[17] M. Vinson, A. Pertsov, and J. Jalife, Physica D 72, 119 (1993).

[18] S. Dutta and O. Steinbock, J. Phys. Chem. Lett. 2, 945 (2011).
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FIG. 1. (color online) (a) Schematic drawing of the experimental set-up. The vertical system

dimension is not resolved and all local image intensities are the result of cumulative absorption

in that direction. (b)-(e) Image sequence of two scroll waves. The right vortex is pinned to a

rightward moving glass rod. Time between subsequent frames: 20, 48, and 87 min. Field of view:

2.3 cm × 2.3 cm. See Supplemental Material [22] for movies.

12



x (cm)

t 
(m

in
)

0 0.2 0.4 0.6 0.8 1.0

100

80

60

40

20

0

x (cm)

t 
(m

in
)

0 0.2 0.4 0.6 0.8 1.0

100

80

60

40

20

0

ba

FIG. 2. Space-time plots of scroll waves pinned to a moving glass rod, which we denote as the

x-axis. The intensity profiles are obtained along the trajectory of the rod. The experiments in

(a) and (b) differ only in the gap height underneath the rod, which equals d ≈ 0 and 0.45 cm,

respectively. As in Fig. 1, the local gray levels are the result of light absorption along the entire

thickness of the reaction medium.
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FIG. 3. (color online) (a) Temporal evolution of the filament length L. Diamonds, triangles, and

squares correspond to gap sizes of d = 0.2, 0.45, and 0.75 cm, respectively. The dashed lines are

obtained by linear regression of these three data sets. The rod speed is vr = 0.1 mm/min. (b)

Velocity of the trailing filament terminus as a function of the inverse gap size. Open circles and

the square represent data obtained for rod speeds of vr = 0.1 and 0.12 mm/min, respectively. The

straight lines are a fit assuming vt ∝ 1/d (continuous, black), validity of Eq. (4) (dashed, red),

and vt = α/d (dotted, red). Strictly for comparison, the latter expression estimates the terminal

curvature roughly as 1/d. The red lines are not fits but based on the independently measured

filament tension α.
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FIG. 4. (color online) Numerical simulation of a scroll wave partially pinned to a moving anchor.

(a) Snapshot of the three-dimensional wave field v (orange) and the cylindrical heterogeneity (cyan).

(b) Partial top view of the same pattern. (c) Time-space plot generated from a sequence of images

similar to the one in (b). (d) Superposition of seven filament curves (bluish) obtained from a

single rotation period of a single, representative simulation. The time elapsed between subsequent

curves equals one seventh (3.0 dimensionless time units) of the rotation period. The small changes

between the curves are the result of the dynamic nature of the filament that steadily expands

and slightly twists. The anchor moves from the dotted, cyan position to the solid, cyan position.

Fitting of Eq. (3) to the filaments yields the red (smooth) curve. Movies of the evolving scroll wave

and its filament can be found in the Supplemental Material [22].
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