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This paper explores the effectiveness of network attack when the attacker has imperfect infor-
mation about the network. For Erdős-Rényi networks, we observe that dynamical importance and
betweenness centrality-based attacks are surprisingly robust to the presence of a moderate amount
of imperfect information and are more effective compared with simpler degree-based attacks even at
moderate levels of network information error. In contrast, for scale-free networks the effectiveness of
attack is much less degraded by a moderate level of information error. Furthermore, in the Erdős-
Rényi case the effectiveness of network attack is much more degraded by missing links as compared
with the same number of false links.
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I. INTRODUCTION

Many complex dynamical processes are supported by
networks of interconnections between a large number of
individual elements (e.g., epidemics [1–4], cancer spread
[5], electrical power distribution [6, 7], etc.). Interven-
tions that seek to degrade [8–13] or protect [13–16] net-
work connectivity are thus of great interest. In partic-
ular, strategies for network attack by node or link re-
moval have been intensively studied. Key issues have
been the dependence of the attack effectiveness upon net-
work topology and the strategy for selecting nodes or
links for removal. We note, however, that, while such
previous studies have predominantly presumed the at-
tacker to have perfect knowledge of the network to be
attacked, this is very often not the case. Specifically,
networks inferred from measurements typically have false
links and miss true links. One might suppose that these
errors could very much lower the effectiveness of attack
strategies. The purpose of this paper is to address this
important issue for the case of node removal attacks of
undirected networks (directed networks are treated in
Appendix A.

One example of a network attack problem is an at-
tempt to stop the spread of a disease with a limited
number of vaccinations: the people who receive the vac-
cinations are chosen on the basis of their position in the
social network [8–13]. Another example is that of deriv-
ing gene therapies for cancer. Here the goal is to select
those genes whose disabling would most inhibit cancer
cell survival and proliferation [17][5]. Yet another ex-
ample is the study of the resilience of the Internet to
intentional attack [8, 12]. The typical attack strategy is
to calculate some centrality measure of each node, and to
then attack (disable, vaccinate, or remove) those nodes
with the highest values of this measure. However, an
attacker with imperfect network information will deter-
mine values of these centrality measures with some er-
ror, and using these would be expected to degrade the

effectiveness of his attack. Imperfect network informa-
tion is ubiquitous in applications and can arise in various
ways. Examples of link errors can be found in online
social networks, where a friendship may be indicated de-
spite the two subjects having never personally met, or
inversely, if no online friendship exists between two face-
to-face friends. In the previously cited example of can-
cer gene therapy, genes are selected for disabling based
upon an estimated gene interaction network inferred from
noisy measurements (e.g., measurements of gene expres-
sion [18, 19]). Recently, Platig et al. studied the effects of
link errors on the correlation between network centrality
measures inferred from true and erroneous network in-
formation [20].
One conclusion of past work for the case where the

network is exactly known is that a strategy based on the
globally dependent node centrality measure of between-
ness (defined subsequently) is particularly effective [9].
On the other hand, one might suspect that more effec-
tive globally-based strategies are also less robust to error
in network knowledge. Our main conclusions are as fol-
lows:

(i) For Erdős-Rényi networks, strategies based on
global information are surprisingly robust and
maintain a clear advantage over the simple node
degree-based attack up to moderate amounts of
network error.

(ii) Scale-free networks display much less dependence
on the attack strategy (for strategies based on sen-
sibly chosen centrality measures) and much less
degradation of attacks by network information er-
ror.

(iii) For Erdős-Rényi networks, attack effectiveness is
degraded much more by missing links as compared
with the same number of false links.

(iv) Comparing the two global strategies that we test,
namely betweenness [21, 22] and dynamical im-
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FIG. 1. The size of the GC normalized by the number of nodes N versus the normalized number of nodes removed Nr/N , for
betweenness, dynamical importance, degree, and random strategies for undirected Erdős-Rényi and scale-free networks, both
shown with no error, and with α = δ = 0.25

portance [23], betweenness is often slightly more
effective at low network error (at the expense of
substantially greater computational cost), but the
two tend to perform more equally at moderate net-
work error or a relatively small number of attacked
nodes.

(v) As shown in the Appendix, results (i)-(iv) demon-
strated in this paper for undirected networks also
apply to directed networks.

We next describe the numerical experiments that yield
results (i)-(iv).

II. MODEL

For our “true” networks, we consider two types of ran-
dom networks: Erdős-Rényi, in which the degree (num-
ber of links to a node) has a binomial distribution, and
scale-free [24], in which the degree distribution obeys a
power law:

Pk =
k−γ

kmax∑
i=1

k−γ
i

where Pk is the probability that a randomly chosen node
has degree k.
The three node centrality measures upon which we

base attack strategies are as follows:

(i) The degree centrality, which is simply the degree of
a node.

(ii) The betweenness centrality of a node is the frac-
tion of shortest paths between all node pairs that
pass through that particular node. Let σ(s, t) be
the number of shortest paths between nodes s and
t, and σi(s, t) to be the number of shortest paths
between s and t that pass through node i. The
betweenness of node i is

bi =
∑

s,t,s6=t6=i

σi(s, t)

σ(s, t)

(iii) The dynamical importance of a node is a measure
of the change in the largest eigenvalue of the ad-
jacency matrix (which is typically real and posi-
tive) upon removal of that node. For an undirected
network, elements of the adjacency matrix A are
Aij = Aij = 1 if there is a link between nodes j
and i, and Aij = Aji = 0 otherwise. Let λ denote
the largest eigenvalue of A, so that Av = λv for
the corresponding eigenvector v. Upon removing a
node s from the network, and consequently deleting
all links attached to it, the matrix A is changed by
setting all the matrix elements in row s and column
s to zero (Ast = Ats = 0 for all t). We use ∆λs to
denote the resultant change in λ. The dynamical
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importance of the node s is defined as

ds = −
∆λs

λ

with λ being the eigenvalue of the matrix before
removal of node s.

We generate “noisy” networks from the true networks
by adding false links to the system and removing true
links. (We refer to true links which have been removed
as “missing” links.) Our method for generating noisy
networks is as follows [20]: mtδ links are omitted ran-
domly, where mt is the number of links in the true net-
work and 0 ≤ δ ≤ 1. Links are only eligible for omission
if they are part of the true network; false links added in
the adding process will not be omitted. While each link
has an equal probability of being deleted, higher-degree
nodes have a higher probability of losing a link, as they
have more links. In addition, mtα false links are added
to the network. False links are placed between random
pairs of nodes, provided that a link does not already ex-
ist between them in the true network. Overall our false
network model is characterized by the two parameters δ
and α, respectively representing the error levels associ-
ated with missing and false links.

III. RESULTS

The networks are of size N = 2500, with the maximum
possible degree of a node set at kmax = N/2 = 1250. The
Erdős-Rényi networks have an average degree zer = 4,
and the scale-free-degree networks have γ ≈ 2.06 and
average degree zsf = 4. In the scale-free networks, we
require that the degree of each node is at least 1. The
networks are constructed according to the configuration
model [25]. Next, a noisy network is constructed based
on the parameters α and δ. The centrality measure is cal-
culated from the existing noisy network, and the highest-
centrality node is removed from both the true and noisy
networks. If there is more than one node having the same
highest value centrality measure, one of those is chosen
randomly for removal. Then, we calculate the size of the
Giant Component (GC) in the true network (The GC is
the largest collection of nodes such that any pair of nodes
in the GC is connected by a path along links.). To reit-
erate, the idea here is that network attacks are based on
the information in the noisy network, but the effects of
these attacks are actually felt on the true network. Af-
ter each removal, we recalculate the centrality measure
based on the new noisy network (with the previously at-
tacked node deleted), and remove the highest centrality
node from both networks again, and recalculate the GC
size. This process is continued until all nodes are deleted.
Here, we present the results of numerical simulations

exploring the effects of network information errors on
attack. Results are averaged over 50 different network
realizations. Figure 1 presents the size of the giant con-
nected component of undirected true networks plotted

against the number of nodes removed in attack (both nor-
malized by N) for Erdős-Rényi and Scale-Free networks,
both for attacks with perfect information (Figs. 1(a)
and 1(c)) and for attacks with imperfect information
(α = δ = 0.25) (Figs. 1(b) and 1(d)). We plot results
for attacks based on our three centrality measures (be-
tweenness, dynamical importance, and degree) and, as
a baseline, also include results for the case where nodes
are successively removed at random. We see that in the
case of the Erdős-Rényi networks (Figs. 1(a) and 1(b)),
the betweenness and dynamical importance strategies are
significantly better than the degree and random strate-
gies, even with an additional 25% false links added, and
25% of true links deleted.

Furthermore, we see that the betweenness strategy is
slightly more efficient than the dynamical importance
strategy in the case of no error, and they become ap-
proximately equal when error is present. In the case of
the undirected scale-free networks (Figs. 1(c) and 1(d)),
we find that the degree attack is relatively insensitive to
this moderate amount of error. Restricting attention to
reductions of the GC to as low as 10% of its original size,
in contrast with the Erdős-Rényi case, we see that for
the scale-free case there is relatively little difference be-
tween the different strategies and relatively a much less
dramatic effect of moderate network error.

Figure 2 shows GC attack curves for undirected net-
works subjected to betweenness and dynamical impor-
tance attacks, with different types of error. Figure 2(a)
for Erdős-Rényi networks shows that at moderate levels
of error, (α, δ) = (0.25, 0), (0, 0.25) and (0.25, 0.25), at-
tacks are more robust to the addition of false links as
compared with the omission of the same number of true
links. Again, while for (α, δ) = (0, 0) betweenness based
attack is somewhat more effective than dynamical im-
portance based attack, this difference essentially disap-
pears when either of the moderate error types shown are
present.

Since Figs. 1(c,d) showed quite weak effects of moder-
ate network error (α, δ) = (0.25, 0.25) for scale-free net-
works, we are lead to consider substantially higher levels
of network error for the scale-free case. Consequently,
in Fig. 2(b) we show results for scale-free networks with
(α, δ) = (0, 0), (0, 0.75), (1, 0), (1, 0.75) (note that α = 1
means that the number of added false links is the same
as the number of true links). Even at these high net-
work error values, we find little effect of network error
for reductions of the GC size by up to 0.5. For greater
reductions of the GC size network error becomes signifi-
cant, but very great GC reductions are still achieved at
relatively small Nr/N (compared with the Erdős-Rényi
case). The effective absence of network error impact
for scale-free networks and |GC|/N & 0.5 can be un-
derstood on the basis that reductions of GC size in this
range are achieved by removal of a relatively small num-
ber of nodes that have extraordinarily high betweenness
and importance centrality measures. Random addition
of false links, even if it doubles the number of perceived
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FIG. 2. The normalized GC size versus the normalized number of removed nodes for betweenness and dynamical importance
strategies for undirected (a) Erdős-Rényi and (b) scale-free networks.

links is unlikely to produce any nodes with centrality
measures as high as the true hubs, which will hence still
be highly ranked for attack. On the other hand, random
deletions with δ = 0.75, on average reduces the degrees
of all nodes, roughly proportionally, and assuming con-
nectivity is still maintained between the true hubs, they
will still by highly ranked for removal.

IV. DISCUSSION

We have investigated the impact of imperfect network
information on the effectiveness of nodal attack based on
different centrality measures (degree, betweenness, and
importance). Our results indicate strong dependence on
the network degree distribution and on whether the net-
work error is through false links or through missing true
links. One implication of the latter finding is that, in
the absence of hubs, network inference from noisy data
(as in the cancer gene therapy application referred to at
the beginning of the paper) should employ a somewhat
weaker threshold for link inference (in order to favor in-
clusion of true links at the possible expense of the ad-
dition of false links in the inferred network). There are
many possible future extensions of this general line of
study, such as investigation of link attacks, the impacts
of other network topological characteristics beyond de-
gree distribution (e.g., assortativity by degree [26], com-
munity structure [27], small worldness [28], motifs [29],
network hierarchical topology [30], and multilayer struc-

ture [31]), considerations of network error in formulating
attacks tailored to disruption of specific dynamical pro-
cesses (e.g., epidemic spread), etc.
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Appendix A: Directed Networks

The results and discussion in the main text are re-
stricted to the case of undirected networks. Here, in
Figs. A1 and A2, we give results for directed networks
analogous to Figs. 1 and 2. To accommodate directed-
ness, Figs. A1 and A2 have two new aspects not present
in Figs. 1 and 2: (i) the curves for attack based on degree
centrality in Figs. 1 and 2 are now each replaced by two
curves, one for in-degree-based attack, and one for out-
degree-based attack; and (ii) the vertical axes in Figs. A1
and A2 are the normalized size of the Giant Strongly
Connected Component (GSCC) rather than the GC of
Figs. 1 and 2. (The GSCC is the largest collection of
nodes such that for each pair (i, j) of nodes in the GSCC,
there is a directed path along links both from i to j and
from j to i.) The parameters and degree distributions
used for Figs. A1 and A2 are similar to those for Figs. 1
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and 2: N = 2500, kinmax = koutmax = N/2 = 1250 (where kin

and kout denote in-degree and out-degree), the average
in-degree and out-degrees for all networks are 4, and, for
scale-free networks the in-degree and out-degree distri-
butions are the same with power-law exponent γ ≈ 2 for

both.
Examination of Figs. A1 and A2 shows that the in-

degree and out-degree strategies yield similar results.
Furthermore, and most importantly, all of our main gen-
eral results for undirected networks (points (i)-(iv) at the
end of Sec. I) are seen to apply to directed networks.
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FIG. A1. The size of the GSCC normalized by the number of nodes N versus the normalized number of nodes removed Nr/N ,
for betweenness, dynamical importance, degree, and random strategies for directed Erdős-Rényi and scale-free networks, both
shown with no error, and with α = δ = 0.25.
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FIG. A2. The normalized GSCC size versus the normalized number of removed nodes for betweenness (solid red line) and
dynamical importance (black dashed line) strategies for directed (a) Erdős-Rényi and (b) scale-free networks.


