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We study a mathematical model of social diffusion on a symmetric weighted network where
individual nodes’ states gradually assimilate to local social norms made by their neighbors’ average
states. Unlike physical diffusion, this process is not state conservational and thus the global state
of the network (i.e., sum of node states) will drift. The asymptotic average node state will be the
average of initial node states weighted by their strengths. Here we show that, while the global
state is not conserved in this process, the inner product of strength and state vectors is conserved
instead, and perfect positive correlation between node states and local averages of their self/neighbor
strength ratios always results in upward (or at least neutral) global drift. We also show that the
strength assortativity negatively affects the speed of homogenization. Based on these findings, we
propose an adaptive link weight adjustment method to achieve the highest upward global drift by
increasing the strength-state correlation. The effectiveness of the method was confirmed through
numerical simulations and implications for real-world social applications are discussed.

I. INTRODUCTION

Social contagion [1] has been studied in various con-
texts. Many instances of social contagion can be modeled
as an infection process where a specific state (adoption
of product, fad, knowledge, behavior, political opinion,
etc.) spreads from individual to individual through links
between them [2–5]. In the meantime, other forms of so-
cial contagion may be better understood as a diffusion
process where the state of an individual tends to assimi-
late gradually to the social norm (i.e., local average state)
within his/her neighborhood [6–9].

Unlike infection scenarios where influence is nonlinear,
unidirectional, fast, and potentially disruptive, social dif-
fusion is linear, bidirectional, gradual, and converging.
The distance between an individual’s state and his/her
neighbors’ average state always decreases, and thus a ho-
mogeneous global state is guaranteed to be the connected
network’s stable equilibrium state in the long run [10].

Here, we focus on an unrecognized characteristic of so-
cial diffusion, i.e., non-trivial drift it can cause to the
network’s global state. Although somewhat counterintu-
itive, such global drift is indeed possible because, unlike
physical diffusion processes, social diffusion processes are
not state conservational. In what follows, we study a sim-
ple mathematical model of social diffusion to understand
the mechanisms of this process and obtain both asymp-
totic and instantaneous behaviors of the global state of
the network. We also show how strength assortativity
influences the speed of homogenization. Then we pro-
pose an adaptive network [11] method of preferential link
weight adjustment to achieve the highest upward global
drift within a given time period. The relevance of so-
cial diffusion to individual and collective improvement
is discussed, with a particular emphasis on educational
applications.

II. MATHEMATICAL MODEL OF SOCIAL
DIFFUSION

Let us begin with the conventional physical diffusion
equation on a simple symmetric network,

ds

dt
= −cLs, (1)

where s is the node state vector of the network, c the
diffusion constant, and L the Laplacian matrix of the
network. The Laplacian matrix of a network is defined
as L = D − A, where A is the adjacency matrix of the
network and D is a diagonal matrix of the nodes’ de-
grees. If the network is connected, the coefficient matrix
(−cL) has one and only one dominant eigenvalue, λ0 = 0,
whose corresponding eigenvector is the homogeneity vec-
tor h = (1 1 1 . . . 1)T . Therefore, the solutions of this
equation always converge to a homogeneous state regard-
less of initial conditions if the network is connected. It
is easy to show that this process is state conservational,
i.e., the sum (or, equivalently, average) of node states,
hT s, will not change over time:

d(hT s)

dt
= −chTLs = −c(Lh)T s = 0 (2)

This indicates that no drift of the global state is possi-
ble in physical diffusion processes on a simple symmetric
network.

Social diffusion processes can be modeled differently.
In this scenario, a state of an individual node may rep-
resent any quantitative property of the individual that
is subject to social influence from his/her peers, such as
personal preference, feeling, cooperativeness, etc. We as-
sume that each individual gradually assimilates his/her
state to the social norm around him/her. The dynamical
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equation of social diffusion can be written individually as

dsi
dt

= c
(
〈sj〉ij − si

)
, (3)

where si is the state of individual i, and 〈xj〉ij is a local
weighted average of xj around individual i, i.e.,

〈xj〉ij =

∑
j aijxj∑
j aij

, (4)

with aij ≥ 0 being the connection weight from individual
j to individual i. In Eq. (3) xj = sj , but this weighted
averaging will also be used for other local quantities later
in this paper. We note that Eq. (4) carries a dummy vari-
able j outside the brackets. While not customary, such
explicit specification of dummy variable j is necessary in
the present study, in order to disambiguate which index
the averaging is conducted over when calculating nested
local averages (to appear later).
〈sj〉ij in Eq. (3) represents the social norm for indi-

vidual i. Discrete-time versions of similar models are
also used to describe peer effects in opinion dynamics
in sociology [12], distributed consensus formation (called
“agreement algorithms”) in control and systems engi-
neering [13–15], and for statistical modeling of empirical
social media data more recently [9].

In this paper, we focus on symmetric interactions be-
tween individuals (i.e., aij = aji). Such symmetry is
a reasonable assumption as a model of various real-
world collaborative or contact relationships, e.g., net-
works of coworkers in an organization, networks of stu-
dents in a school, and networks of residents in a commu-
nity, to which symmetric social interaction can be rele-
vant. Self-loops are allowed in our model, i.e., aii may
be non-zero. Such self-loops represent self-confidence
of individuals when calculating their local social norms.
The sum of weights of all links attached to a node i,
ki =

∑
j aij =

∑
j aji, is called the strength of node i

[16], which would correspond to a node degree for un-
weighted networks. This social diffusion model requires
ki 6= 0 ∀i; otherwise Eq. (4) would be indeterminate and
there would be no meaningful dynamics to be described
for the individual.

Eq. (3) can be rewritten at a collective level as

ds

dt
= c(D−1A− I)s, (5)

where A = (aij) and D−1 is a square matrix whose i-th

diagonal component is k−1i while non-diagonal compo-
nents are all zero. If the network does not have link
weights or self-loops (i.e., aij ∈ {0, 1}, aii = 0), D−1

and A are conventional inverse degree and adjacency ma-
trices, respectively, and thus the matrix D−1A − I =
−D−1L is a special case of the coupling matrix dis-
cussed in [17], with scaling exponent 1 and a negative
sign added.

III. ASYMPTOTIC BEHAVIORS

Eq. (5) is essentially the same as Eq. (1) if the network
is regular without link weights or self-loops (i.e., aij ∈
{0, 1}, aii = 0, ki = k ∀i). Even if not regular, it is still
a simple matrix differential equation, for which a general
solution is always available. If the network is connected,
the coefficient matrix c(D−1A− I) has one and only one
dominant eigenvalue 0 with corresponding eigenvector h,
hence the state of the network will always converge to a
homogeneous equilibrium state, just like in the physical
diffusion equation. Hence the asymptotic state can be
written as

s∞ = lim
t→∞

s(t) = 〈s∞〉h, (6)

where 〈s∞〉 is the average node state in s∞.
It is known that a discrete time version of Eq. (5) will

converge to a weighted average of initial node states with
their strengths used as weights, if the network is con-
nected and non-bipartite [15]. The same conclusion was
also reported for the ensemble average of the voter model
with a node-update scheme [18]. It can be easily shown
that our continuous-time model has the same asymptotic
state, as follows.

First, we show that the inner product of strength and
state vectors, gT s with g = (k1 k2 . . . kn)T (where n is
the number of individuals), is always conserved instead
of node states during social diffusion on a symmetric net-
work, because

d(gT s)

dt
= cgTD−1As− cgT s = chTAs− cgT s = 0. (7)

This holds for any symmetric networks regardless of their
topologies and link weights. We call gT s a strength-state
product hereafter.

This conservation law was already known for the en-
semble average of the node-update voter model [18],
and the existence of similar conservation laws was also
shown for more generalized voter-like models with di-
rected links [19]. Our result above provides an example
of the same conservation law realized in a different model
setting, i.e., continuous-time/state social diffusion mod-
els on weighted, undirected networks.

Calculating an inner product of each side of Eq. (6)
with g makes

gT s∞ = 〈s∞〉gTh. (8)

The conservation of the strength-state product (Eq. (7))
allows us to replace the left hand side, resulting in

gT s0 = 〈s∞〉gTh, (9)

〈s∞〉 = gT s0/g
Th (10)

= (k1/K k2/K . . . kn/K)T s0, (11)

whereK = gTh =
∑
i ki. This shows that the asymptotic

average node state is a weighted average of initial node
states where their strengths are used as weights.
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In discrete-time distributed consensus formation mod-
els, the network needs to be non-bipartite (in addition to
being connected) for global homogenization to be reached
[15], but the model discussed here does not require non-
bipartiteness because time is continuous.

The overall net gain or loss of the global state that can
be attained asymptotically by social diffusion is calcu-
lated as

∆∞ = hT s∞ − hT s0 (12)

= hT
(
gT s0
gTh

h

)
− hT s0 (13)

= (ĝ − h)T s0, (14)

where ĝ = g/〈k〉 with 〈k〉 = gTh/n (i.e., average
strength). This means that the asymptotic net gain or
loss will be determined by the correlation between the
initial state vector s0 and another vector (ĝ − h) that is
determined by the node strengths.

IV. INSTANTANEOUS BEHAVIORS

Next, we study the instantaneous direction of drift of
the global state (sum of node states, hT s), which can be
written as

d(hT s)

dt
= chT (D−1A− I)s (15)

= c(wT s)− c(hT s), (16)

where w = AD−1h. w can be further detailed as

w =


∑
j a1jk

−1
j∑

j a2jk
−1
j

...∑
j anjk

−1
j

 =


〈k1/kj〉1j
〈k2/kj〉2j

...
〈kn/kj〉nj

 . (17)

Each component of w is the local average of self/neighbor
strength ratios, ki/kj , which tends to be greater than 1
if the individual has more connection weights than its
neighbors, or less than 1 otherwise (but always strictly
positive). In this regard, w characterizes the local
strength differences for all individuals in society. If
(w − h)T s > 0, the global state will drift upward due
to social diffusion. Also note that wTh = n, because

wTh =
∑
i

∑
j

aijk
−1
j (18)

=
∑
j

(
k−1j

∑
i

aij

)
=
∑
j

k−1j kj = n. (19)

We show w ≈ ĝ for networks with neutral strength
assortativity (called non-assortative networks hereafter).
Let P (k′|k) be the conditional probability density for a
link originating from a k-degree node to reach a k′-degree

node. Then, each component of w in Eq. (17) is approx-
imated as

〈ki/kj〉ij ≈ ki
∫
k′
k′−1P (k′|ki)dk′. (20)

For non-assortative networks, P (k′|ki) does not depend
on ki [20]:

P (k′|ki) = k′P (k′)/

∫
k′
k′P (k′)dk′ = k′P (k′)/〈k〉 (21)

Applying Eq. (21) to Eq. (20) makes

〈ki/kj〉ij ≈ ki
∫
k′
k′−1k′P (k′)dk′/〈k〉 = ki/〈k〉. (22)

With this, Eq. (17) is approximated as

w ≈ g/〈k〉 = ĝ. (23)

Using ĝ, we obtain the following approximated dynami-
cal equation for non-assortative networks, which is quite
similar to Eq. (14):

d(hT s)

dt
≈ c(ĝT s)− c(hT s) = c(ĝ − h)T s (24)

Furthermore, we prove that perfect positive correla-
tion between node states (s) and local averages of their
self/neighbor strength ratios (w) always results in up-
ward (or at least neutral) global drift. If those two vec-
tors are in perfect positive correlation, s = αw with pos-
itive constant α. Then Eq. (16) becomes

d(hT s)

dt
= αc(w − h)Tw. (25)

Here, w and w − h are the hypotenuse and adjacent of
a right triangle in an n-dimensional state space, respec-
tively, because

(w − h)Th = wTh− hTh = n− n = 0, (26)

which shows (w − h) ⊥ h. Therefore, the angle between
(w − h) and w cannot be greater than π/2, which guar-
antees in Eq. (25) that d(hT s)/dt is always non-negative.
Figure 1 visually illustrates the relationships between the
vectors discussed above.

V. APPROXIMATION AS LOW-DIMENSIONAL
LINEAR DYNAMICAL SYSTEM AND

ANALYSIS OF HOMOGENIZATION SPEED

Here we analyze the speed of homogenization caused by
social diffusion on networks by approximating the whole
dynamics in a low-dimensional linear dynamical system
about hT s and wT s. The dynamics of wT s is given by

d(wT s)

dt
= cwTD−1(A−D)s (27)

= c(uT s)− c(wT s), (28)
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FIG. 1. (Color online) Visual illustration of the relationships
between several vectors discussed (h, w, g, ĝ, s0, s∞). This
diagram is drawn in two dimensions for simplicity, but the ac-
tual vectors exist in an n-dimensional state space. Note that
hTh = wTh = ĝTh = n. If the network is non-assortative,
then w ≈ ĝ.

where u = AD−1w, which is further detailed as

u = A


〈k−1j 〉1j
〈k−1j 〉2j

...
〈k−1j 〉nj

 =


〈〈k1/kj〉ij〉1i
〈〈k2/kj〉ij〉2i

...
〈〈kn/kj〉ij〉ni

 . (29)

If we can approximate u using h and/or w, the system
closes and a simple eigenvalue analysis reveals the speed
of homogenization.

For non-assortative networks, the approximation in
Eq. (22) gives

u ≈ g/〈k〉 = ĝ. (30)

Combining this with Eq. (23), we obtain

d(wT s)

dt
≈ c(ĝT s)− c(ĝT s) = 0, (31)

which is consistent with our analyses derived earlier.
Combining this result with Eq. (16) makes the follow-
ing two-dimensional linear dynamical system:

d

dt

(
hT s
wT s

)
= c

(
−1 1

0 0

)(
hT s
wT s

)
(32)

The coefficient matrix above has eigenvalues 0 and −c
with corresponding eigenvectors (1 1)T and (1 0)T , re-
spectively. The second eigenvalue (−c) represents the
baseline speed of homogenization on non-assortative net-
works.

This low-dimensional dynamical systems approach
can be extended to networks with negative or positive

strength assortativity. In so doing, we adopt a scaling
model [20, 21] to approximate the strength of a neighbor
of node i by a scaling function of ki,

kj ≈ bkµi , (33)

where µ is the correlation exponent and b is a positive
constant. Applying this approximation to Eq. (29) gives

u ≈


k1/(b(bk

µ
1 )µ)

k2/(b(bk
µ
2 )µ)

...
kn/(b(bk

µ
n)µ)

 = b−1−µ


k1−µ

2

1

k1−µ
2

2
...

k1−µ
2

n

 . (34)

This approximation indicates that, if µ → 0, u → g/b,
which agrees with Eq. (30) for non-assortative networks.
For simplicity, we limit our analysis to two unrealistic
yet illustrative cases with µ = ±1, because this setting
makes 1 − µ2 = 0 with which the dynamics can still be
written using h and w only.

For strongly disassortative networks (µ = −1),
Eq. (34) becomes u ≈ h. The resulting linear dynam-
ical system is

d

dt

(
hT s
wT s

)
= c

(
−1 1

1 −1

)(
hT s
wT s

)
, (35)

whose coefficient matrix has eigenvalues 0 and −2c with
corresponding eigenvectors (1 1)T and (−1 1)T , respec-
tively. The second eigenvalue (−2c) is smaller than that
of non-assortative networks, which shows that the ho-
mogenization takes place faster on disassortative net-
works.

Finally, for strongly assortative networks (µ = 1), ap-
plying the approximation Eq. (33) with µ = 1 to Eq. (17)
gives w ≈ h/b, and also Eq. (34) gives u ≈ h/b2. This
means that the system is essentially collapsed into the
following one-dimensional linear dynamical system:

d(hT s)

dt
= c((h/b)T s)− c(hT s) (36)

= −cb− 1

b
(hT s) (37)

For any positive b and c, always

− cb− 1

b
> −c. (38)

This shows that the homogenization takes place slower on
assortative networks than on non-assortative networks.
Moreover, if the network is truly strongly assortative, b
must be close to 1 by definition. This brings the coeffi-
cient in Eq. (37) close to 0. Therefore the homogeniza-
tion process on a strongly assortative network must be
extremely slow. This can also be understood intuitively;
extreme assortativity would result in having links only
between nodes of equal strength, making the network
disconnected and thus stopping the homogenization pro-
cess.
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These analytical results collectively illustrate that, as
the strength assortativity increases, the speed of homog-
enization goes down. This finding is consistent with the
negative effect of degree assortativity on the spectral gap
of the Laplacian matrix reported in [22] and on entropy
measures of biased random walks reported in [23], and
also similar to the enhancement of synchronizability of
networked nonlinear oscillators by negative degree assor-
tativity [24–26].

We conducted numerical simulations of social diffusion
on random and scale-free networks with non-assortative,
disassortative and assortative topologies. The results are
shown in Fig. 2. While the simulated networks did not
have correlation exponents as extreme as µ = ±1 as-
sumed in the analysis above, the simulation results agree
with the analytical predictions, especially during the ini-
tial time period when the networks tend to show a sig-
nificant global drift on non-assortative and disassortative
networks.

VI. ADAPTIVE LINK WEIGHT ADJUSTMENT
TO PROMOTE UPWARD GLOBAL DRIFT

The analytical results presented above suggest that,
if the local averages of people’s self/neighbor strength
ratios are positively correlated with their states and if
the network’s strength assortativity is negative, then an
upward drift of the global state will occur quickly.

Here, we propose an adaptive network [11] method of
preferential link weight adjustment based on node states
and strengths in order to promote upward global drift
while social diffusion is ongoing. Specifically, we let each
pair of nodes i and j dynamically change their connection
weight aij according to the following dynamical equation,

daij
dt

= aij

(
α
si + sj − 2〈s〉

2σs
− β (ki − 〈k〉)(kj − 〈k〉)

σ2
k

)
,

(39)
where σs and σk are the standard deviations of node
states and link weights, respectively. The first term in-
side the parentheses represents the change of link weights
to induce positive correlation between node states and
strengths (which naturally promotes positive correla-
tion between node states and local averages of their
self/neighbor strength ratios), while the second one is
to induce negative strength assortativity.

We examined the effectiveness of this method for pro-
motion of upward global drift through numerical simula-
tions starting with an initially random or scale-free net-
work topology with no prior strength-state correlation or
strength assortativity. Systematic simulations were con-
ducted with α and β varied logarithmically. Results are
shown in Fig. 3. It was found that the induction of pos-
itive strength-state correlation (α > 0) significantly pro-
moted upward global drift. In the meantime, the induc-
tion of negative strength assortativity (β > 0) increased
the variability of outcomes but did not have a substantial

influence on the direction of the global drift. The highest
upward global drift was achieved when α was large and β
was small, i.e., when adaptive link weight adjustment was
used merely for inducing positive strength-state correla-
tion but not for inducing negative strength assortativity.

VII. CONCLUSIONS

In this paper, we studied the drift of the global state
of a network caused by social diffusion. We showed that
the inner product of strength and state vectors is a con-
served quantity in social diffusion, which plays an es-
sential role in determining the direction and asymptotic
behavior of the global drift. We also showed both ana-
lytically and numerically that the strength assortativity
of network topology has a negative effect on the speed of
homogenization. We numerically demonstrated that ma-
nipulation of strength-state correlation via adaptive link
weight adjustment effectively promoted upward drift of
the global state.

This study has illustrated the possibility that social
diffusion may be exploited for individual and collective
improvement in real-world social networks. Mechanisms
like the adaptive link weight adjustment used in the simu-
lations above may be utilized in practice to, for example,
help spread desirable behaviors and/or suppress undesir-
able behaviors among youths.

One particularly interesting application area of social
diffusion is education. We have studied possible social
diffusion of academic success in high school students’ so-
cial network [28]. This naturally led educators to ask how
one could utilize such diffusion dynamics to improve the
students’ success at a whole school level. Näıve mixing
of students may not be a good strategy due to bidirec-
tional effects of social diffusion. Our results suggest that
carefully inducing correlation between strengths (amount
of social contacts) and states (academic achievements)
would be a promising, implementable practice at school
by, e.g., allowing higher-achieving students to participate
in more extracurricular activities.

The work presented in this paper still has several lim-
itations that will require further study. We have so
far considered simple symmetric networks only, but so-
cial diffusion can take place on asymmetric, weighted
social networks as well. Our analysis of assorta-
tive/disassortative network cases used unrealistic ex-
treme assumptions (µ = ±1) and ignored topological con-
straints such as structural cutoffs that are inevitable for
assortative cases [20]. Further exploration in these fronts
will be necessary to obtain more generalizable under-
standing of the social diffusion dynamics on more com-
plex real-world networks.
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FIG. 2. (Color online) Time evolution of the global state hT s toward the asymptotic state hT s∞ during social diffusion on
networks. The absolute difference between hT s and hT s∞ is plotted over time. Black solid, blue dashed, and pink dotted curves
show results with non-assortative, disassortative and assortative topologies, respectively. Each curve shows the mean of 100
independent numerical simulation runs, with shaded areas representing standard deviations. Each simulation was conducted
using Eq. (3), starting with a randomly generated initial condition with n = 1, 000, c = 1, node state range [−1, 1] and link
weight range [0, 10]. Numerical integration was conducted for t = 0 ∼ 10 using a simple Euler forward method with step size
δt = 0.01. (a): Results on random networks. (b): Results on scale-free networks. Network topologies were generated first as an
unweighted network by using the Erdős-Rényi (for random) or Barabási-Albert (for scale-free) network generation algorithm.
Disconnected networks were not used for the experiment. Self-loops were randomly added to nodes with 1% probability.
Once the topology was generated, a random link weight was assigned to each link. For assortative/disassortative networks,
a revised Xulvi-Brunet & Sokolov algorithm [20, 27] was additionally used to tune their strength assortativity. Assortative
(or disassortative) network topologies were created by applying to a randomly generated non-assortative network 30,000 times
of possible link rewirings that would enhance degree assortativity (or disassortativity) while preserving node degrees. Any
link rewiring that would disconnect the network or create a multi-link was forbidden. Self-loops were allowed in the above
operations. Every time a new link was created between originally disconnected nodes, a random link weight was assigned to
the new link.

(a) (initially) random (b) (initially) scale-free

FIG. 3. (Color online) Summary of systematic simulations of social diffusion with adaptive link weight adjustment with
logarithmically varied α and β (cases with α = 0 or β = 0 are also added to the lower ends of the axes). The difference in
the global state between before and after each simulation (∆hT s) is plotted over the α-β parameter space. Ten independent
simulation runs were conducted for each parameter setting. Each dot represents one simulation run, while the surface shows
the trend of the average. The initial network topology was generated using the Erdős-Rényi (a) or Barabási-Albert (b) network
generation algorithm, each with 200 nodes and 20% connection density. Node states and link weights were initially random in
the same way as in the previous experiment (Fig. 2). c = 1. Numerical integration was conducted for t = 0 ∼ 1 using a simple
Euler forward method with step size δt = 0.01.
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