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We prove the existence of an asymptotic phase transition threshold on community detectabil-
ity for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and
Proc. National Academy of Sciences. 103, 8577 (2006)] under a stochastic block model. The phase
transition on community detectability occurs as the inter-community edge connection probability
p grows. This phase transition separates a sub-critical regime of small p, where modularity-based
community detection successfully identifies the communities, from a super-critical regime of large p
where successful community detection is impossible. We show that, as the community sizes become
large, the asymptotic phase transition threshold p∗ is equal to

√
p1p2, where pi (i = 1, 2) is the

within-community edge connection probability. Thus the phase transition threshold is universal in
the sense that it does not depend on the ratio of community sizes. The universal phase transi-
tion phenomenon is validated by simulations for moderately sized communities. Using the derived
expression for the phase transition threshold we propose an empirical method for estimating this
threshold from real-world data.

PACS numbers: 89.75Hc, 02.70Hm, 64.60.aq, 89.20.-a

I. INTRODUCTION

Community detection is an active research field that arises
in technological, social, and biological networks. The goal
of community detection is to detect tightly connected sub-
graphs in a graph [1]. The spectral modularity method pro-
posed by Newman [2, 3] is widely applied to community detec-
tion. It has been observed that community detectability (i.e.,
the fraction of correctly identified nodes) degrades rapidly
as the number of inter-community edges increases beyond a
certain critical value [4–12]. This paper establishes a mathe-
matical expression for the critical phase transition threshold
in modularity-based community detection under a stochas-
tic block model. This phase transition threshold governs the
community modularity measure of the graph as a function of
the respective edge connection probabilities p1 and p2 within
community 1 and community 2. Defining p as the edge con-
nection probability between the two communities the critical
phase transition threshold on p takes on the simple asymp-
totic form p∗ =

√
p1p2, in the limit as the two community

sizes converge (at comparable rate) to infinity. Remarkably,
p∗ does not depend on the community sizes, and in this sense
is a universal threshold.

Let n denote the total number of nodes in an undirected
graph and let A be the associated adjacency matrix. Specif-
ically, A is an n× n binary symmetric matrix characterizing
the connectivity structure of a graph, where Aij = 1 if an
edge exists between node i and node j, andAij = 0 otherwise.
Newman proposed a measure called modularity that evaluates
the number of excessive edges of a graph compared with the
corresponding degree-equivalent random graph. More specif-
ically, define the modularity matrix as B = A− bddT , where
d is the degree vector of the graph and b is the reciprocal of
the total number of edges in the graph. The last term bddT

can be viewed as the expected adjacency matrix of the degree-
equivalent random graph. Newman proposed to compute the
largest eigenvector of B and perform K-means clustering [13]
or take the sign function on this vector to cluster the nodes
into two communities. Since the n-dimensional vector of all

ones, 1n, is always in the null space of B, i.e, B1n = 0n,
where 0n is the n-dimensional vector of all zeros, the (unnor-
malized) modularity is the largest eigenvalue of B and has
the representation

λmax(B) = max
xT x=1, xT 1n=0

xTBx. (1)

Consider a stochastic block model [14] consisting of two
community structures parameterized by edge connection
probability pi within community i (i = 1, 2) and edge con-
nection probability p between the two communities. Let ni

denote the size of community i such that n1 + n2 = n. The
overall n × n adjacency matrix of the entire graph can be
represented as

A =

[
A1 C
CT A2

]
, (2)

where Ai is the ni-by-ni adjacency matrix of an Erdos-Renyi
random graph with edge connection probability pi and C is
the n1-by-n2 adjacency matrix of the inter-community edges
where each entry in C is a Bernoulli(p) random variable. A
similar network model is studied in [15] for interconnected net-
works. However, in [15] the communities (subnetworks) have
the same size and the inter-community edges are known (i.e.,
non-random). The main purpose of [15] is to study the eigen-
structure of the overall graph Laplacian matrix with different
interconnected edge strengths, as contrasted to community
detection. In [16], the network model (2) is used to study
community detectability of spectral algorithms based on the
eigenvectors of the graph Laplacian matrix.

The fundamental limits on community detectability have
been investigated for the spectral modularity method under
more restrictive assumptions [6, 9] than assumed in this pa-
per. In [9], the community detectability of the spectral mod-
ularity method is studied in sparse random networks where
the average degree is fixed and the two communities have the
same community size and identical within-community edge
connection probability, i.e., n1 = n2, p1 = p2 = O( 1

n
), and



p = O( 1
n
). The critical value for community detectability

is shown to depend on the average degree of the within-
community and inter-community edges. Similar phase tran-
sition phenomena have been found under the same network
assumption in [6, 7, 10]. The planted clique detection problem
in [17] is a further restriction of the stochastic block model
when p2 = p. For spectral methods that use the eigenvectors
of linear operators associated with the graph for community
detection (e.g., the modularity, adjacency, Laplacian, or nor-
malized Laplacian matrices), the phase transition threshold
under the general stochastic block model can be derived by
investigating the eigenvalue spectra [18].

Different from the aforementioned works, our network
model relaxes the assumptions of identical community size
and within-community edge connection probability, and we
assume that the parameters p1 and p2 are fixed. Under this
general setting, we prove an asymptotic universal phase tran-
sition threshold of p on community detection using the spec-
tral modularity method, where the asymptotic critical value
of p is p∗ =

√
p1p2. We also derive asymptotic forms for

the modularity and the largest eigenvector of B, which are
directly affected by the phase transition phenomenon. Note
that the same phase transition threshold has been derived in
[19] in terms of the consistency of the modularity and the
loglikelihood of the degree corrected stochastic model [20],
whereas in this paper we explicitly show that the spectral
modularity method can achieve the same phase transition
threshold. Also note that under the same stochastic block
model (2), the phase transition threshold of the spectral mod-
ularity method established in this paper coincides with the
phase transition threshold of several spectral community de-
tection methods derived from Eq. (6) in [18]. This suggests
that this phase transition threshold might be universal for
many spectral methods.

II. PHASE TRANSITION ANALYSIS

Using the network model in (2), let d = A1n = [d1 d2]
T

denote the degree vector of the graph with d1 ∈ R
n1 and

d2 ∈ R
n2 . Then b = (1T

nA1n)
−1 = (dT

1 1n1
+ dT

2 1n2
)−1. Let

d̃i = Ai1ni
denote the degree vector of community i. Since

A1n = d, with (2) the degree vectors d1, d2, d̃1 and d̃2

satisfy the following equations:

d1 = d̃1 +C1n2
and d2 = d̃2 +CT1n1

. (3)

Let bi = (d̃T
i 1ni

)−1. The modularity matrix of community i

is denoted by Bi = Ai − bid̃id̃
T
i . Using these notations, the

modularity matrix of the entire graph can be represented as

B =

[
B1 + b1d̃1d̃

T
1 − bd1d

T
1 C− bd1d

T
2

CT − bd2d
T
1 B2 + b2d̃2d̃

T
2 − bd2d

T
2

]
. (4)

Let y = [y1 y2]
T denote the largest eigenvector of B, where

y1 ∈ R
n1 and y2 ∈ R

n2 . Following the definition of modular-
ity in (1) and (4), y = argmaxx Γ(x), where

Γ(x) = xT
1 B1x1 + xT

2 B2x2 + b1(d̃
T
1 x1)

2 + b2(d̃
T
2 x2)

2

− b(dT
1 x1)

2 − b(dT
2 x2)

2 + 2xT
1 Cx2 − 2b(dT

1 x1)(d
T
2 x2)

− µ(xT
1 x1 + xT

2 x2 − 1)− ν(xT
1 1n1

+ xT
2 1n2

), (5)

and x = [x1 x2]
T , x1 ∈ R

n1 and x2 ∈ R
n2 . µ and ν are

Lagrange multipliers of the constraints xTx = 1 and xT1n =
0 in (1), respectively.

Differentiating (5) with respect to x1 and x2 respectively,
and substituting y to the equations, we obtain

2B1y1 + 2b1(d̃
T
1 y1)d̃1 − 2b(dT

1 y1)d1 − 2b(dT
2 y2)d1

+ 2Cy2 − 2µy1 − ν1n1
= 0n1

; (6)

2B2y2 + 2b2(d̃
T
2 y2)d̃2 − 2b(dT

2 y2)d2 − 2b(dT
1 y1)d2

+ 2CTy1 − 2µy2 − ν1n2
= 0n2

. (7)

Left multiplying (6) by 1T
n1

and left multiplying (7) by 1T
n2

and recalling that Bi1ni
= 0ni

and bi = (d̃T
i 1ni

)−1, we have

2(d̃T
1 y1)− 2b(dT

1 y1)(d
T
1 1n1

)− 2b(dT
2 y2)(d

T
1 1n1

) + 21T
n1

Cy2

− 2µyT
1 1n1

− νn1 = 0; (8)

2(d̃T
2 y2)− 2b(dT

2 y2)(d
T
2 1n2

)− 2b(dT
1 y1)(d

T
2 1n2

) + 21T
n2

CTy1

− 2µyT
2 1n2

− νn2 = 0. (9)

Summing (8) and (9) and using (3) gives ν = 0. Left mul-
tiplying (6) by yT

1 and left multiplying (7) by yT
2 , substi-

tuting ν = 0 and summing the equations, with (4) we have
µ = λmax(B).

Let C̄ = p1n1
1T
n2

, a matrix whose elements are the means
of entries in C. Let σi(M) denote the i-th largest singular
value of a rectangular matrix M and write C = C̄+∆, where
∆ = C− C̄. Latala’s theorem [21] implies that the expected

value of σ1

(
∆

√
n1n2

)
converges to 0 as n1 and n2 approach to

infinity, denoted E

[
σ1

(
∆

√
n1n2

)]
→ 0 as n1, n2 → ∞. This is

proved in Appendix A. Furthermore, by Talagrand’s concen-
tration theorem [22],

σ1

(
C√
n1n2

)
a.s.−→ p and σi

(
C√
n1n2

)
a.s.−→ 0, ∀i ≥ 2 (10)

when n1, n2 → ∞, where
a.s.−→ means almost sure convergence.

This is proved in Appendix B. Note that the convergence rate
is maximal when n1 = n2 because n1 +n2 ≥ 2

√
n1n2 and the

equality holds if n1 = n2.

Throughout this paper we further assume n1

n2

→ c > 0
as n1, n2 → ∞. This means the community sizes grow with
comparable rates. As proved in [23], the singular vectors of
C and C̄ are close to each other in the sense that the square
of inner product of their left/right singular vectors converges
to 1 almost surely when

√
n1n2p → ∞. Consequently, the

concentration results in (10) and [23] imply that

C1n2

n2

a.s.−→ p1n1
and

CT1n1

n1

a.s.−→ p1n2
. (11)

Furthermore, since under the stochastic block model set-
ting each entry of the adjacency matrix Ai in (2) is a
Bernoulli(pi) random variable, following the same concentra-
tion arguments in (10) and (11) we have

A11n1

n1

a.s.−→ p11n1
and

A21n2

n2

a.s.−→ p21n2
. (12)



By the fact that d̃i = Ai1ni
, (12) implies that

d̃1

n1

a.s.−→ p11n1
and

d̃2

n2

a.s.−→ p21n2
. (13)

Applying (11), (12) and (13) to (3) and recalling that n1

n2
→

c > 0, we have

d1

n1

a.s.−→
(
p1 +

p

c

)
1n1

and
d2

n2

a.s.−→ (p2 + cp)1n2
. (14)

Therefore the reciprocal of the total degree in the graph b has
the relation

n1n2b =
n1n2

dT
1 1n1

+ dT
2 1n2

a.s.−→ 1

cp1 + 2p+ p2
c

. (15)

Substituting these limits to (8) and (9) and recalling that
ν = 0 and yT

1 1n1
= −yT

2 1n2
, we have

yT
1 1n1

(
µ

n
− p1p2 − p2

cp1 + 2p+ p2
c

)
a.s.−→ 0; (16)

yT
2 1n2

(
µ

n
− p1p2 − p2

cp1 + 2p+ p2
c

)
a.s.−→ 0. (17)

Since µ = λmax(B), for each inter-community edge connection
probability p, one of the two cases below has to be satisfied:

Sub-critical regime:
λmax(B)

n
a.s.−→ p1p2 − p2

cp1 + 2p+ p2
c

(18)

Super-critical regime: yT
1 1n1

a.s.−→ 0 and yT
2 1n2

a.s.−→ 0 (19)

In the sub-critical regime, observe that λmax(B)
n

converges

to p1p2−p2

cp1+2p+
p2
c

almost surely such that the corresponding

asymptotic largest eigenvector y of B remains the same

(unique up to its sign) for different p. Left multiplying (6)
by yT

1 and left multiplying (7) by yT
2 , summing these two

equations, and using the limiting expressions (4), (11), (12),
(13), (14), (15) and (18), in the sub-critical regime we have

yT
1 B1y1

n
+

yT
2 B2y2

n
+ f(p)

a.s.−→ 0, (20)

where f(p) = p1p2−p2

cp1+2p+
p2
c

[
(√

c+ 1√
c

)

2

(yT
1
1n1)

2

n
− 1

]
. Since

f(p) is a Laurent polynomial of p with finite powers, and
(20) has to be satisfied over all values of p in the sub-critical
regime,

yT
1 B1y1

n
+

yT
2 B2y2

n

a.s.−→ 0 and f(p)
a.s.−→ 0. (21)

Furthermore, we can show that, in the sub-critical regime,
y1 and y2 converge almost surely to constant vectors with
opposite signs.

√
nn1

n2
y1

a.s.−→ ±1n1
and

√
nn2

n1
y2

a.s.−→ ∓1n2
. (22)

This is proved in Appendix C. Therefore in the sub-critical
regime the two communities can be almost perfectly detected.
On the other hand, in the super-critical regime the spectral
modularity method fails to detect the two communities since
by (19) y1 and y2 must have both positive and negative en-

tries.

Next we derive the asymptotic universal phase transition
threshold p∗ for transition from the sub-critical regime to the
super-critical regime that occurs as p increases. Note that in
the super-critical regime, since yT

1 1n1

a.s.−→ 0 and yT
2 1n2

a.s.−→ 0,
using (1), (4), (11), (12), (13) and (14) we have

λmax(B)

n
=

1

n

[
yT
1 B1y1 + yT

2 B2y2 + b1(d̃
T
1 y1)

2 + b2(d̃
T
2 y2)

2 − b(dT
1 y1)

2 − b(dT
2 y2)

2 + 2yT
1 Cy2 − 2b(dT

1 y1)(d
T
2 y2)

]

a.s.−→ 1

n

{
yT
1 (p11n1

1T
n1

− p11n1
1T
n1

)y1 + yT
2 (p21n2

1T
n2

− p21n2
1T
n2

)y2 + b1(n1p1y
T
1 1n1

)2 + b2(n2p2y
T
2 1n2

)2

− b
[
(n1p1 + n2p)y

T
1 1n1

]2
− b

[
(n2p2 + n1p)y

T
2 1n2

]2
+ 2p(yT

1 1n1
)(yT

2 1n2
)

−2b
[
(n1p1 + n2p)y

T
1 1n1

] [
(n2p2 + n1p)y

T
2 1n2

]}

= 0. (23)

Consequently, by (18) and (23), the phase transition occurs

at p = p∗ almost surely when p1p2−p∗2

cp1+2p∗+
p2
c

= 0. This implies

an asymptotic universal phase transition threshold on com-
munity detectability:

p∗
a.s.−→ √

p1p2 (24)

as n1, n2 → ∞ and n1

n2
→ c > 0. Note that the limit (24)

does not depend on the community sizes. In this sense the
phase transitions are universal as they only depend on the
within-community connection probabilities p1 and p2.

Moreover, the same phase transition results hold for a more
general setting where pi = O( 1

nǫ ) and p = O( 1
nǫ ) for any

ǫ ∈ [0, 1) by following the same derivation procedures. As a
comparison, the phase transition threshold under the sparse
network setting where pi = O( 1

n
) and p = O( 1

n
) [6–11] is

different from the threshold established in this paper where
pi = O( 1

nǫ ) and p = O( 1
nǫ ) for any ǫ ∈ [0, 1). Also note

that when pi = O( 1
nǫ ) and p = O( 1

nǫ ) for any ǫ ∈ [0, 1),
the community detectability undergoes an abrupt transition
at the threshold whereas the transition is more smooth for
sparse networks.
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FIG. 1. Validation of theoretical critical phase transition
threshold (24) for two communities generated by a stochastic
block model. The curves represent averages over 100 realiza-
tions of the model. Here n1 = n2 = 2000 and p1 = p2 = 0.25
so that the predicted critical phase transition is p∗ = 0.25. (a)

When p < p∗, λmax(B)
n

converges to p1p2−p2

cp1+2p+
p2
c

as predicted

in (18). When p > p∗, λmax(B)
n

converges to 0 as predicted by
(23). (b) Fraction of nodes that are correctly identified using
the spectral modularity method. Community detectability
undergoes a phase transition from perfect detectability to low
detectability at p = p∗. (c) The spectral modularity method
fails to detect the communities when p > p∗ since the com-
ponents of the largest eigenvector of B, y1 and y2, undergo
transitions at p = p∗ as predicted by (19) and (22).

III. PERFORMANCE EVALUATION

A. Numerical Results

We validate the asymptotic phase transition phenomenon
predicted by our theory, and in particular the critical phase
transition threshold (24), showing that the asymptotic the-
ory provides remarkably accurate predictions for the case of

finite small community sizes. Fig. 1 (a) shows that λmax(B)
n

converges to p1p2−p2

cp1+2p+
p2
c

when p < p∗ and λmax(B)
n

converges

to 0 when p > p∗, as predicted by (16) and (23). Fig. 1 (b)
shows the phase transition from perfect detectability to low
detectability at the critical value p = p∗. The numerical phase
transition thresholds are accurately predicted by (24). Fig. 1
(c) further validates the predictions in (19) and (22) that y1

and y2 converge almost surely to constant vectors with op-
posite signs in the sub-critical regime of p < p∗ and yT

1 1n1

and yT
2 1n2

converge to 0 almost surely in the super-critical
regime of p > p∗. Similarly in Fig. 2, the results are shown
for different stochastic block model where the sizes of the two
communities are not the same. These results validate that
the asymptotic phase transition threshold p∗ in (24) is a uni-
versal phenomenon that does not depend on the community
sizes. We have observed (see Appendix D) that the asymp-
totic phase transition expression in (24) is accurate even in
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FIG. 2. Validation of theoretical critical phase transition
threshold (24) for two communities generated by a stochastic
block model. The curves represent averages over 100 realiza-
tions of the model. Here n1 = 1000, n2 = 2000, p1 = 0.5,
and p2 = 0.25 so that the predicted critical phase transition
is p∗ = 0.3536. Similar phase transition phenomenon can be
observed for this network setting.

cases of relatively small community sizes, e.g. down to sizes
as small as 100.

B. Empirical Estimator of Phase Transition
Threshold

Using the derived expression of the phase transition thresh-
old in (24), we propose an empirical method for estimating
the threshold in order to evaluate the reliability of commu-
nity detection on real-world data a posteriori. Let n̂i and
m̂i denote the size and the number of edges of the identified
community i. Define the empirical estimators

p̂ = number of identified external edges/n̂1n̂2; (25)

p̂i =
m̂i

n̂2
i

; (26)

p̂∗ =
√

p̂1p̂2. (27)

We apply these estimators to the political blog data in [24],
where this dataset contains 1222 blogs, labeled as either con-
servative or liberal, and an edge corresponds to a hyperlink
reference between blogs. The detectability using the spec-
tral modularity method is 0.9419 (the labels are predicted
by taking the sign function on the leading eigenvector of the
modularity matrix). The corresponding empirical estimates
are p̂ = 0.0042, p̂1 = 0.0244, p̂2 = 0.0179, and p̂∗ = 0.0209.
The high detectability of the spectral modularity method is
consistent with the fact that the empirical estimate p̂ is below
the empirical phase transition threshold p̂∗.



IV. CONCLUSION

This paper establishes a universal phase transition thresh-
old p∗

a.s.−→ √
p1p2 on community detectability using the spec-

tral modularity method for a general stochastic block model.
The critical phase transition is universal in the sense that
it does not depend on the community sizes. An empirical
method is proposed to estimate the phase transition thresh-

old from real-world data.
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Appendix A: Proof of the fact that

E

[
σ1

(
∆

√
n1n2

)]
→ 0 as n1, n2 → ∞

Since ∆ = C − C̄, we have ∆ij = 1 − p with probability
p and ∆ij = −p with probability 1 − p. Latala’s theorem
[21] states that for any random matrix M with statistically
independent and zero mean entries, there exists a positive
constant c1 such that

E [σ1(M)] ≤c1



max
i

√∑

j

E
[
M2

ij

]
+max

j

√∑

i

E
[
M2

ij

]

+ 4

√∑

ij

E
[
M4

ij

]

 . (A1)

It is clear that E [∆ij ] = 0 and each entry in∆ is independent.
By using M = ∆

√
n1n2

in Latala’s theorem, since p ∈ [0, 1], we

have maxi

√∑
j E

[
M2

ij

]
= O( 1

√
n1

), maxj

√∑
i E

[
M2

ij

]
=

O( 1
√

n2

), and 4

√∑
ij
E
[
M4

ij

]
= O( 1

4
√

n1n2

). Therefore

E

[
σ1

(
∆

√
n1n2

)]
→ 0 as n1, n2 → ∞.

Appendix B: Proof of (10)

Talagrand’s concentration theorem is stated as follows. Let
g : Rk 7→ R be a convex and 1-Lipschitz function. Let x ∈
R

k be a random vector and assume that every element of x
satisfies |xi| ≤ K for all i = 1, 2, . . . , k, with probability one.
Then there exist positive constants c2 and c3 such that for
any ǫ > 0,

Pr (|g(x)− E [g(x)]| ≥ ǫ) ≤ c2 exp

(
−c3ǫ

2

K2

)
. (B1)

It is well-known that the largest singular value of a matrix
M can be represented as σ1(M) = maxzT z=1 ||Mz||2 [25] so
that σ1(M) is a convex and 1-Lipschitz function. Recall that
∆ij = 1−p with probability p and ∆ij = −p with probability
1−p. Therefore applying Talagrand’s theorem by substituting

M = ∆
√

n1n2

and using the facts that E
[
σ1

(
∆

√
n1n2

)]
→ 0 and

∆ij
√

n1n2

≤ 1
√
n1n2

, we have

Pr

(
σ1

(
∆√
n1n2

)
≥ ǫ

)
≤ c2 exp

(
−c3n1n2ǫ

2) . (B2)

Note that, since for any positive integer n1, n2 > 0 n1n2 ≥
n1+n2

2
,
∑

n1,n2
c2 exp

(
−c3n1n2ǫ

2
)
< ∞. Hence, by Borel-

Cantelli lemma [26], σ1

(
∆

√
n1n2

)
a.s.−→ 0 when n1, n2 → ∞.

Finally, a standard matrix perturbation theory result [25] is

|σi(C̄+∆)−σi(C̄)| ≤ σ1(∆) for all i, and as σ1

(
∆

√
n1n2

)
a.s.−→

0, we have

σ1

(
C√
n1n2

)
= σ1

(
C̄+∆√
n1n2

)
a.s.−→ σ1

(
C̄√
n1n2

)
= p;

σi

(
C√
n1n2

)
a.s.−→ 0, ∀i ≥ 2 (B3)

when n1, n2 → ∞.

Appendix C: Proof of (22)

We prove the result by showing
yT
1
B1y1

n

a.s.−→ 0

and
yT
2
B2y2

n

a.s.−→ 0 such that
√

nn1

n2

y1
a.s.−→

±1n1
and

√
nn2

n1

y2
a.s.−→ ∓1n2

due to the facts that

the vector of all ones is always in the null space of a
modularity matrix and yT

1 1n1
+ yT

2 1n2
= 0. We prove this

statement by contradiction. Assume y1 and y2 converge

almost surely to other vectors such that
yT
1
B1y1

n
→ c4 6= 0

and
yT
2
B2y2

n
→ c5 6= 0 and c4 + c5 = 0 in order to satisfy

(21). By the concentration results in (12) and (13), we have

yT
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(
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= 0, (C1)

and similarly
yT
2
B2y2

n

a.s.−→ 0, which contradicts the assump-

tion that
yT
1
B1y1

n

a.s.−→ c4 6= 0 and
yT
2
B2y2

n

a.s.−→ c5 6= 0. There-

fore
√

nn1

n2
y1

a.s.−→ ±1n1
and

√
nn2

n1
y2

a.s.−→ ∓1n2
.

Appendix D: The Effect of Community Size on
Phase Transition

To investigate the effect of community size on phase tran-
sition, we generate synthetic communities from the stochastic
block model with different community sizes by fixing c = 1
and p1 = p2 = 0.25. The predicted phase transition thresh-
old in (24) is p∗ = 0.25. The results (averaged for 100 runs)
are shown in Fig. 3-7. The phase transition is apparent for
small community size in the sense that the spectral modu-
larity method fails to detect the communities in the super-
critical regime (i.e., the p > p∗ regime). In the sub-critical
regime (i.e., the p ≤ p∗ regime), we observe an intermedi-
ate regime of community detectability for small community
size, and this intermediate regime vanishes as we increase the
community size. This can be explained by the fluctuation
of finite community size on the concentration results in (18),
(19), (22), and (24). By concentration theory the fluctuation
decreases with the increase of community size, and an abrupt
transition occurs at the phase transition threshold p∗ when
n1, n2 → ∞ and n1

n2
→ c > 0.
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FIG. 3. n1 = 100, n2 = 100, p1 = 0.25, and p2 = 0.25.
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FIG. 4. n1 = 200, n2 = 200, p1 = 0.25, and p2 = 0.25.
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FIG. 5. n1 = 500, n2 = 500, p1 = 0.25, and p2 = 0.25.
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FIG. 6. n1 = 1000, n2 = 1000, p1 = 0.25, and p2 = 0.25.
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FIG. 7. n1 = 4000, n2 = 4000, p1 = 0.25, and p2 = 0.25.


