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Chimera states in systems of nonlocal nonidentical phase-coupled oscillators
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Chimera states consisting of domains of coherently and incoherently oscillating nonlocally-coupled
phase oscillators in systems with spatial inhomogeneity are studied. The inhomogeneity is intro-
duced through the dependence of the oscillator frequency on its location. Two types of spatial
inhomogeneity, localized and spatially periodic, are considered and their effects on the existence
and properties of multi-cluster and traveling chimera states are explored. The inhomogeneity is
found to break up splay states, to pin the chimera states to specific locations and to trap traveling
chimeras. Many of these states can be studied by constructing an evolution equation for a complex
order parameter. Solutions of this equation are in good agreement with the results of numerical
simulations.

PACS numbers: May be entered using the \pacs{#1} command.

I. INTRODUCTION

Networks of coupled oscillators have been extensively
studied for many years, owing to their wide applicability
in physics, chemistry, and biology. As examples we men-
tion laser arrays, Josephson junctions, firefly populations
and neural modeling [1–5]. The phase-only models have
proved to provide useful models for systems with weak
coupling. The best known model of this type is the Ku-
ramoto model in which the oscillators are described by
phase variables θi and coupled to others through a sinu-
soidal function [6–8]. These models exhibit a transition
to collective synchronization as the coupling strength in-
creases, a process that has been described as a phase
transition. A general form of these systems is as follows:

dθi
dt

= ωi −
k

N

N∑
j=1

Gij sin(θi − θj + α). (1)

Here ωi is the natural frequency of oscillator i, Gij rep-
resents the coupling between oscillators i and j, α is a
phase lag and k is the overall coupling strength. A gen-
eral treatment of this system is not easy, and two types
of simplifications are commonly used. One of them is to
assume global coupling among the oscillators, and assign
the natural frequencies ωi randomly and independently
from some prespecified distribution [8–10]. The second
tractable case arises when all the oscillators are assumed
to be identical (i.e., the frequencies ωi are taken to be
a fixed constant independent of i) and the coupling Gij
is taken to be local, eg., nearest-neighbor coupling [11],
and likewise independent of i. The intermediate case of
nonlocal coupling is harder but the phenomena described
by the resulting model are much richer.

In this paper we suppose that the oscillators are ar-
ranged on a ring. In the continuum limit N → ∞ the
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system is described by the nonlocal equation, cf. [12],

∂θ

∂t
= ω(x)−

∫
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy (2)

for the phase distribution θ(x, t). When the oscilla-
tors are identical (ω is a fixed constant) and G(x) =
κ
2 exp(−κ|x|) this system admits a new type of state in
which a fraction of the oscillators oscillate coherently
(i.e., in phase) while the phases of the remaining oscil-
lators remain incoherent [13]. In this paper we think of
this state, nowadays called a chimera state [14], as a lo-
calized structure embedded in a “turbulent” background.
Subsequent studies of this unexpected state with different
coupling functions G(x) have identified a variety of differ-
ent one-cluster and multi-cluster chimera states [15–25],
consisting of clusters or groups of adjacent oscillators os-
cillating in phase with a common frequency. The clusters
are almost stationary in space, although their position
(and width) fluctuates under the influence of the inco-
herent oscillators on either side. Recently, a new type of
chimera state has been discovered, a traveling chimera
state [26]. In this state the leading edge plays the role of
a synchronization front, which kicks oscillators into syn-
chrony with the oscillators behind it, while the trailing
front kicks oscillators out of synchrony; these two fronts
travel with the same speed, forming a bound state.

It is natural to ask whether these states persist in
the presence of spatial inhomogeneity, in particular, in
the presence of spatial inhomogeneity in the natural fre-
quency distribution (ω = ω(x)). It is known that in this
case the phase-locked solution θ(x) = 0 present for iden-
tical oscillators with α = 0 perturbs to a unique phase-
locked but spatially inhomogeneous solution θ(x, α) as
α increases from zero [12]. However, the persistence of
the chimera state has only been studied in restricted set-
tings, such as the two population model [18]. This model
is perhaps the simplest model exhibiting chimera states
[16] but includes no spatial structure. Consequently, we
focus in this paper on a ring of adjacent oscillators with
a prescribed but spatially nonuniform frequency profile
ω(x), where the continuous variable x (−π < x ≤ π)
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represents position along the ring. To be specific, two
classes of inhomogeneity are considered, a bump inho-
mogeneity ω(x) = ω0 exp(−κ|x|), κ > 0, and a periodic
inhomogeneity ω(x) = ω0 cos(lx), where l is a positive in-
teger. In each case we follow [26] and study the coupling
functions

G(1)
n (x) ≡ cos(nx),

G(2)
n (x) ≡ cos(nx) + cos[(n+ 1)x],

where n is an arbitrary positive integer, focusing in each
case on small values of the parameter ω0. These choices
are motivated by biological systems in which coupling be-
tween nearby oscillators is often attractive while that be-
tween distant oscillators may be repelling [27]. There are
several advantages to the use of these two types of cou-
pling. The first is that these couplings allow us to obtain
chimera states with random initial conditions. The sec-
ond is that we can identify a large variety of new states for
suitable parameter values, including (a) splay states, (b)
stationary multi-cluster states with evenly distributed co-
herent clusters, (c) stationary multi-cluster states with
unevenly distributed clusters, (d) a fully coherent state
traveling with a constant speed, and (e) a single cluster
traveling chimera state [26].

In this paper, we analyze the effect of the two types
of inhomogeneity in ω on each of these states and de-
scribe the results in terms of the parameters ω0 and κ or
l describing the strength and inverse length scale of the
inhomogeneity, while varying the parameter β ≡ π

2 − α
representing the phase lag α. In Section II, we briefly
review the notion of a local order parameter for studying
chimera states and introduce the self-consistency equa-
tion for this quantity. In Sections III, IV and V we
investigate, respectively, the effect of inhomogeneity on
rotating states (including splay states and stationary
chimera states), traveling coherent states and the travel-
ing chimera state. We conclude in Section VI with a brief
summary of the results and directions for future research.

II. EFFECTIVE EQUATION

Equation (2) is widely used in studies of chimera states.
An equivalent description can be obtained by construct-
ing an equation for the local order parameter z(x, t) de-
fined as the local spatial average of exp[iθ(x, t)],

z(x, t) ≡ lim
δ→0+

1

δ

∫ δ/2

−δ/2
eiθ(x+y,t) dy. (3)

The evolution equation for z then takes the form [28–30]

zt = iω(x)z +
1

2

(
e−iαZ − eiαz2Z∗

)
, (4)

where Z(x, t) ≡ K[z](x, t) and K is a compact linear
operator defined via the relation

K[u](x, t) ≡
∫ π

−π
G(x− y)u(y, t) dy. (5)

A derivation of Eq. (4) based on the Ott–Antonsen
Ansatz [31] is given in the Appendix. Equation (4) can
also be obtained directly from Eq. (2) using the change
of variable

z(x, t) ≡ exp [iθ(x, t)] . (6)

An important class of solutions of Eq. (2) consists of
stationary rotating solutions, i.e., states of the form

z(x, t) = z̃(x)e−iΩt, (7)

whose common frequency Ω satisfies the nonlinear eigen-
value relation

i [Ω + ω(x)] z̃ +
1

2

[
e−iαZ̃(x)− z̃2eiαZ̃∗(x)

]
= 0. (8)

Here z̃(x) describes the spatial profile of the rotating so-

lution and Z̃ ≡ K[z̃].
Solving Eq. (8) as a quadratic equation in z̃ we obtain

z̃(x) = eiβ
Ω + ω(x)− µ(x)

Z̃∗(x)
=

eiβZ̃(x)

Ω + ω(x) + µ(x)
. (9)

The function µ is chosen to be [(Ω +ω)2− |Z̃|2]1/2 when

|Ω+ω| > |Z̃| and i[|Z̃|2−(Ω+ω)2]1/2 when |Ω+ω| < |Z̃|.
This choice is dictated by stability considerations, and in
particular the requirement that the essential spectrum
of the linearization about the rotating solution is either
stable or neutrally stable [28]. The coherent (incoherent)
region corresponds to the subdomain of (−π, π] where

|Ω + ω(x)| falls below (above) |Z̃(x)|. Substitution of

expression (9) into the definition of Z̃(x) now leads to
the self-consistency relation

Z̃(x) =

〈
G(x− y)eiβ

Ω + ω(y)− µ(y)

Z̃∗(y)

〉
. (10)

Here the bracket 〈·〉 is defined as the integral over the
interval [−π, π], i.e.,

〈u〉 ≡
∫ π

−π
u(y) dy. (11)

In the following we write

Z̃(x) = R(x)eiΘ(x). (12)

and refer to R(x) and Θ(x) as the amplitude and phase

of the complex order parameter Z̃(x).

III. STATIONARY ROTATING SOLUTIONS

As shown in [26], Eq. (2) with constant natural fre-
quency ω exhibits both stationary rotating solutions
(splay states and stationary chimera states) and traveling
solutions (traveling coherent states and traveling chimera
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states) for suitable coupling functions G(x). In this sec-
tion, we investigate the effect of spatial inhomogeneity
in ω (i.e., ω = ω(x)) on the splay states and on station-

ary chimera states, focusing on the case G
(1)
n (x) = cosnx

studied in [26]. We find that when the inhomogeneity
is sufficiently weak, the above solutions persist. How-
ever, as the magnitude of the inhomogeneity increases,
new types of solutions are born. The origin and spatial
structure of these new states can be understood with the
help of the self-consistency relation (10). Since Eq. (10)
is invariant under the transformation z → zeiφ with φ an
arbitrary real constant, the local order parameter Z̃(x)
for the coupling function G(x) = cosnx can be written
as

Z̃(x) = a cosnx+ b sinnx, (13)

where a is positive and b ≡ br + ibi with br and bi both
real. Substituting the Ansatz (13) into Eq. (10) we obtain
the following pair of integral-algebraic equations

ae−iβ =

〈
cos(ny)(Ω̃(y)− µ(y))

a cosny + b∗ sinny

〉
, (14)

be−iβ =

〈
sin(ny)(Ω̃(y)− µ(y))

a cosny + b∗ sinny

〉
, (15)

where µ(y) = (Ω̃(y)2 − |a cos(ny) + b sin(ny)|2)1/2 and

Ω̃(y) ≡ Ω + ω(y). These equations may also be written
in the more convenient form〈

Ω̃(y)− µ(y)
〉

= e−iβ(a2 + |b|2), (16)〈
(a2−b2) sin(2ny)−2ab cos(2ny)

Ω̃(y)+µ(y)

〉
= 0. (17)

In the following we consider two choices for the inho-
mogeneity ω(x), a bump ω(x) = ω0 exp (−κ|x|), κ > 0,
and a periodic inhomogeneity ω(x) = ω0 cos(lx) where
l is a positive integer. The resulting equations possess
an important and useful symmetry, x → −x, b → −b.
Moreover, for ω(x) satisfying ω(x + 2π/l) = ω(x) with l

an integer, a solution Z̃(x) of the self-consistency relation

implies that Z̃(x + 2mπ/l) is also a solution. Here m is
an arbitrary integer.

In the following we use Eqs. (16) and (17) repeatedly
to study the changes in both the splay states and the
stationary chimera states as the magnitude ω0 > 0 of the
inhomogeneity increases, and compare the resulting pre-
dictions with numerical simulation of N = 512 oscillators
evenly distributed in [−π, π].

A. Bump inhomogeneity: ω = ω0 exp (−κ|x|)

We now consider the case where ω(x) has a bump de-
fect at x = 0. For the spatial profile of the defect we
pick ω(x) = ω0 exp (−κ|x|), where ω0 > 0 and κ > 0 are
parameters that can be varied.
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FIG. 1. The phase distribution θ(x) for splay states observed
with G(x) = cos(x), ω(x) = ω0 exp(−2|x|) and β = 0.05. (a)
ω0 = 0.006. (b) ω0 = 0.02. (c) ω0 = 0.05. (d) ω0 = 0.1. The
states travel to the right (Ω > 0). The inset in (a) shows an
enlargement of the region near x = 0.

1. Effect on splay states

When G(x) = cos(nx) and ω is a constant, Eq. (2)
exhibits so-called splay state solutions with θ(x, t) = qx−
Ωt, where Ω is the overall rotation frequency and q is
an integer called the twist number. The phase in this
type of solution drifts with speed c = Ω/q to the right
but the order parameter is stationary. Consequently we
think of the splay states as a stationary rotating states.
Linear stability analysis for G(x) = cosnx shows that
the splay state is stable when |q| = n [26], a result that is
easily confirmed in simulations starting from randomly
distributed initial phases. In the following we consider
the case n = 1 and simulate N = 512 oscillators evenly
distributed in [−π, π] for different values of ω0 and κ.

Figure 1 shows how the splay solutions change as ω0

increases. When ω0 becomes nonzero but remains small,
the splay states persist but their phase θ(x, t) no longer
varies uniformly in space. This effect may be seen in
Fig. 1(a) upon enlargement. The figure shows that

θ(x, t) ≡ φ(x)− Ωt, (18)

where φ(x) is a continuous function of x with φ(π) −
φ(−π) = 2πq. When q 6= 0 we refer to this type of state
as a near-splay state. As ω0 becomes larger an incoher-
ent region appears in the vicinity of x = 0, with width
that increases with increasing ω0 (Figs. 1(b,c)). We re-
fer to this type of state as a chimera splay state. As ω0

increases further and exceeds a second threshold, a new
region of incoherence is born (Fig. 1(d)). Figure 2 pro-
vides additional information about the partially coherent
near-splay state in Fig. 1(b). The figure shows the real
order parameters R(x) and Θ(x) together with θ̄t, the
local rotation frequency averaged over a long time inter-
val (Fig. 2(d)), and reveals that in the coherent region
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FIG. 2. (a) A snapshot of the phase distribution θ(x, t) for
G(x) = cos(x) and ω(x) = 0.02 exp(−2|x|). (b) The corre-
sponding R(x). (c) The corresponding Θ(x). (d) The oscilla-
tor frequency θ̄t averaged over the time interval 0 < t < 1000
(solid line). In the coherent region θ̄t coincides with the global
oscillation frequency−Ω (open circles). The inset in (a) shows
an enlargement of the region near x = 0. All simulations are
done with β = 0.05 and N = 512.

the oscillation frequencies are identical (with θ̄t = −Ω),
with an abrupt but continuous change in the frequency
distribution within the incoherent region. Figure 2(d)
also reveals a slight asymmetry with respect to x = 0,
the bump maximum. This asymmetry becomes stronger
and stronger as ω0 increases and is a consequence of the
asymmetry introduced by the direction of travel, i.e., the
sign of the frequency Ω in Eq. (18) as discussed further
below.

These states and the transitions between them can
be explained within the framework of the self-consistent
analysis. To compute the solution branches and the tran-
sition thresholds, we numerically continue solutions of
Eqs. (16) and (17) with respect to the parameter ω0.
When ω0 = 0, the splay state (with positive slope) cor-
responds to a = π, br = 0, bi = π, with Ω = π. The
order parameter is therefore R exp (iΘ) = π exp (±ix).
We use this splay state as the starting point for continu-
ation. As ω0 increases, a region of incoherence develops
in the phase pattern in the vicinity of x = 0. From the
point of view of the self-consistent analysis, the incoher-
ent region corresponds to the region where the natural
frequency exceeds the amplitude R(x) of the complex or-
der parameter. The boundaries between the coherent and
incoherent oscillators are thus determined by the relation
Ω + ω(x) = |a cos(x) + (br + ibi) sin(x)|. For ω0 = 0.02,
the left and right boundaries are thus xl ≈ −0.4026 and
xr ≈ 0.2724, respectively.

These predictions are in good agreement with the val-
ues measured in direct numerical simulation (Fig. 2(d)).
Figure 3(a) shows the overall frequency Ω obtained by
numerical continuation of the solution of Eqs. (16) and
(17) in the parameter ω0, while Figs. 3(b,c) show the

corresponding results for the fraction e of the domain
occupied by the coherent oscillators and the extent of
the two intervals xl ≤ x ≤ xr of incoherence, also as
functions of ω0. From Fig. 3(c) we can see a clear tran-
sition at ω0 ≈ 0.0063 from a single domain-filling coher-
ent state to a “splay state with one incoherent cluster”
in xl ≤ x ≤ xr, followed by a subsequent transition at
ω0 ≈ 0.065 from this state to a “splay state with two in-
coherent clusters”. These transitions occur when the pro-
files of Ω+ω(x) and R(x) touch as ω0 increases and these
points of tangency therefore correspond to the locations
where coherence is first lost. Figure 4 shows that tangen-
cies between Ω +ω(x) and R(x) occur when ω0 ≈ 0.0063
and 0.065, implying that intervals of incoherent oscilla-
tors appear first at x = 0 (i.e., the bump maximum) and
subsequently at x ≈ 1.83, as ω0 increases. These predic-
tions are in excellent agreement with the direct numerical
simulations shown in Fig. 1. Moreover, the critical values
of ω0 predicted by the self-consistency analysis are fully
consistent with the simulation results when β is increased
quasi-statically (not shown). In each case we repeated
the simulations for decreasing β but found no evidence
of hysteresis in these transitions.

2. Effect on stationary chimera states

Chimera states with 2n evenly distributed coherent
clusters are readily observed when G(x) = cos(nx) and
ω is a constant. These states persist when a bump is in-
troduced into the frequency distribution ω(x). Figure 5
shows the phase distribution and the corresponding local
order parameters R(x) and Θ(x) for G(x) = cos(x) when
ω(x) = 0.1 exp(−2|x|). The figure shows that the two
clusters persist, but are now always located near x = −π2
and π

2 . This is a consequence of the fact that the presence
of the bump breaks the translation invariance of the sys-
tem. Figures 5(b,c) show that the local order parameter

Z(x) has the symmetry Z̃(−x) = −Z̃(x). This symme-

try implies Z̃ should take the form R exp (iΘ) = b sin(x),
where b = br is real. The corresponding self-consistency
equation takes the form

b2e−iβ =

〈
Ω + ω(y)−

√
(Ω + ω(y))2 − b2 sin2 y

〉
.

(19)
The result of numerical continuation of the solutions of
Eq. (19) are shown in Fig. 6. The 2-cluster chimera state
persists to large values of ω0, with the size of the coher-
ent clusters largely insensitive to the value of ω0. This
prediction has been corroborated using direct simulation
of Eq. (1) with N = 512 oscillators.

When ω is constant, finite size effects cause the phase
pattern to fluctuate in location. In [26], we demonstrate
that this fluctuation is well modeled by Brownian motion
in which the variance is proportional to t, even though the
original system is strictly deterministic. As mentioned
above, when ω(x) is spatially dependent, the translation
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FIG. 3. (a) The overall frequency Ω and (b) the fraction e
of the domain occupied by the coherent oscillators as a func-
tion of the parameter ω0. (c) The two regions of incoherence
xl ≤ x ≤ xr that open up at ω ≈ 0.0063 and ω ≈ 0.065 corre-
sponding to the transitions visible in panels (a) and (b). The
calculation is for κ = 2, β = 0.05 and N = 512.

symmetry is broken and the coherent cluster has a pre-
ferred location. Figure 5 suggests that local maxima of
the order parameter R can be used to specify the location
of coherent clusters. Consequently we plot in Fig. 7 the
position x0(t) of the right coherent cluster as a function
of time for three different values of the parameter κ. We
see that the inhomogeneity pins the coherent cluster to a
particular location, and that the cluster position executes
apparently random oscillations about this preferred lo-
cation, whose amplitude increases with increasing κ, i.e.,
with decreasing width of the bump. Figure 8 shows the
standard deviation of the position x0(t) of the coherent
cluster as a function of the parameter κ.

The behavior shown in Figs. 7 and 8 can be mod-
eled using an Ornstein-Uhlenbeck process, i.e., a linear
stochastic ordinary differential equation of the form

dx0 = λ(µ− x0)dt+ σdWt, (20)

where λ represents the strength of the attraction to the
preferred location µ, and σ indicates the strength of the
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FIG. 4. Comparison of Ω+ω(x) and R(x) at the critical values
ω0 for the appearance of new regions of incoherence around
(a) x = 0 for ω0 = 0.0063 and (b) x = 1.83 for ω0 = 0.065.
The calculation is for κ = 2, β = 0.05 and N = 512.

noise. Models of this type are expected to apply on an ap-
propriate timescale only: the time increment ∆t between
successive steps of the stochastic process must be large
enough that the position of the cluster can be thought of
as the result of a large number of pseudo-random events
and hence normally distributed, but not so large that
nonlinear effects become significant. Figure 9 reveals
that for an appropriate interval of ∆t the fluctuations
x0(t+ ∆t)−Ax0(t)−B are indeed normally distributed,
thereby providing support for the applicability of Eq. (20)
to the present system.

Equation (20) has the solution

x0(t+ ∆t) = Ax0(t) +B + CN0,1, (21)

where A = e−λ∆t, B = µ(1 − A) and C = σ
√

1−A2

2λ .

To fit the parameters to the data in Fig. 7 we notice
that the relationship between consecutive observations
x0 is linear with an i.i.d. error term CN0,1, where N0,1

denotes the normal distribution with zero mean and unit
variance (Fig. 9) and C is a constant. A least-squares fit
to the data (x0(t), x0(t+ ∆t)) gives the parameters λ, µ
and σ. We find that for ω0 = 0.1, κ = 2 and β = 0.05,
the choice ∆t = 100 works well and yields the empirical
model parameters λ ≈ 0.016, µ ≈ −1.57 and σ ≈ 0.02,
a result that is in good agreement with the simulation
results for κ = 2 summarized in Fig. 8.
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FIG. 5. (a) A snapshot of the phase distribution θ(x, t) in
a 2-cluster chimera state for G(x) = cos(x) and ω(x) =
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(c) The corresponding order parameter Θ(x). Note that the
oscillators in the two clusters oscillate with the same fre-
quency but π out of phase. The calculation is done with
κ = 2, β = 0.05 and N = 512.

B. Periodic ω(x)

In this section we consider the case ω(x) = ω0 cos(lx).
When ω0 is small, the states present for ω0 = 0 persist,
but with increasing ω0 one finds a variety of intricate
dynamical behavior. In the following we set G(x) = cosx
and β ≡ π

2 − α = 0.05, with ω0 and l as parameters to
be varied.

1. Splay states, near-splay states and chimera splay states

When ω(x) is a constant, splay states are observed in
which the phase θ(x, t) varies linearly with x. When ω0

is nonzero but small, the splay states persist as the near-
splay states described by Eq. (18); Fig. 10(a) shows an
example of such a state when ω(x) = 0.1 cos(2x). As
ω0 becomes larger, incoherent regions appear and these
increase in width as ω0 increases further (e.g., Fig. 10(b)–
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FIG. 6. The dependence of (a) Ω and the order parameter
amplitude b on ω0. (b) The fraction e of coherent oscillators
as a function of ω0. The calculation is done with κ = 2,
β = 0.05 and N = 512.
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FIG. 7. The position x0(t) of the coherent cluster as a func-
tion of time when ω0 = 0.1, β = 0.05, N = 512 and (a)
κ = 10, (b) κ = 6 and (c) κ = 2.
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function of the parameter κ for ω0 = 0.1, β = 0.05 and N =
512.
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ε

FIG. 9. The histogram of the residues ε ≡ x0(t + ∆t) −
Ax0(t) − B is well approximated by a normal distribution
when ∆t = 100.

(d)). We refer to this type of state as a chimera splay
state, as in the bump inhomogeneity case. For these so-
lutions, the slope of the coherent regions is no longer
constant but the oscillators continue to rotate with a con-
stant overall frequency Ω. This type of solution is also
observed for other values of l. Figure 11 shows examples
of chimera splay states for l = 3, 4 and 5, with l coherent
clusters in each case.
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FIG. 10. A near-splay state for (a) ω(x) = 0.1 cos(2x).
Chimera splay states for (b) ω(x) = 0.2 cos(2x), (c) ω(x) =
0.3 cos(2x) and (d) ω(x) = 0.4 cos(2x). In all cases β = 0.05
and N = 512.
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FIG. 11. Chimera splay states for G(x) = cos(x) and (a)
ω(x) = 0.2 cos(3x) (3-cluster state), (b) ω(x) = 0.2 cos(4x)
(4-cluster state), and (c) ω(x) = 0.2 cos(5x) (5-cluster state).
In all cases β = 0.05 and N = 512.

To compute the solution branches and identify thresh-
olds for additional transitions, we continue the solutions
of Eqs. (16) and (17) with respect to the parameter ω0.
Figures 12 and 13 show the dependence of Ω and of the
coherent fraction e on ω0 when l = 1 and 2, respectively.
The figures indicate that the coherent fraction e falls be-
low 1 at ω0 ≈ 0.0075 (l = 1) and ω0 ≈ 0.16 (l = 2);
for l = 3, 4 and 5 the corresponding transition takes
place at ω0 ≈ 0.0048 (not shown). These values coin-
cide with the parameter values at which an incoherent
region emerges in numerical simulations. For example,
Figs. 10(a,b) show that for l = 2 the transition takes
place for ω0 between 0.1 and 0.2. The exact value of
ω0 for this transition can be determined from Figure 14
which shows that at the critical value of ω0 the profiles
of Ω+ω(x) and R(x) touch; the location of the tangency
corresponds to the location of the resulting incoherent re-
gion. Figure 15(a) shows the corresponding construction
for l = 1.

Subsequent transitions may take place as ω0 increases
just as in the case of a bump inhomogeneity. As shown
in Fig. 12(b) this is the case for l = 1, where a second
transition takes place at ω0 ≈ 0.13, creating a second
incoherent region. Figure 15(b) shows that at this critical
value of ω0 the profiles of Ω + ω(x) and R(x) also touch,
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FIG. 12. The dependence of (a) Ω and (b) the fraction e of
the domain occupied by the coherent oscillators on ω0, with
ω(x) = ω0 cos(x) and β = 0.05.
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FIG. 13. The dependence of (a) Ω and (b) the fraction e of
the domain occupied by the coherent oscillators on ω0, with
ω(x) = ω0 cos(2x) and β = 0.05.

allowing us to determine accurately the location of this
second transition.

To understand the l-cluster chimera states (l ≥ 3) re-
ported in Fig. 11, we computed the local order parame-
ter Z̃(x) and found that R(x) is approximately constant
while the phase Θ(x) varies at a constant rate, suggest-

ing the Ansatz Z̃(x) = aeix. With this Ansatz, Eqs. (16)
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FIG. 14. Comparison of Ω + ω(x) and R(x) at the critical
value ω0 ≈ 0.16. Parameters: l = 2 and β = 0.05.
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FIG. 15. Comparison of Ω + ω(x) and R(x) at the critical
values ω0 for the appearance of a new region of incoherence
around (a) x = 0 for ω0 = 0.0075 and (b) x = 2.8 for ω0 =
0.13. Parameters: l = 1 and β = 0.05.

and (17) reduce to a single equation,

2πΩ−
〈√

(Ω + ω0 cos(ly))2 − a2
〉

= 2e−iβa2, (22)

for all positive integers l ≥ 3. Figure 16 shows the result
of numerical continuation of a solution for l = 3. The
figure reveals no further transitions, indicating that the
l = 3 chimera state persists to large values of ω0. Nu-
merical simulation shows that these states (l = 3, 4, 5)
are stable and persist up to ω0 = 1.

2. 1-cluster chimera states

Figure 17 shows an example of a 1-cluster chimera state
when ω(x) = 0.1 cos(x); 1-cluster chimera states of this
type have not thus far been reported for G(x) = cos(x),
ω0 = 0, where computations always result in 2-cluster
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FIG. 16. Dependence of (a) Ω and (b) the coherent fraction
e on ω0, with ω(x) = ω0 cos(3x) and β = 0.05.
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FIG. 17. (a) A snapshot of the phase distribution θ(x, t)
in a 1-cluster chimera state for G(x) = cos(x) and ω(x) =
0.1 cos(x). (b) The corresponding order parameter R(x). (c)
The corresponding order parameter Θ(x). Figure (a) shows
that the presence of a nearly coherent region near x = 0 with
oscillators that oscillate π out of phase with the coherent clus-
ter. The calculation is done with β = 0.05 and N = 512.
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FIG. 18. (a) The quantities a and Ω, and (b) the coherent
fraction e, all as functions of ω0 for the chimera state shown
in Fig. 17. (c) Ω + ω(x) and R(x) as functions of x when
ω0 = 0.0463.

states [26]. To understand the origin of this unexpected

1-cluster state we use Fig. 17(b) to conclude that Z̃(x) is
of the form a cos(x), and hence that Eqs. (16) and (17)
reduce to the single equation

2πΩ−
〈√

(Ω + ω(y))2 − a2 cos2 y
〉

= e−iβa2. (23)

Figure 18 shows the result of numerical continuation of
the solution of this equation as a function of ω0. The
figure reveals a transition at ω0 = 0.0463 (Figs. 18(a,b)).
When ω0 < 0.0463, the solution is a 2-cluster chimera;
as ω0 increases through ω0 ≈ 0.0463 the coherent region
around x = 0 disappears, leaving a single cluster chimera
state (Fig. 18(c)).

3. 2-cluster chimera states

For G(x) = cos(x) and constant ω simulations always
evolve into either a 2-cluster chimera state or a splay state
[26]. It is expected that when ω0 is small, the 2-cluster
chimera is not destroyed. Figures 19(a,b) gives examples
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FIG. 19. 2-cluster chimera states for G(x) = cos(x) and (a)
ω(x) = 0.1 cos(2x) and (b) ω(x) = 0.1 cos(3x). In both cases
β = 0.05 and N = 512.

of this type of state with l = 2 and l = 3 inhomogeneities,
respectively. In both cases the clusters are located at
specific locations selected by the inhomogeneity.

The order parameter profile with l = 3 correspond-
ing to the numerical solution in Fig. 19(b) has the same
symmetry properties as that in Figs. 5(b,c). It follows
that we may set a = 0, b = br > 0 in the order pa-
rameter representation (13), resulting once again in the
self-consistency relation (19). We have continued the so-
lutions of this relation for l = 3 using the simulation in
Fig. 19(b) with ω0 = 0.1 to initialize continuation in ω0.
Figure 20 shows the result of numerical continuation of
the order parameter for this state. No further transitions
are revealed. There are three preferred locations for the
coherent clusters, related by the translation symmetry
x→ x+ 2mπ

3 , m = 0, 1, 2, as shown in Fig. 21.

IV. TRAVELING COHERENT SOLUTIONS

We now turn to states with a spatially structured or-
der parameter undergoing translation. With G(x) =
cos(x) + cos(2x) and constant ω the system (2) exhibits
a fully coherent but non-splay state that travels with
a constant speed c(β) when 0.646 . β . 0.7644 [26].
Figure 22(a) shows a snapshot of this traveling coherent
state while Fig. 22(b) shows its position x0 as a func-
tion of time. The speed of travel is constant and can be
obtained by solving a nonlinear eigenvalue problem [26].
In this section, we investigate how the inhomogeneities
ω(x) = ω0 exp (−κ|x|) and ω(x) = ω0 cos(lx) affect the
dynamical behavior of this state.
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0.14
(b)

ω
0

e

FIG. 20. The dependence of (a) Ω (solid line) and b (dashed
line), and (b) the coherent fraction e on ω0 when l = 3 and
β = 0.05.

A. Bump inhomogeneity: ω(x) ≡ ω0 exp (−κ|x|)

In this section we perform two types of numerical ex-
periments. In the first, we fix β and start with the trav-
eling coherent solution for ω0 = 0. We then gradually
increase ω0 gradually at fixed values of κ and β. In the
second we fix ω0 > 0, κ > 0, and vary β.

For each 0.646 . β . 0.7644 we find that the coher-
ent state continues to travel, albeit nonuniformly, until
ω0 reaches a threshold value that depends of the values
of β and κ. The case β = 0.75 provides an example.
Figure 23(a) shows the traveling coherent state in the
homogeneous case (ω0 = 0) while Fig. 23(b) shows the
corresponding state in the presence of a frequency bump
ω(x) ≡ ω0 exp (−κ|x|) with ω0 = 0.04 and κ = 2. In
this case the presence of inhomogeneity leads first to a
periodic fluctuation in the magnitude of the drift speed
followed by, as ω0 continues to increase, a transition to
a new state in which the direction of the drift oscillates
periodically (Fig. 23(b)). We refer to states of this type
as direction-reversing waves, by analogy with similar be-
havior found in other systems supporting the presence
of such waves [32, 33]. With increasing ω0 the rever-
sals become localized in space (and possibly aperiodic,
Fig. 24(a)) and then cease, leading to a stationary pinned
structure at ω0 = 0.12 (Fig. 24(b)). Figure 25 shows the
position x0 of the maximum of the local order parame-
ter R(x, t) of the coherent state as a function of time for
the cases in Figs. 23 and 24, showing the transition from
translation to pinning as ω0 increases, via states that
are reflection-symmetric on average. The final state is
a steady reflection-symmetric pinned state aligned with
the imposed inhomogeneity.

In fact, the dynamics of the present system may be
more complicated than indicated above since a small
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FIG. 21. The three possible locations of the 2-cluster chimera
state when ω(x) = 0.1 cos(3x). The simulation is done with
β = 0.05 and N = 512.
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FIG. 22. (a) A snapshot of the phase pattern in a traveling
coherent state when ω is constant. (b) The position x0 of
this state as a function of time. The simulation is done for
G(x) = cos(x) + cos(2x) with β = 0.75 and N = 512.

group of oscillators located in regions where the order
parameter undergoes rapid variation in space may lose
coherence in a periodic fashion even when ω0 = 0 thereby
providing a competing source of periodic oscillations in
the magnitude of the drift speed. As documented in [26]
this is the case when 0.7570 < β < 0.7644. For β = 0.75,
however, the coherent state drifts uniformly when ω0 = 0
and this is therefore the case studied in greatest detail.

The profile of the pinned coherent state can also be
determined from a self-consistency analysis. For G(x) =

cos(x) + cos(2x), the local order parameter Z̃(x) can be
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FIG. 23. Hidden line plot of the phase distribution θ(x, t)
when (a) ω0 = 0. (b) ω0 = 0.04. In both cases, κ = 2,
β = 0.75 and N = 512.
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FIG. 24. Hidden line plot of the phase distribution θ(x, t)
when (a) ω0 = 0.08. (b) ω0 = 0.12. In both cases, κ = 2,
β = 0.75 and N = 512.

written in the form

Z̃(x) = a cos(x) + b sin(x) + c cos(2x) + d sin(2x). (24)

Owing to the reflection symmetry of the solution b = d =
0; on applying a rotation in θ we may take a to be real.
The self-consistency equation then becomes

ae−iβ =

〈
cos(y)(Ω + ω(y)− µ(y))

a cos y + c∗ cos(2y)

〉
, (25)

ce−iβ =

〈
cos(2y)(Ω + ω(y)− µ(y))

a cos y + c∗ cos(2y)

〉
. (26)

When ω0 = 0.12, κ = 2 and β = 0.75 the solution of these
equations is Ω = 1.9879, a = 3.1259, cr = −0.1007, ci =
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FIG. 25. The position x0 of the coherent state in Figs. 23
and 24 as a function of time for (a) ω0 = 0, (b) ω0 = 0.04,
(c) ω0 = 0.08, and (d) ω0 = 0.12. In all cases κ = 2, β = 0.75
and N = 512.

−2.7300, results that are consistent with the values ob-
tained from numerical simulation. For these parameter
values, Ω + ω(x) < |a cos(x) + c cos(2x)| for x ∈ (−π, π],
indicating that all phases rotate with the same frequency
Ω. As we decrease ω0 to ω0 ≈ 0.11 the profiles Ω + ω(x)
and |a cos(x) + c cos(2x)| start to touch (Fig. 26) and for
yet lower ω0 the stationary coherent state loses stabil-
ity and begins to oscillate as described in the previous
paragraph.
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FIG. 26. The profiles of Ω+ω(x) and R = |a cos(x)+c cos(2x)|
for ω0 = 0.11, κ = 2 and β = 0.75.

We have also conducted experiments at a fixed value
of ω0 > 0 and κ > 0 while changing β. For example, at
fixed ω0 = 0.12, κ = 2 and β = 0.75 the system is in
the pinned state shown in Fig. 24(b). Since the speed of
the coherent state with ω0 = 0 gradually increases as β
decreases, we anticipate that a given inhomogeneity will
find it harder and harder to pin the state as β decreases.
This is indeed the case, and we find that there is a critical
value of β at which the given inhomogeneity is no longer
able to pin the structure, with depinning via back and
forth oscillations of the structure [33]. For yet smaller
values of β, this type of oscillation also loses stability
and evolves into near-splay states. When we increase β
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FIG. 27. Hidden line plot of the phase distribution θ(x, t)
when ω0 = 0.12 and β = 0.76. (a) Unpinned state obtained
from a traveling coherent state with ω0 = 0 and β = 0.76 on
gradually increasing ω0 to 0.12. (b) Pinned state obtained
from a traveling coherent with ω0 = 0 and β = 0.75 on grad-
ually increasing ω0 to 0.12, and then increasing β to 0.76. In
both cases κ = 2 and N = 512.
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FIG. 28. (a) A snapshot of the phase distribution θ(x, t) of
a coherent solution when ω0 = 0.028. (b) The position x0
of the coherent solution as a function of time. In both cases
l = 1, β = 0.05 and N = 512.

again we uncover hysteresis in each of these transitions.
Figure 27 shows two distinct states at identical parameter
values: ω0 = 0.12, κ = 2 and β = 0.76 generated using
different protocols: Fig. 27(a) shows a direction-reversing
state evolved from a traveling coherent state when we
increase ω0 from 0 to 0.12 at β = 0.76, while Fig. 27(b)
shows a pinned state generated from the pinned state at
β = 0.75 when we change β from 0.75 to 0.76 at fixed
ω0 = 0.12.

B. Periodic inhomogeneity: ω(x) ≡ ω0 cos(lx)

We now turn to the case ω(x) ≡ ω0 cos(lx). Similar to
the bump inhomogeneity case, when β is fixed, the travel-
ing coherent state will continue to travel until ω0 reaches
certain threshold. However, we did not find the pinned
state as in the previous subsection around β = 0.75. Here
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FIG. 29. (a) The mean angular velocity Ω and (b) the mean
drift speed v, both as functions of ω0 when l = 1, β = 0.7.

we focus on the case β = 0.7 for which the traveling co-
herent state has a reasonable speed when ω0 = 0 and
take l = 1. When ω0 is small, the state remains coher-
ent (Fig. 28(a)) and continues to drift, albeit no longer
with a uniform speed of propagation. Figure 28(b) shows
that the speed executes slow, small amplitude oscilla-
tions about a well-defined mean value v(ω0) shown in
Fig. 29(b); the corresponding time-averaged oscillation
frequency Ω(ω0) is shown in Fig. 29(a). When ω0 is
increased in sufficiently small increments the oscillations
grow in amplitude but the solution continues to travel
to the left until ω0 ≈ 0.285 where a hysteretic transition
to a near-splay state takes place. Figure 29(b) shows
that prior to this transition the average speed first de-
creases as a consequence of the inhomogeneity, but then
increases abruptly just before the transition owing to the
loss of coherence on the part of a group of oscillators and
the resulting abrupt increase in asymmetry of the order
parameter.

V. TRAVELING CHIMERA STATES

In addition to the states discussed in the previous
sections, Eq. (2) with constant ω admits traveling one-

cluster chimera states when G(x) = G
(2)
n (x) ≡ cos(nx) +

cos[(n+ 1)x] and appropriate values of the the phase lag
β. This state consists of a single coherent cluster that
drifts through an incoherent background as time evolves
at more or less a constant speed. Figure 30(a) shows a
snapshot of such a state when n = 3. The direction of
motion is determined by the gradient of the phase in the
coherent region: the cluster travels to the left when the
gradient is positive and to the right when the gradient is
negative. Figure 30(b) shows the position x0 of the co-
herent cluster as a function of time and confirms that the
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FIG. 30. (a) A snapshot of the phase distribution θ(x, t) for
a traveling chimera state in a spatially homogeneous system.
(b) The position x0 of the coherent cluster as a function of
time. The simulation is done for G(x) ≡ cos(3x) + cos(4x)
with β = 0.03 and N = 512.

cluster moves to the right at an almost constant speed.
In [26], we use numerical simulations to conclude that
for n = 3 the traveling chimera is stable in the interval
0.015 . β . 0.065. We therefore focus on the effects
of spatial inhomogeneity on the traveling chimera state
when β = 0.03. In fact the traveling chimera state is
more complex than suggested in Fig. 30(a,b): unlike the
states discussed in the previous sections, the profile of
the local order parameter fluctuates in time, suggesting
that the state does not drift strictly as a rigid object.

A. Bump inhomogeneity: ω(x) ≡ ω0 exp (−κ|x|)

In this section we investigate the effect of a bump-
like inhomogeneity ω(x) ≡ ω0 exp (−κ|x|) on the motion
of the traveling chimera state. Starting with the trav-
eling chimera state for ω0 = 0, we increase ω0 in steps
of ∆ω0 = 0.01. To describe the motion of the coherent
cluster, we follow the method in [19] and determine the
instantaneous position x0 of the cluster by minimizing

the function F (x∗) = 1
N

N∑
k

[θt(xk, t)− f(xk, x
∗)]2, where

f(x, x∗) = − cos(x− x∗) is a reference profile, and using
the minimizer x∗(t) as a proxy for x0(t). We find that
even small ω0 suffices to stop a traveling chimera from
moving: Fig. 31 shows that the threshold ω0 ≈ 0.01 for
κ = 1 and that it increases monotonically to ω0 ≈ 0.03
for κ = 10. The resulting pinned state persists to values
of ω0 as large as ω0 = 1.

Figures 32(a,c,e) show the position x0 of the coherent
cluster as a function of time obtained using the above
procedure for ω0 = 0.04, 0.08, 0.12, respectively, i.e., in
the pinned regime. The figures show that the equilibrium
position of the coherent region is located farther from the
position x = 0 of the inhomogeneity peak as ω0 increases.
The bump in ω(x) thus exerts a “repelling force” on the
coherent cluster, whose strength increases with the height
of the bump. We interpret this observation as follows.
The coherent cluster can only survive when the frequency
gradient is sufficiently small, and is therefore repelled by
regions where ω(x) varies rapidly. In the present case
this implies that the coherent cluster finds it easiest to
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FIG. 31. Dependence of pinning threshold ω0 on κ when
β = 0.03.
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FIG. 32. The position x0 of the pinned coherent cluster in a
traveling chimera state as a function of time when (a) ω0 =
0.04, (c) ω0 = 0.08, (e) ω0 = 0.12. The average rotation
frequency θ̄t for (b) ω0 = 0.04, (d) ω0 = 0.08, (f) ω0 = 0.12.
In all cases β = 0.03 and κ = 10, N = 512.

survive in the wings of the bump inhomogeneity, and this
position moves further from x = 0 as ω0 increases. This
interpretation is confirmed in Figs. 32(b,d,f) showing
the average rotation frequency, θ̄t(x), of the oscillators.
The plateau in the profile of θ̄t(x) indicates frequency
locking and hence the location of the coherent cluster;
the fluctuations in the position of the coherent cluster
are smoothed out by the time-averaging.

B. Periodic inhomogeneity: ω(x) ≡ ω0 cos(lx)

We now turn to the effects of a periodic inhomogene-
ity ω(x) ≡ ω0 cos(lx). When l = 1 and ω0 increases
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FIG. 33. The position x0 of the pinned coherent cluster in a
traveling chimera state as a function of time when (a) ω0 =
0.005, (c) ω0 = 0.01. The average rotation frequency θ̄t for
(b) ω0 = 0.005, (d) ω0 = 0.01. In all cases β = 0.03, l = 1
and N = 512.
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FIG. 34. The position x0 of the coherent cluster in a traveling
chimera state as a function of time when (a) ω0 = 0.001, (b)
ω0 = 0.002. In all cases β = 0.03, l = 1 and N = 512.

the coherent cluster initially travels with a non-constant
speed but then becomes pinned in place; as in the case
of the bump inhomogeneity quite small values of ω0 suf-
fice to pin the coherent cluster in place (for l = 1 the
value ω0 ≈ 0.003 suffices). As shown in Figs. 33(a,c)
the position x0 of the pinned cluster relative to the local
maximum of the inhomogeneity (i.e., x = 0) depends on
the value of ω0 > 0.003. As shown in Figs. 34(a,b) the
coherent cluster travels to the right and does so with a
speed that is larger when x0(t) > 0 than when x0(t) < 0.
This effect becomes more pronounced as ω0 increases.
This is because the coherent structure is asymmetric,
with a preferred direction of motion, and this asymme-
try increases with ω0. Evidently, the speed of the syn-
chronization front at the leading edge is enhanced when
ω′(x) < 0 but suppressed when ω′(x) > 0 and likewise
for the desynchronization front at the rear.

For l > 1 we observe similar results. The coherent
cluster is pinned in space already at small values of ω0.
Since the inhomogeneous system has the discrete trans-
lation symmetry x → x + 2π

l the coherent cluster has l
possible preferred positions. Figure 35 shows an exam-
ple for l = 2. Panels (a,c) show snapshots of the phase
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FIG. 35. (a,c) The two possible phase distributions θ(x, t) of
pinned traveling chimera states when ω0 = 0.01, β = 0.03 and
l = 2. (b,d) The corresponding average rotation frequencies
θ̄t. In both cases N = 512.

distribution θ(x, t) for ω0 = 0.01 in the two preferred lo-
cations (separated by ∆x = π), while panels (b,d) show
the corresponding average rotation frequency θ̄t.

VI. CONCLUSION

In this paper we have investigated a system of non-
identical phase oscillators with nonlocal coupling, focus-
ing on the effects of weak spatial inhomogeneity in an
attempt to extend earlier results on identical oscillators
to more realistic situations. Two types of inhomogeneity
were considered, a bump inhomogeneity in the frequency
distribution specified by ω(x) = ω0 exp(−κ|x|) and a pe-
riodic inhomogeneity specified by ω(x) = ω0 cos(lx). In
each case we examined the effect of the amplitude ω0 of
the inhomogeneity and its spatial scale κ−1 (l−1) on the
properties of states known to be present in the homo-
geneous case ω0 = 0, viz., splay states and stationary
chimera states, traveling coherent states and traveling
chimera states [26].

We have provided a fairly complete description of the
effects of inhomogeneity on these states for the cou-
pling functions G(x) = cos(x), cos(x) + cos(2x) and
cos(3x)+cos(4x) employed in [26]. Specifically, we found
that as the amplitude of the inhomogeneity increased a
splay state turned into a near-splay state, characterized
by a nonuniform spatial phase gradient, followed by the
appearance of a stationary incoherent region centered
on the location of maximum inhomogeneity amplitude.
With further increase in ω0 additional intervals of inco-
herence opened up, leading to states resembling the sta-
tionary multi-cluster chimera states also present in the
homogeneous system. These transitions, like many of
the transitions identified in this paper, could be under-
stood with the help of a self-consistency analysis based
on the Ott-Antonsen Ansatz [31], as described in the

Appendix. The effect of inhomogeneity on multi-cluster
chimera states was found to be similar: the inhomogene-
ity trapped the coherent clusters in particular locations,
and eroded their width as its amplitude ω0 increased, re-
sulting in coalescence of incoherent regions with increas-
ing ω0.

More significant are the effects of inhomogeneity on
traveling coherent and traveling chimera states. Here
the inhomogeneity predictably pins the traveling struc-
tures but the details can be complex. Figures 23–24 show
one such complex pinning transition that proceeds via an
intermediate direction-reversing traveling wave. These
waves are generated directly as a consequence of the in-
homogeneity and would not be present otherwise, in con-
trast to homogeneous systems undergoing a symmetry-
breaking Hopf bifurcation as described in [32]. Many of
the pinning transitions described here are hysteretic as
demonstrated in Fig. 27. The traveling chimera states
are particularly fragile in this respect, with small ampli-
tude inhomogeneities sufficient to arrest the motion of
these states. In all these cases the coherent regions are
found in regions of least inhomogeneity, an effect that
translates into an effective repulsive interaction between
the coherent cluster and the inhomogeneity.

In future work we propose to explore similar dynamics
in systems of more realistic nonlocally coupled oscillators
and compare the results with those for similar systems
with a random frequency distribution.
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Appendix A: Derivation of the self-consistency
equation

We suppose that an oscillator at position x has in-
trinsic frequency ω(x), and assume that the frequency
distribution ω(x) is continuous. The model equation is

∂θ

∂t
= ω(x)−

∫ π

−π
G(x− y) sin(θ(x, t)− θ(y, t) + α) dy.

(A1)
We next introduce the probability density function
f(x, ω, θ, t) characterizing the state of the system. This
function must satisfy the continuity equation

∂f

∂t
+

∂

∂θ
(fv) = 0, (A2)

where v(x, t) satisfies the relation

v(x, t) = ω(x)−
∫ π

−π
G(x− y)f ′(y, t) dy (A3)
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and f ′(y, t) =
∫∞
−∞

∫ π
−π sin(θ − θ′ + α)f(y, ω, θ′, t) dθ′dω.

We also define the local order parameter

Z(x, t) =

∫ π

−π
G(x− y)

∫ ∞
−∞

∫ π

−π
eiθ

′
f(y, ω, θ′, t) dθ′dωdy.

(A4)
Then

v = ω − 1

2i
(Z∗ei(θ+α) − Ze−i(θ+α)]. (A5)

The above equations can be recast in a more convenient
form using the Ott-Antonsen Ansatz [31]

f(x, ω, θ, t) =
g(x, ω)

2π
[1 +

∞∑
n=1

an(x, ω, t)e−inθ + c.c.].

(A6)
Here g(x, ω) represents the distribution of natural fre-
quencies at each x. Matching terms proportional to dif-
ferent powers of exp iθ, we obtain

∂a

∂t
= iωa− 1

2
[Ze−iα − Z∗eiαa2], (A7)

where the complex order parameter Z(x, t) is given by

Z(x, t) =

∫ π

−π
G(x−y)

∫ ∞
−∞

g(x, ω)a(y, ω, t)dω dy. (A8)

If we take

g(x, ω) =
D

π((ω − ω(x))2 +D2)
(A9)

set z(x, t) = a(x, ω(x) + iD, t) and perform the implied
contour integration, we obtain

Z(x, t) =

∫ π

−π
G(x− y)z(y, t) dy. (A10)

In the limit D → 0 the distribution function g reduces
to a delta function. The corresponding quantity z(x, t)
satisfies

∂z

∂t
= iωz +

1

2
[Z exp(−iα)− Z∗ exp(iα)z2], (A11)

where Z(x, t) is given by (A10). Equations (A10)–(A11)
constitute the required self-consistency description of the
nonlocally coupled phase oscillator system with an inho-
mogeneous frequency distribution ω(x).
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