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We study the synchronization of neuronal networks with dynamical heterogeneity, showing that
network structures with the same propensity for synchronization (as quantified by Master Stability
Function analysis) may develop dramatically different synchronization properties when heterogene-
ity is introduced with respect to neuronal excitability type. Specifically, we investigate networks
composed of neurons with different types of phase response curves (PRCs), which characterize how
oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond
exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase
delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz
small world networks transition to synchronization gradually as the proportion of type 2 neurons
increases, whereas scale-free networks may transition gradually or rapidly, depending upon local
correlations between node degree and excitability type. Random placement of type 2 neurons re-
sults in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads
to a much more rapid transition, showing that type 2 hub cells easily “hijack” neuronal networks
to synchronization. These results underscore the fact that the degree of synchronization observed
in neuronal networks is determined by a complex interplay between network structure and the dy-
namical properties of individual neurons, indicating that efforts to recover structural connectivity
from dynamical correlations must in general take both factors into account.

I. I. INTRODUCTION

Synchronization of neuronal networks is a prominent
feature of brain activity, having been associated with di-
rected attention [1, 2], memory formation [3, 4], and pro-
cessing of sensory stimuli [5], as well as with patholo-
gies such as Parkinson’s disease [6] and epilepsy [7]. Re-
sults from nonlinear dynamical systems theory have been
instrumental in understanding the factors which deter-
mine neuronal synchronization, which generally fall into
two categories: dynamical properties of individual neu-
rons and characteristics of the coupling structure between
neurons.
Concerning the first category, most neurons exhibit

one of two bifurcation structures in their transition to
firing, saddle-node or Andronov-Hopf [8] (referred to as
type 1 and type 2 excitability, respectively). Neurons
exhibiting these two excitability types generally respond
differently to brief perturbations [9], as characterized by
the phase response curve (PRC). Assuming a periodi-
cally firing neuron, the PRC is a function which maps
the phase at which a neuron is stimulated to the phase
response of the neuron. Type 1 neurons usually exhibit
phase advances (firing sooner than they would with no
stimulus) for all stimulation phases, whereas type 2 neu-
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rons typically show phase delays at early stimulation
phase and phase advances at relatively later stimulation
phase. These qualitatively different responses to stimula-
tion lead to dramatically different synchronization prop-
erties, with networks of type 2 neurons synchronizing
much better than networks of type 1 neurons when cou-
pled with excitation [10–12].
Considering the influence of coupling structure upon

network synchronization, the Master Stability Function
(MSF) approach has proven a powerful tool for dis-
entangling the effects of individual oscillator dynam-
ics from network structure in contributing to a net-
work’s propensity for synchronization (PFS) [13]. MSF
analysis has been applied to many network connectiv-
ity paradigms, including two which are commonly used
to model connectivity within neuronal networks. The
Watts-Strogatz (WS) small-world network model is use-
ful because it interpolates between local, lattice-like and
random connectivity structures using a single parameter,
the rewiring probability p, which introduces “shortcuts”
between nodes [14]. MSF analysis has shown that small-
world PFS increases with increased number of shortcuts
[15], increased network size, and increased connection
density [16].
Scale-free (SF) networks , on the other hand, are char-

acterized by a power-law degree distribution, p(k) ∼ k−γ ,
a property that has been observed in the functional
connectivity between hippocampal neurons in situ [17].
MSF analysis has shown that unweighted SF networks
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synchronize quite poorly in comparison with unweighted
WS networks due to heterogeneity in degree distribution
leading to hub nodes being “overloaded” [18]. This poor
PFS may be remedied, however, by weighting the in-
coming links to each node such that all nodes have the
same total impinging connection strength. In this case
SF networks may synchronize as well as—or even better
than—small world networks [19].
While PRC theory andMSF theory have provided deep

insight into the contributions of neuronal dynamics and
connectivity structure to the synchronization of neuronal
networks, there has been little investigation into the in-
terplay between these two factors in networks that are
heterogeneous with respect to excitability type. This
may in part be due to the fact that classical MSF theory
assumes a completely homogeneous network with respect
to oscillator dynamics (although extensions to nearly-
identical oscillator dynamics have been made [20, 21]).
In this study we numerically explore instances of two dif-
ferent network connectivity models, WS and SF, which
have the same PFS according to MSF theory. We show
that when the neuronal networks are homogeneous with
respect to excitability type—either all type 1 or all type
2—both connectivity models exhibit the same degree of
synchronization, consistent with calculations made us-
ing MSF theory. When dynamical heterogeneity is intro-
duced, however, the synchronization properties of WS
and SF networks can be either similar or dramatically
different, depending upon correlations between node de-
gree and excitability type. In particular, setting the hub
nodes in SF networks to type 2 excitability results in a
dramatic increase in synchronization compared to WS
networks with the same proportion of type 2 neurons.

II. II. NEURON MODEL

For our numerical investigation of mixed-excitability-
type networks, we used the Morris-Lecar (ML) model
neuron, which is governed by the following equations:

C
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=− gCam∞(Vi)(Vi − ECa)− gKwi(Vi − EK)
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, (5)

where Vi is the membrane potential of the ith neuron,
wi is the corresponding recovery variable, Iexti is a con-
stant external current, and Isyni is the synaptic current

C 20 µF/cm2

gCa 4.0 mS/cm2

gK 8.0 mS/cm2

gL 2.0 mS/cm2

ECa 120.0 mV

EK -80.0 mV

EL -60.0 mV

V1 -1.2 mV

V2 18.0 mV

V3 12.0 mV or 2.0 mV

V4 17.4 mV

φ 1/15

TABLE I. Parameters for Morris-Lecar model neurons, from
[22, 23]. Switching the parameter V3 from 12.0 mV to 2.0 mV
switches the neuronal excitability from type 1 to type 2.
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FIG. 1. (Color online) Characteristics of model neurons. A:
Frequency-current curves for Morris-Lecar neurons with type
1 (upper line) and type 2 (lower line) excitability. B: Phase
response curves for type 1 (upper line) and type 2 (lower
line) model neurons. C, D: Raster plots of network activity
for homogeneous Watts-Strogatz small-world networks (with
p = 0.8) composed entirely of either type 1 neurons (C) or
type 2 neurons (D).

to neuron i induced by the firing of neurons coupled
to neuron i. Parameter values are given in Table I,
with modulation of the single parameter V3 switching
between type I and type II neuronal excitability [22, 23].
Values of Iexti were uniformly distributed over the in-
terval [70.93, 76.65] µA/cm2 for type 1 neurons and
[76.06, 81.20] µA/cm2 for type 2 neurons, corresponding
to firing rates between 19.5 and 20.5 Hz in both cases.

Fig. 1A shows the frequency-current curves for these
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two neuronal types, with the type 1 neuron firing at arbi-
trarily low frequencies and the type 2 neuron exhibiting a
non-zero frequency threshold, typical of Andronov-Hopf
bifurcations. The similarity between these two curves
makes this particular parameter set attractive for net-
work simulations, since it largely controls for different
frequency response between the two excitability types.
Fig. 1B shows PRCs at firing threshold for the two neu-
ronal types, with the type 1 neuron showing an exclu-
sively positive curve and the type 2 neuron featuring an
early phase delay region and rightward skew, both fea-
tures which have been shown to enhance synchronization
under excitatory coupling [24–26].
In network simulations, neurons were conductance-

coupled with fast excitatory synapses, so that the synap-
tic current delivered from neuron j to neuron i due to a
spike by neuron j at time tj was given by

Isynij = sij exp

(

−
t− tj
τ

)

(Esyn − Vi). (6)

Fast excitation was modeled by setting τ = 0.5 ms and
Esyn = 0 mV. The total synaptic current to neuron i was
simply Isyni =

∑

j∈Γi
Isynij , where Γi is the set of all neu-

rons which synapsed onto neuron i. For both WS and SF
simulations, coupling conductances sij were constrained
such that the total coupling strength impinging on each
neuron was the same throughout the network: sij = S

kin

i

(where kini denotes the in-degree of neuron i). This con-
straint is biophysically realistic in neuronal networks [27],
and has been shown to enhance the PFS in SF networks
to the point that it is comparable to the PFS observed in
small world networks [19]. Consistent with previous stud-
ies [10–12], homogeneous networks composed entirely of
type 2 cells synchronized better than homogeneous type
1 networks for a wide range of values of the total synaptic
strength S. Figs. 1C,D show representative raster plots
of network activity for S = 14.0 mS/cm2, the coupling
strength we used throughout this study.

III. III. NETWORK CONNECTIVITY

In order to investigate the interplay between connec-
tivity structure and excitability type, we employed two
fundamentally different network connectivity paradigms:
Watts-Strogatz (WS) small-world networks and scale-free
(SF) networks. In the WS model [14], each of N neurons
sends outgoing connections to its nearest d neighbors,
and with probability p each connection in the network is
re-wired to a randomly selected neuron. The rewiring pa-
rameter p thus interpolates between a lattice-like, locally
connected network and an essentially random network.
We used Barabasi’s preferential attachment model [28]
to construct SF connectivity. Briefly, this model starts
with a fully connected network of M neurons, and as ad-
ditional nodes are introduced they each make c connec-
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FIG. 2. (Color online) Propensity for synchronization of
Watts-Strogatz and scale-free networks according to Master
Stability Function analysis. Each value plotted represents
the average over 10 network realizations, with error bars rep-
resenting s.e.m.

tions with previously established nodes, with the proba-
bility of connection being proportional to the degree of
each node. Since Barabasi’s protocol is for an undirected
network, and neuronal networks are inherently directed,
we randomly assigned directions to the connections re-
sulting from the Barabasi algorithm. All networks in this
study featured N = 1000 neurons and 4% connectivity.
We used MSF analysis to quantify the PFS of the

model networks described above. MSF theory assumes a
network of coupled, identical oscillators whose dynamics
follow the general form

ẋi = F(xi) + S

N
∑

j=1

GijH[xj ], (7)

where xi is a vector representing the dynamical variables
of the ith oscillator, F is a function governing the indi-
vidual oscillator dynamics, and H is a linear vectorial
function. G is a zero row-sum coupling matrix in which
each diagonal element Gii reflects the summed strength
of all connections incoming to node i, Gii = −

∑

j 6=i Gij .
It can be shown that the more compact the spectrum of
eigenvalues of G is, the wider will be the range of param-
eters for which the synchronous state is stable [29]. For
an undirected and symmetric network, this is most easily
quantified using the ratio of the largest eigenvalue to the
smallest non-trivial eigenvalue, λN/λ2, with smaller val-
ues implying better PFS [30]. For a directed network the
eigenvalues are complex, but it can be shown that order-
ing the eigenvalues according to their real parts and tak-
ing the analogous ratio, λr

N/λr
2, is an appropriate mea-

sure of a directed network’s PFS, so long as G meets the
constraint

∑

j 6=i Gij = 1 for all i [31].
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All WS and SF networks in this study met this con-

straint by construction, for we set Gij =
Aij

kin

i

, where

A is the network adjacency matrix (this also implies
sij = S Gij). Normalizing the input to each cell in this
way is biophysically realistic, since manifold homeostatic
plasticity mechanisms have been experimentally shown
to prevent total synaptic input from growing too large
or too small, thereby maintaining the stability of neu-
ronal networks [27]. Fig. 2 shows the PFS, as quantified
by the ratio λr

N/λr
2, for WS networks as a function of

the rewiring parameter p, as well as for the SF network
model used in this study. Note how in terms of connec-
tivity structure alone, SF networks have very nearly the
same PFS as WS networks with p ≥ 0.8.

IV. IV. NETWORK SIMULATIONS

By comparing the synchronization of mixed-
excitability p = 0.8 WS networks and SF networks,
we were therefore able to investigate the effects of
dynamical heterogeneity on network synchronization
while controlling for the contribution of connectivity
structure to network PFS. We ran a series of simulations
of WS and SF networks in which the proportion of type
2 neurons comprising each network was varied (type 2
cells were randomly placed within each network). We
then quantified both phase-locking synchronization and
burst synchronization as a function of the fraction of
type 2 neurons comprising the network. Briefly, phase-
locking synchronization was quantified by averaging
over the mean phase coherence (MPC) between all pairs
of neurons [32], where MPC between two neurons was
defined by

σab =

∣

∣

∣

∣

∣

1

Nb

N
∑

k=1

eiφk

∣

∣

∣

∣

∣

(8)

φk = 2π

(

tb,k − ta,k
ta,k+1 − ta,k

)

, (9)

where tb,k is the time of the kth spike of neuron b, ta,k
is the time of the spike of neuron a that is largest while
being less than tb,k, ta,k+1 is the time of the spike of
neuron a that is smallest while being greater than or
equal to tb,k, and Nb is the number of spikes of neuron
b. Burst synchronization, χ, was quantified using the
measure of Golomb et. al. [33]:

χ2 =
σ2
V̄

1
N

∑N
i=1 σ

2
Vi

, (10)

where σ2
V̄
is the time-averaged variance of the mean volt-

age signal from all N neurons in the network, and σ2
Vi

is the variance of just the ith voltage trace. This intu-
itive measure depends upon the increase in the variance
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FIG. 3. (Color online) Effects of dynamical heterogeneity on
the synchronization of SF andWS networks with random type
2 placement. A: Phase-locking synchronization, as quantified
by mean-phase coherence, as a function of percentage of type
2 cells present in SF and WS networks. Type 2 cells were
placed randomly throughout both network types. B: Mea-
sure of burst synchronization as a function of percentage of
type 2 cells. C-E: Raster plots depicting network spike times
for networks with WS connectivity, for three levels of type 2
network composition. F-H: Same as C-E, but for networks
with SF network connectivity. Blue (dark gray) dots indicate
type 1 spikes, red (light gray) dots type 2 spikes.

of the mean voltage signal as bursting synchronization
increases. Both MPC and χ are bounded on the interval
[0,1], with MPC attaining a value of 1 when all neurons
are perfectly phase-locked, and χ attaining a value of 1
when all neurons continually fire together (or “burst”) at
exactly the same time.

Fig. 3A,B shows how these synchronization measures
varied with proportion of type 2 cells present in the net-
work. For both measures, synchronization of WS and
SF networks increased monotonically with percentage of
type 2 cells, and synchronization for the two connectivity
paradigms was virtually identical at the homogeneous ex-
tremes of either entirely type 1 or entirely type 2 network
composition. This result accords well with the nearly
identical PFS calculated for the two networks (Fig. 2),
since MSF theory assumes homogeneous oscillator dy-
namics. More interesting is the nearly identical synchro-
nization displayed by WS and SF networks for the vari-
ous degrees of heterogeneity between these two extremes.
For all values of type 2 percentage composition, WS and
SF networks exhibited nearly identical phase-locking and
bursting synchronization. It should be noted that al-
though Fig. 3 shows results for a rewiring parameter of
p = 0.8 in WS networks, we also obtained nearly identical
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FIG. 4. (Color online) Effects of type 2 placement on the synchronization of SF networks. A: Mean phase coherence of network
activity as a function of proportion of type 2 cells composing the network, for three different type 2 placement procedures:
1) type 2 cells placed as the most highly connected cells, 2) random placement of type 2 cells, and 3) type 2 cells placed as
the least-connected cells. B: Bursting synchronization as a function of proportion of type 2 cells, with the type 2 placement
procedures described in A. C-E: Raster plots depicting network activity for the three different placement procedures, with type
2 composition fixed at 25%. Blue (dark gray) dots indicate type 1 spikes, red (light gray) dots type 2 spikes. Note how when
the most highly connected cells are type 2, they not only form their own cluster of elevated synchronization, but also increase
synchronization throughout the rest of the network.

results using a value of p = 1.0 (data not shown).

Further investigation revealed that this effect was not
generic, but depended upon the placement of type 2 cells
within the network. Simulations of SF networks were
conducted in which the placement of type 2 cells was
correlated with the total degree (kin + kout) of each neu-
ron, using three different placement procedures: for a
given type 2 composition, 1) the most highly connected
cells were switched from type 1 to type 2, 2) the least

highly connected cells were switched to type 2, and 3)
cells were randomly selected to be switched to type 2,
irrespective of connectivity (as in Fig. 3). Fig. 4 shows
that these dynamical-structural correlations dramatically
influenced network dynamics, with placement of type 2
cells as highly connected hubs leading to dramatically
enhanced network synchronization. Compared to the
least-connected and random placement procedures, plac-
ing type 2 cells as hubs resulted in network synchroniza-
tion increasing much more rapidly as type 2 composition

increased. This is clearly demonstrated in the raster plots
of Figs. 4C-E, which show how type 2 hub cells not only
formed a cluster of tight synchronization amongst them-
selves, but also recruited the remaining type 1 neurons
to a higher level of synchronization than was observed
when type 2 placement was uncorrelated or negatively
correlated with neuronal degree.

In order to better investigate how type 2 hub cells were
capable of “hijacking” type 1 cells to synchronization, we
measured the mean phase coherence and burst synchro-
nization of type 1 and type 2 populations separately, as
a function of percent type 2 hub cells composing the net-
work (Fig. 5A,B). There was an interesting interval, from
20% to 50% type 2 composition, in which type 2 cells ex-
hibited higher phase locking than type 1 cells, but type
1 cells showed better burst synchronization than type 2
cells. This indicated that type 2 cells were more consis-
tent in their firing pattern from burst to burst, but that
individual type 2 bursts were not as tightly synchronized
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as type 1 bursts. This phenomenon is clearly depicted
in the raster plots of network activity (Figs. 5C-E). Also
interesting was that with relatively few type 2 hub cells
(Fig. 5C), peak type 1 burst activity lagged peak type
2 burst activity by ∼ 7 ms, but there were a sizeable
minority of type 1 cells that fired outside each type 1
burst.
We suspected that heterogeneity in the intrinsic firing

frequencies of cells (which were distributed between 19.5
Hz and 20.5 Hz across the network) was primarily respon-
sible for both the imprecision of type 2 bursting and the
large number of type 1 cells which seemed to randomly
fire outside of type 1 bursts (Figs. 4C, 5C). Simulations
with homogeneous intrinsic frequencies (in which each
cell naturally fired at exactly 20 Hz) did lead to much
more precise type 2 bursting (Fig. 6), but—somewhat
surprisingly—there were still a sizeable minority of type
1 cells that did not fire with the majority of type 1 cells
within each burst (Fig. 6A). Moreover, we found that the
type 1 cells that fired outside of the synchronous bursts
was not consistent, but varied from burst to burst. This
was especially surprising given the highly synchronous
input received from the type 2 population.
Further investigation revealed that globally weakening

all type 1→ type 1 coupling strengths led to a progressive
decrease in the number of type 1 cells firing outside each
network burst (Figs. 6B-D). With type 1 → type 1 cou-
pling strengths reduced to 60% of their original value,
all type 1 cells burst together. This seems to indi-
cats that the synchronous “signal” received by type 1
cells from synchronous type 2 hub cells was somewhat
drowned out by the “noise” from other type 1 cells when
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intrinsic cellular firing frequencies were homogenous (20 Hz)
and type 1 → type 1 coupling strength was progressively de-
creased. A-D: Fewer type 1 cells fired outside type 1 bursts
as type 1 → type 1 coupling strength decreased. Blue (dark
gray) dots indicate type 1 spikes, red (light gray) dots type 2
spikes.

type 1 → type 1 coupling strength was high. Reducing
type 1 → type 1 coupling strength would therefore en-
hance the signal-to-noise ratio, enabling bursts of type 2
hub cells to better drive type 1 network synchronization.

V. V. DISCUSSION

Our results demonstrate that networks whose connec-
tivity structures alone exhibit the same propensity for
synchronization may nevertheless show dramatically dif-
ferent synchronization properties when local dynamical-
structural correlations are taken into account. We
have provided specific examples of two distinct network
connectivity paradigms, WS small-world and scale-free,
which have the same propensity for synchronization ac-
cording to Master Stability Function analysis—and show
identical levels of synchronization for dynamically homo-
geneous networks—yet exhibit different synchronization
properties for dynamically heterogeneous networks. Both
types of networks show remarkably similar levels of syn-
chronization for all type 1/type 2 mixing ratios when
type 2 cells are placed randomly, but their synchroniza-
tion properties dramatically diverge when type 2 cells are
placed either as hubs or as least-connected cells. (Anal-
ogous type 2 placement in WS small-world networks was
not conducted because directed WS degree distribution
is highly homogeneous.)
The dramatic influence of local dynamical-structural

correlations on global network dynamics underscores the
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importance of taking these correlations into account
when attempting to reconstruct network structure from
measured dynamical correlations [34, 35]. Furthermore,
our results indicate that type 2 hub cells are exception-
ally capable of “hijacking” neuronal networks to synchro-
nization, while type 1 hub cells are not (Fig. 4). This
may inform previous studies indicating that hub cells or-
chestrate network synchronization in the hippocampus
[17] and contribute to epileptic seizures [36], suggesting
that in some cases the hyper-connectedness of hub cells
is not sufficient to orchestrate network synchronization,
but must work in tandem with appropriate neuronal dy-
namics.
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