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Angle-resolved, second harmonic light scattering (SHLS) measurements are reported for three
different classes of thermotropic nematic liquid crystals (NLCs): polar and nonpolar rodlike com-
pounds and a bent-core compound. Results revealing well-defined scattering peaks are interpreted in
terms of the electric polarization induced by distortions of the nematic orientational field (“flexopo-
larity”) associated with inversion wall defects – non-singular disclinations, analogous to Neel walls
in ferromagnets, that often exhibit a closed loop morphology in NLCs. Analysis of the SHLS pat-
terns based on this model provides a “proof-of-concept” for a new approach to probe the flexopolar
properties of NLCs.

PACS numbers: 71.10.Hf, 71.27.+a, 74.70.Tx

I. INTRODUCTION

Although their molecular constituents can be strongly
polar (with individual dipole moments ranging up to
∼10 Debye), ordinary nematic liquid crystals (NLCs)
are centrosymmetric materials. When averaged over a
few molecular lengths, the electric polarization vanishes,
and the orientational order is characterized purely by a
second-rank tensor order parameter representing, e.g.,
the anisotropic part of the linear dielectric response.
However, centrosymmetry may be broken in NLCs due
either to a distortion of the nematic ordering axis (di-
rector n), producing an electric polarization via the so-
called “flexoelectric” effect [1], or to a spatial variation
in the magnitude of the nematic order parameter itself
(“order” electricity). Microscopically, the polarization
depends both on single molecule properties (shape, flex-
ibility, charge distribution) and on the extent and na-
ture of intermolecular correlations. While the polariza-
tion induced by director distortions (“flexopolarity”) is
typically quite small in rod-like nematics, the recent de-
velopment of new classes of reduced symmetry nematic
mesogens [2], and the discovery of novel nematic phases
(e.g., the twist-bend phase [3]), have rekindled interest
in non-centrosymmetric/polar structure in NLCs and in
techniques that may be used to probe it.

Second harmonic generation (SHG) is arguably the
most powerful such technique. SHG has been exten-
sively used to investigate both the orientational an-
choring of nematics at boundary surfaces (where non-
centrosymmetry is permitted) [4] and to probe variations
in the orientational field in thin layers near the surfaces
of nematic films [5] under conditions where surface and
bulk orientations compete. Fewer studies have focused on
noncentrosymmetry and second harmonic generation as-
sociated primarily with bulk phenomena in NLCs. Ther-
mal fluctuations of n are one source of (transient) non-
centrosymmetry in the bulk; these not only cause co-
pious linear light scattering, but also generate SH light

due to the flexoelectric polarization induced by orien-
tational fluctuations. However, though investigated in
some detail in earlier studies [6, 7], the SH signal asso-
ciated with director fluctuations is typically quite weak
and shows much weaker angular dependence compared
to linear scattering.

This paper reports on second harmonic light scattering
(SHLS) from a quasistatic source: topological defects in
n, which also locally break centrosymmetry. Our main
purpose is to demonstrate a new approach for probing
the polar structure of these defects, which spontaneously
form in NLCs. We describe a model that relates our
experimental results to the properties of a specific type
of nematic disclination, known as an inversion wall loop
[8], across which n varies analogously to the magneti-
zation across Neel walls in ferromagnets. The model is
motivated by direst imagery of these loops, stabilized at
the surfaces of three different types of thermotropic NLC
we have investigated, and is also inspired by an inter-
esting connection to theoretical and experimental SHLS
studies in other complex fluids – namely, colloidal sus-
pensions containing centrosymmetric particles covered
with a monolayer of non-centrosymmetric dye [9–12]. As
a secondary outcome, our results and analysis provide
a “proof-of-concept” of a potentially new technique to
characterize the flexoelectric properties of NLCs, based
on combining SHLS with known profiles of n associated
with nematic disclinations. In the concluding section,
we suggest pathways for future development of this tech-
nique, which could ultimately provide novel quantitative
information about the individual material coefficients as-
sociated with flexoelectricity. This is especially relevant
in light of a recent upsurge of interest in flexoelectric
studies of both nonchiral and chiral fluid phases of liq-
uid crystals [13–16] and due to the fact that conventional
methods typically probe only linear combinations of the
coefficients (often giving conflicting results [14]).
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FIG. 1. Chemical structures and transition temperatures for the liquid crystal molecules studied.

II. EXPERIMENTAL DETAILS

The chemical structures and nematic ranges of the
three NLC materials studied are presented in Fig. 1.
They comprise examples from three classes of ther-
motropic compounds: polar and nonpolar rodlike meso-
gens – 4-Cyano-4’-pentylbiphenyl or 5CB and 1-heptyl-4-
[4-(4-heptylphenyl)buta-1,3-diyn-1-yl]benzene or C7 [17],
respectively – as well as a bow shaped (bent-core)
nematic compound – 4-chloro-1,3-phenylenebis-4-[4-(9-
decenyloxy)benzoyloxy]benzoate [18], which we simply
designate BCN. This BCN and closely related com-
pounds exhibit unusual properties – including short-
range smectic-C-like molecular correlations [19], non-
Newtonian flow behavior [20], unusual viscoelastic
anisotropy [21], and large electromechanical coupling [22]
– even though their macroscopic orientational order is of
the conventional (uniaxial) type.

The nematic samples were loaded into custom-made
fused silica optical cuvettes with bare (untreated) inte-
rior surfaces and with inside width and path length of 6.5
and 1 mm, respectively. The cuvettes were placed in a
temperature controlled oven with optical access through
thin fused silica windows. The surfaces of the cuvettes
were not treated for any particular molecular anchoring.
The oven was situated between the pole faces of an
electromagnet, which produces a 1.13 T field to align
the nematic director (average long molecular axis in all
cases) along a horizontal direction in the lab parallel to
the cuvette surfaces [23]. Prior to measurements, the
samples were heated to the isotropic phase, cooled at
∼ 1◦C/min in the field, and then examined optically in
order to confirm a homogeneous nematic state.

The major components of our experimental setup for
SHLS are summarized in Fig. 2. A Nd:YAG laser (Con-
tinuumMinilite II) operating at 1064 nm delivered 5-7 ns,

typically 2 mJ optical pulses at 10 Hz to the nematic
samples, which are located ∼ 1 m from the laser head,
where the beam has a nearly Gaussian profile. The beam
was normally incident on the sample cell and also nor-
mal to the direction of the applied magnetic field (and
thus to the average n). The incident polarization could
be rotated by a half-wave plate between a vertical (V )
orientation, which is perpendicular to both the incident
wavevector and to the field direction, and a horizontal
(H) direction parallel to the field. Just before the sam-
ple, the laser beam was passed through a 1064 nm (10 nm
FWHM) laser line filter, in order to remove any coaxial
radiation (e.g., light from the flashlamp) containing the
second harmonic at 532 nm, and was apertured down to
a 1 mm waist.

The second harmonic light emitted from the sample
was collected over a cone around the forward direction
by a home-made optical telescope. The telescope, which
combines a 50 mm diameter precision aspheric lens (0.83
N.A.) and two 50.8 mm diameter achromats (Edmund
Optics TECHSPEC series), reconstructs the pattern of
SH radiation emitted from the sample on the surface of
a 512×512 pixel, cooled CCD detector inside a low noise
camera (Princeton Instruments, ProEM512). The lens
combination maps parallel rays emerging from the sam-
ple at angle θ (measured from the incident IR direction)
onto convergent (focused) rays in a plane where the an-
gular acceptance of the CCD from the imaged source
(i.e., from the image of the illuminated sample volume)
is approximately ±15◦. This proved an ideal match for
the scattering patterns from our samples. Additionally,
the focusing effect proved useful for defining the angular
position of the peak SH scattering, but sacrificed infor-
mation on the true peak width. In the portion of the
telescope where the rays are nearly collimated are two
Schott glass IR-cut filters and a 532 nm (1 nm FWHM)
laser line filter that eliminate the 1064 nm fundamental
and narrowly pass the second harmonic, while also re-
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FIG. 2. Schematic diagram of the experimental setup.

ducing the contribution of any muli-photon fluorescence
to background level. The telescope also contains an an-
alyzer that can be rotated to select V or H polarization
of the second harmonic light.

In the presentation and discussion of our results in sub-
sequent sections, we will only be interested in the angular
peak position and will not be concerned with the peak
width. The angle θ was calibrated against pixel position
on the CCD both by ray tracing software (using the spec-
ified lens parameters) and also by direct measurement
of the diffraction pattern from a solution of polystyrene
spheres of known diameter placed at the sample posi-
tion and illuminated with 543 nm laser light. The latter
calibration was performed after adjusting the camera po-
sition to center the scattering pattern on the CCD and
to subtend a suitable angular range.

The angular distribution of the SH radiation was
recorded at various temperatures in the nematic phase.
Typical exposure times were 300–600 s. All measure-
ments were made in a darkened room, with care taken
to eliminate stray sources of light from instrumentation.
The complete setup, minus any liquid crystal, produced
no detectable signal above the camera noise level. The
incident IR pulse energy was also monitored, and the de-
tected SH power was normalized to the square of this
energy. (Typical variations in the pulse energy setting
were < 10%.)

Over several weeks, we observed no evidence of laser
damage to the samples at the pulse energies used. Other
than a weak halo due to scattering from director fluctu-
ations, no unusual distortion was observed in the shape
of the IR beam transmitted through the sample. More-
over, the peak intensity of the incident beam employed in
the present experiment was an order of magnitude lower
than that used in previous SHLS studies on 5CB, which
caused no light-induced distortions or heating within the
sample [6].

III. RESULTS

Fig. 3 presents representative results for the angular
patterns of SHLS recorded from the three magnetically-
aligned nematics studied at a temperature 2.2◦C below
the nematic-isotropic transition (TNI). These data cor-
respond to a V V polarizer/analyzer setting and thus to a
V (ω) → V (2ω) scattering process. The top row of Fig. 3
shows raw images from the camera, while the bottom
row displays the corresponding SH power, as a function
of scattering angle θ, integrated over a vertical band of
the ±15 pixels around the horizontal axis through the
center of the images. (Here θ = 0 corresponds to the di-
rection of the incident IR beam and to the central point in
the images.) To establish that the recorded power (P2ω)
does indeed originate from second harmonic generation,
we measured P2ω for a range of IR pulse energies (Eω)
at TNI − T = 2.2◦C. The results in Fig. 4 confirm the
expected relation P2ω ∝ E2

ω in the representative case of
the BCN.

We observe in Fig. 3 that the SH signal is concen-
trated in a pair of arcs, centered on angles ±θ0 off the
incident direction, with the maximum (peak) intensity
located on the axis of the applied magnetic field – i.e.,
along the nematic director n – and minimum intensity
along the perpendicular axis. Notably, there is a “node”
(i.e., SH intensity at the background level) in the cen-
ter of the images, corresponding to the forward direc-
tion (θ = 0). The sharpness of the intensity peaks is
due primarily to the focusing effect of the telescope men-
tioned above; thus, the peaks are artificially narrow [24].
On the other hand, their angular position is clearly de-
fined. The angular dependence recorded here is com-
pletely different from the omni-directional distribution
of incoherently scattered SH light that is expected from
either single or collective molecular orientational fluctu-
ations [6, 7]. In the present experiments, SH scattering
from these sources contributes to the nearly flat back-
ground level.
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FIG. 3. Representative CCD images of the SH scattering patterns for the V (ω) → V (2ω) process, recorded at TNI −T = 2.2◦C
from (left to right) the BCN, 5CB, and C7 nematic samples. The direction of the applied magnetic field is horizontal, as
indicated. Bottom: The SH power plotted as a function of scattering angle (in the scattering plane parallel to H), after
integrating over vertical columns of ±15 pixels from the horizontal axis through the center. The region used for this average
is shown in white outline in the center image, top panel. (As discussed in the text, the peaks are artificially narrowed due to
focusing by the telescope optics.)

The data in Fig. 3 (and in Figs. 5, 7 and 8 discussed be-
low) have not been normalized for linear scattering losses
or for absorption. However, we determined that absorp-
tion in all three materials is negligible at the SH and IR
(fundamental) wavelengths. Moreover, at a wavelength
(543 nm) close to the SH wavelength (532 nm), the for-
ward linear scattered light intensity integrated over the
sensor area is approximately equal for the three samples.
As Fig. 3 reveals, at fixed temperature relative to TNI ,
the peak position shifts from smaller to larger θ in the se-
quence BCN to 5CB to C7; this shift mirrors the trend in
values for the refractive index anisotropies (∆n) for the
three nematic compounds. For example, at TNI − T =
2◦C, the values are ∆n = 0.07 (BCN) [18], 0.16 (5CB)
[25], and 0.24 (C7) [17] at the second harmonic (2ω) fre-
quency. The average (characteristic) peak angle of ∼ 10◦

corresponds to SH scattering from non-centrosymmetric
objects of a few µm in size, as calculated using Bragg’s
law. (The nature of these scatterers will be considered
in the next section.) The peak heights are comparable
for the bent-core and polar rodlike nematics, while the

signal from the nonpolar compound is much weaker.

The temperature dependence of the SH intensity dis-
tribution, for the BCN and the V (ω) → V (2ω) process, is
shown in Fig. 5. The peak position moves out, to larger θ,
with decreasing temperature through the nematic phase.
Fig. 6 summarizes the dependence of the peak angle
θ0 on T over the nematic range for all three materials
studied and for the two processes V (ω) → V (2ω) and
H(ω) → V (2ω). Interestingly, in all three cases the be-
havior of θ0 reflects, at least qualitatively, the tempera-
ture dependence of the nematic order parameter S, which
decreases continuously toward the first order nematic-
isotropic transition, where it is cut off by a discontinuous
drop to zero. The values of θ0 for the H(ω) → V (2ω)
process are slightly higher than for V (ω) → V (2ω),
but as shown in the bottom panels in Fig. 6, the two
curves can be matched up with a single scaling factor
in each case. We find that a power law fit of the form
θ0(T ) = θM (T ∗ − T )x (solid lines in the figure) gives a
good description of the temperature dependence, with
the following parameter values: TNI − T ∗ = 0.32◦C,
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FIG. 4. SH intensity for the BCN sample, integrated over the
scattering pattern recorded on the CCD and plotted versus
square of the incident IR pulse energy. The solid line is a
fit that confirms the expected quadratic relation between the
incident and SH powers.

x = 0.16 for the BCN; 0.14◦C, 0.13 for 5CB; and 0.38◦C,
0.10 for C7.
The SH scattering centered at ±θ0 diminishes to back-

ground level when the samples are heated into the
isotropic phase. When the field removed in the nematic
phase, the SH signal decreases on a time scale similar to
the relaxation of the director alignment. On the other
hand, when the sample is cooled from the isotropic to
nematic phase in zero field, no SH scattering above the
background level is observed; if the field is subsequently
applied, the signal rises to similar levels, and peaks are
observed at similar angles, as when the sample is cooled
in the field from the isotropic state. Thus, the two path-
ways – cooling after applying field and applying field af-
ter cooling – to the same (T,H) in the nematic phase
produce essentially equivalent results.
Fig. 7 (top) displays more detailed results for the field

dependence of the SH signal for the 5CB sample at
TNI − T = 2.2◦C (which are also representative of be-
havior observed for the other samples). With decreasing
field, the SH intensity (integrated vertically over the the
area outlined in Fig. 3) first decreases slowly — roughly
linearly with H2 – and then turns over and drops more
rapidly below 0.1 T to a value atH = 0 that is about 20%
of its high field value. The decrease with H is the op-
posite of what is expected for flexopolar director fluctu-
ations, which, given the positive diamagnetic anisotropy
of the studied NLCs, should increase in amplitude with
decreasing H [6, 7]. The plot in Fig. 7 (bottom), showing
the variation with field of the polarized, forward trans-
mitted intensity of a 543 nm laser beam, confirms that
the reduction in SH signal upon removal of the field is
not due to any significant increase in sample turbidity;

the transmission drops by only 15% when H → 0.
Finally, the dependence of the SH intensity measured

for the three nematics on the incident IR and SH polar-
izations is presented in Fig. 8; here again the data are
plotted versus θ after integrating vertically over the re-
gion of the scattering patterns outlined in Fig. 3. For
the BCN and 5CB samples, the V (ω) → V (2ω) and
H(ω) → V (2ω) processes produce peak SH intensities
that are much higher than the corresponding processes
with H(2ω) output polarization. Specifically, from the
BCN we recorded a weak H(2ω) signal (∼5% of the
V (2ω) level), while noH(2ω) output (above background)
was detected from 5CB. On the other hand, for the non-
polar compound C7 where the overall signal is much
weaker, the H(2ω) output is about 30% of the V (2ω)
level. We conclude that the SH light is predominantly
polarized perpendicular to n (and to the applied mag-
netic field H) in the cases of 5CB and the BCN, but is
significantly less so for C7.

IV. DISCUSSION

As we have already noted, the angular dependence of
the SH scattering in our experiments is completely dif-
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FIG. 5. SH scattering pattern versus temperature in the ne-
matic phase of the BCN for the V (ω) → V (2ω) process. Up-
per left, upper right, and lower left: TNI − T = 0.2, 5.2, and
10.2◦C, respectively. Lower right: SH power (averaged as de-
scribed in Fig. 4) versus scattering angle, showing the shift of
the peak power to larger scattering angles with decreasing T
in the nematic phase (TNI − T = 0.2, 2.2, 5.2, 10.2◦C, left to
right).
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FIG. 6. Peak scattering angle (θ0) versus temperature for the two processes V (ω) → V (2ω) (points in red) and H(ω) → V (2ω)
(blue points) for each of the materials studied. Top row: Raw data. Bottom row: Results after rescaling the data for the
V (ω) → V (2ω) process to match the H(ω) → V (2ω) data. The solid lines are power law fits described in the text, and the
dashed vertical lines indicate the first order NI transition temperature. The disappearance of SH signal at TNI is indicated by
a single data point in each case.

ferent from that expected from thermal director fluctu-
ations. We can also rule out effects attributable to the
fundamental beam itself, including light-induced direc-
tor reorientation and gradients in the nematic order pa-
rameter S caused by local heating (either of which could
produce a local electric polarization through flexo- or or-
der electricity). At the pulse energies used, no threshold
onset of second harmonic signal was observed. Nor is
it plausible that an incident Gaussian beam with ∼mm
waist could, without focusing optics, selectively heat do-
mains of a much smaller (∼ µm) size that would be con-
sistent with the observed peak SH diffraction angles. In
addition, the same SH signal level observed for the two
fundamental polarizations along and perpendicular to n

rules out an optical field-induced rotation, which should
give dramatically different results for these two cases.
More intriguing is the resemblance of our experi-

mental results to those obtained in SHLS studies [9–
12] on colloidal suspensions, in which a layer of non-
centrosymmetric material (typically a polar dye) is ad-
sorbed onto the surface of an otherwise centrosymmetric
solid particle. In those studies, two key features – the ab-
sence of SH intensity scattered in the forward direction

and the presence of symmetric intensity peaks at small
angles (θ0 ∼ ±10◦ for ∼1 micron spherical particles [10])
– are similar to our results on aligned NLCs.
In fact, this similarity is not merely accidental.

Figs. 9(a)–(c) show polarizing microscope images of tex-
tures in our 1 mm thick samples taken under the 1.13 T
applied field and at a temperature 2.2◦C below TNI . The
images reveal distributions of micron scale defect loops
in the nematic director field n that appear spontaneously
in cooling (at a typical rate of 3◦C/min). In the ne-
matic phase the loops appear to form clusters or net-
works, while in the isotropic phase they completely dis-
appear. Inside and outside the boundaries of the loops, n
is parallel to the applied field H, but it is distorted across
the boundaries. (The distortion tends to depolarize light
and thus the boundaries appear darker through parallel
polarizer/analyzer). These features are characteristic of
inversion wall loops – defects in the nematic phase, topo-
logically equivalent to Neel or Bloch walls in ferromag-
nets [26], in which anti-parallel orientations of the direc-
tor are separated by a boundary through which n rotates
by π. In the Neel type, n rotates via splay/bend distor-
tion, thus generating a flexoelectric polarization [1] and
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FIG. 7. Top: Integrated SH intensity versus applied field
squared for the 5CB sample. Bottom: Linear light transmis-
sion (forward direction) versus H2 for a 543 nm laser beam.

non-centrosymmetry in the boundary region; the nematic
remains centrosymmetric in the undistorted regions on
either side. (By contrast, the Bloch type involves a pure
twist in n.) Hence one can expect that basic features of
the SHLS pattern from the defect loops should indeed re-
semble those from a dispersion of small centrosymmetric
particles with non-centrosymmetric surface layers.

The director configuration in Neel inversion loops has
been studied in detail by phase-contrast TEM, SEM, and
AFM performed on polymer nematic films [27, 28, 30].
Fig. 10(a) depicts the experimentally observed configura-
tion [27]: The solid lines represent trajectories of n (in-
dicated by arrows), while the dashed line traces a loop
of inversion points in the plane of the figure. The loop
boundary contains a mixture of “splay-bend” distortions
in n (corresponding to the cusp-like trajectories on the
left and right sides of the loop) and “bend-splay” distor-
tions (corresponding to the hairpin-like trajectories on
the top and bottom sides). In thick samples, the loops
extend into a cylinder-like structures, which may relax
into an undistorted state in the bulk or terminate at a
boundary surface.

Inversion walls and loops are typically generated by
electric or magnetic fields applied normal to the orienta-

tion of n in nematics with positive dielectric or diamag-
netic anisotropy [26], as in the case of the studies cited
above, or they may be induced by flow as demonstrated,
for example, in microfluidic channels [29]. A combination
of flow patterns that tends to randomize the orientation
of n and applied field can produce large populations of
these defects. In our relatively thick samples, thermal
gradients cause convective flows at the isotropic–nematic
transition, which are readily observed in the microscope
and which have a randomizing effect on the incipient ne-
matic domains (e.g., through the coupling of molecular
translations and rotations). In a significant fraction of
these domains, n is orthogonal to the applied field H,
and the degeneracy in magnetic energy for n ‖ H and
−n ‖ H (i.e., the equivalence of n and −n in the nematic
state) leads to the spontaneous formation of inversion
walls and (in thicker samples or at higher flow rates [29])
inversion loops. The plane of the loops in Fig. 9 is par-
allel to the direction of H, which is consistent with the
Neel-type wall structure in Fig. 10a.

Since the minimum nematic free energy (for positive
diamagnetic anisotropy) corresponds to uniform n, in-
version walls forming at the isotropic–nematic transition
under the field are unstable, and should anneal out with
time. However, as pointed out by Helfrich [26] and ob-
served by different groups [31–34], inversion walls may
be pinned and stabilized at solid surfaces bounding the
nematic sample, with characteristic parameters – wall
thickness, penetration length into the bulk, and, in the
case of loops, the loop diameter – determined by an ap-
propriate combination of surface and bulk contributions
to the free energy. In our samples, the loops were most
clearly resolved when the microscope was focused at the
boundary surfaces of the sample cells, and the loops are
stable and immobile for at least several hours at fixed
temperature; no effect of annealing over this time pe-
riod was noticeable. These observations clearly point to
surface pinning of the loops. Since we did not observe
any significant surface memory effects when cycling the
samples through the N-I transition in the field, the most
likely scenario is that some fraction of loops are randomly
pinned at sites on the surfaces after first being generated
in the sample bulk.

The size distribution of the loops in Fig. 9 is fairly
narrow, with the characteristic diameter being 3–4 µm.
We can rationalize this value as follows. We assume that
the width ξ of the wall (region where n varies rapidly) is
set by the conditions of its formation in the bulk – i.e.,
ξ =

√

K/∆χH2 [26], where where ∆χ ≃ 5× 10−7 cgs is
the typical diamagnetic susceptibility anisotropy of the
nematic and K ≃ 5 × 10−7 dyne is the typical Frank
elastic constant. This gives ξ ≃ 0.9 µm for the applied
field of H = 11300 G. Next we suppose that one side or
position along the wall becomes pinned at a boundary
surface; in this case, the loop can still shrink to a mini-
mum diameter D in order to reduce its bulk energy cost.
As indicated in Fig. 11 (discussed below), this diameter
(for near overlap of the distorted regions of the walls on
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FIG. 8. Dependence of the SH scattering on the fundamental (ω) and SH (2ω) polarizations for TNI − T = 2.2◦C.

opposite sides of the loop) corresponds to D ≃ 4ξ. Using
our estimate of ξ, we get D ≃ 3.6 µm, in good agreement
with the observed diameter.

In order to develop the connection between the inver-
sion loops and SHLS from our samples, we consider the
flexoelectric polarization Pf induced by distortion in n

[1]:

Pf = e1n(∇ · n) + e3(∇× n)× n (1)

Here e1 and e3 are material-dependent flexoelectric coef-
ficients for splay and bend distortions, respectively. The

effective second order nonlinear susceptibility χ
(2)
eff may

be written as a contraction of Pf with the third rank

susceptibility χ
(3) (which is permitted in a medium of

arbitrary symmetry) [7, 35],

χ
(2)
eff = χ

(3) ·Pf/ǫ0χ̄e (2)

where χ̄e denotes the average dielectric susceptibility of
the NLC (for simplicity, we ignore the anisotropy in χe

due to nematic order). Symmetry of the NLC under

n → −n requires that all components of χ
(3) = χ

(3)
ijkl

with a non-recurring index vanish [36]. The key quantity
determining the properties of the SHLS is the induced

nonlinear dipole moment given by

p2ω(q) =

∫

V

P2ω(r
′) exp(iq · r′)dV ′

= E2
0

∫

V

χ
(2)
eff (r

′) : êωêω exp(iq · r′)dV ′ (3)

In this expression, E0 is the amplitude of the fundamental
field, êω is the polarization of the fundamental field, q =
k2ω − 2kω is the SH scattering vector, and the integral is
taken over the inversion wall loop.
Next, to describe the director field associated with the

splay-bend and bend-splay inversions, we use the coor-
dinate system specified in Fig. 10 and assume (again for
simplicity) a single Frank elastic constant, K1 = K3 =
K. Then n = sinφ x̂ + cosφ ẑ and the orientational free
energy density in field H is:

f(φ) =
1

2
K(∇φ)2 −

1

2
∆χH2 cos2 φ (4)

To avoid unnecessary mathematical complexity, we con-
sider separately the variation of φ in the “splay-bend”
regions of the loop (left and right sides in Fig. 10a) and
in the “bend-splay” regions (top and bottom sides). Then
the following expressions apply in the two cases [26]:

φsb(z) = 2 tan−1 [exp(±z/ξ)]

φbs(x) = 2 tan−1 [exp(±x/ξ)] (5)



9

a) b)

c) d)

20 m

FIG. 9. Polarizing microscope images of metastable inversion wall loops in the three different nematic liquid crystals studied:
(a) 1 mm thick 5CB, (b) 1 mm thick C7, (c) 1 mm thick BCN, (d) 0.1 mm thick 5CB. The images were recorded after cooling
the samples from the isotropic state to a temperature 2.2◦C below the isotropic–nematic transition under a constant 1.13 T
magnetic field, directed approximately left to right in the figure. The microscope was focused on a plane just below the sample-
substrate interface where the features of the loops are sharpest; the resolution is limited due to the thickness of the samples.
The images are rendered in gray scale to facilitate comparison.

Here the superscipts sb and bs refer to the splay-bend
(left and right) and bend-splay (top and bottom) sides
of the inversion loop in Fig. 10a, while the “+” or “−”
sign applies to the left and top or right and bottom sides,
respectively. The points z = 0 or x = 0 correspond to the
center of the inversion wall (where n ⊥ H) in all cases.

The parameter ξ =
√

K/∆χH2 gives the characteristic
width of the inversion wall. Then, from Eq. (1), we obtain
the following expressions for Pf :

Psb
f (z) =±

1

2ξ cosh(z/ξ)

{[

e1 sin
2 φ(z)− e3 cos

2 φ(z)
]

x̂

+ (e1 + e3) sinφ(z) cosφ(z) ẑ}

Pbs
f (x) =±

1

2ξ cosh(x/ξ)
{(e3 − e1) sinφ(x) cosφ(x) x̂

−
[

e1 cos
2 φ(x) + e3 sin

2 φ(x)
]

ẑ
}

(6)

The “+” and “−” signs again refer the inversion walls on
opposite sides of the loop.
We consider several properties related to the above ex-

pressions for Pf :

1. The induced nonlinear polarization P2ω in Eq. (3)
has the same orientation as Pf ; in particular Psb

2ω ‖
Psb

f and Pbs
2ω ‖ Pbs

f . This follows from the fact

that χ
(3) in Eq. (2) is non-zero only if each index

is recurring. Thus, P2ω = (E2
0/ǫ0χ̄e)χ

(3)
...Pf êωêω

implies P2ω,i = (E2
0/ǫ0χ̄e)χ

(3)
iijjPf,ieω,jeω,j .

2. If e1 and e3 are similar in magnitude but opposite
in sign (e1 ≃ −e3), the integrated Pf across the
inversion wall produces an effective surface dipole
density, which has a large x component in the splay-
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bend regions yet tends to vanish in the bend-splay
regions. Additionally, the direction of Psb

f is oppo-
site on the left and right sides of the loop in Fig. 10,
while its magnitude is similar. This is illustrated in
Fig. 11, and also by the map of polarization vectors
shown in Fig. 10b, for the case e3 = −e1 (the “one
coefficient” approximation often used in theoretical
analyses of the effect of flexoelectricity on defect
structures in NLCs [16]). Experimentally, the val-
ues of the flexoelectric coefficients are still rather
uncertain, even for standard nematics. Different
reports have, for example, given the sum e1+ e3 as
either negative or positive [37] in 5CB.

3. Points 1 and 2 imply that Psb
2ω has opposite direc-

tions (but equal magnitudes) on the left and right
sides of the loop (along H) provided e1 ≃ −e3.
They also imply that the integral of Pbs

2ω over
the wall thickness on top and bottom of the loop
tends to vanish. This results in an average induced
nonlinear polarization normal to H that points in
opposite directions on opposite sides of the loop
(Fig. 10c).

Let us compare our SHLS results to the proposed
model with the properties enumerated above:
Nodal line in SH scattering for q ⊥ H: We refer to

the coordinate system in Fig. 10, and consider for sim-
plicity a circular loop with diameter D in the x-z plane
at y = y0 with thickness ∆y about y0. The contribution
to the integral in Eq. (3) over the inversion walls on the
left and right sides of the inversion loop (i.e., along z with
x = 0) is

eiqyy0 ∆x∆y

∫

dz
{

Psb
2ω(−D/2 + z)eiqz(−D/2+z)

+ Psb
2ω(D/2 + z)eiqz(D/2+z)

}

where Psb
2ω is given by the combination of the first expres-

sion in Eq. (6) and Eq. (2). The integral is taken over
the characteristic thickness of the wall (i.e., the thickness
ξ over which φ varies significantly) with the origin at the
center of the wall. Similarly, for the top and bottom sides
(along x with z = 0), the contribution to the integral in
Eq. (3) is

eiqyy0 ∆y∆z

∫

dx
{

Pbs
2ω(−D/2 + x)eiqx(−D/2+x)

+ Pbs
2ω(D/2 + x)eiqx(D/2+x)

}

where Pbs
2ω is given by the combination of the second ex-

pression in Eq. (6) and Eq. (2). Now for q ⊥ H (i.e.,
qz = 0), the first integral above tends to zero, since by
points 1 – 3 above, Psb

2ω(D/2 + z) ≃ −Psb
2ω(−D/2 + z)

in the integrand. On the other hand, for the sec-
ond integral if qx ≪ 2π/ξ (i.e., for small angles where
sin θ ≪ 1), we may set exp(iqxx) = 1 to lowest order,
and then the two terms in the integral are proportional

to
∫ ξ

−ξ dxP
bs
2ω(±D/2 + x), which tend to zero according

to point 3. Thus, provided e1 ≃ −e3, we expect mini-
mum SH scattering when qz = 0. However, the argument
for a node specifically in the forward direction (θ = 0) re-
quires only that Psb

2ω and Pbs
2ω are equal in magnitude

but oppositely directed on the opposite sides (left and
right, top and bottom) of the inversion loop. This is a
special case of a general symmetry condition for a for-
ward node, which was discussed in the SHLS studies on
colloidal systems [12]: Such a node occurs if the nonlin-
ear polarization associated with the individual scatterers
possesses π-rotation symmetry about the wavevector kω

of the incident (fundamental) light.
Small angle peaks for q ‖ H: Here we consider q ≃ qz

and qx ≃ 0, corresponding to the observed peaks. For
the same reasons just given, the x integral above tends
to zero. However, the opposing signs (but equal mag-
nitudes) of Psb

2ω on opposite sides of the inversion loop
in Fig. 10(c) along the z axis imply that the z integral
above (and thus Eq. (3)) will have a peak when the two
terms in the integral are out of phase. This gives a re-
lation between the angular position of the peak and the
loop diameter D of the form D sin θ0 ≃ λ2ω , where the
“≃” sign indicates accuracy up to a a factor of order
unity. (A more exact condition could be obtained nu-
merically given knowledge of the quantities entering into
Eq. (3), including details on the shape of the inversion
loops.) Taking typical θ0 = 10◦ (Fig. 3), we estimate
D ≃ 3.2 µm, in good agreement with the images of the
loops in Fig. 9.
Polarization selectivity : From the above discussion,

the SH scattering peaks come mainly from the contribu-
tion of Psb

2ω, which is along the x axis in Fig. 10. Thus,
the main component of the induced nonlinear dipole mo-

ment p2ω is parallel to x̂. Since the wavevector k̂2ω

corresponding to the observed small angle peaks, lies in
the y − z plane, the transverse component of p2ω and
thus the SH field are predominantly along x̂, which cor-
responds to V (2ω) polarization, as indeed observed in
our NLC samples [38]. For the C7 sample, however, the
H(2ω) output is not completely negligible compared to
the V (2ω) component. This indicates that the model
described above may not apply, perhaps due to the im-
portance of a quadrupolar contribution to flexoelectricity
in this NLC (see discussion below).
The polarization selectivity of SH scattering from the

inversion loops in NLCs differs from the colloidal system
referenced above. In the latter case, the distribution of
dipole moments on the surfaces of the spherical particles
is radial. Although P2ω is still oppositely directed on op-
posite sides of the particles (leading to a forward node in
the scattering pattern), the predicted and measured SH
output is polarized predominantly parallel to the scat-
tering plane, corresponding to H(2ω) rather than V (2ω)
output.
Field dependence of SH signal : To account for the be-

havior of the SH signal with field shown in Fig. 7, we
consider two aspects of the inversion loop structure. If
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FIG. 10. Left panel(a): Schematic illustration of an inversion wall loop in an aligned nematic (after ref. [27]). The dashed oval
traces the center of the wall (points where the angle φ of the director n reaches π/2 with respect to the equilibrium orientations
φ = 0 , π along the aligning field H). The left and right sides of the loop along the z direction contain a splay-dominated
mixture of splay-bend director distortions (labeled sb in the text), while the top and bottom sides along the x direction are
richer in bend (and are labeled bs in the text). Arrows indicate the rotation of the n through the wall. Middle panel (b):
Qualitative map of flexoelectric polarization in the sb and bs regions of the loop for the specific case of equal and opposite splay
and bend flexoelectric coefficients, e1 = −e3. (The results of a detailed calculation are presented in Fig. 11.) Right panel (c):
Map of the average induced nonlinear polarization resulting from the distribution of flexoelectric polarization in (b). Note the
opposite orientations of P2ω across the diameter D.

the three-dimensional structure is cylinder-like, extend-
ing from the sample surfaces partially into the bulk, then
for ∆χ > 0, the field would tend to align the tube axes
normal to H. This creates the possibility of coherent SH
light being generated along the length of tubes oriented
perpendicular to H and parallel to kω , enhancing the SH
signal. The initial rapid rise of the signal with H2 fol-
lowed by a roll-off can then be explained by saturation in
tube alignment, which could occur at relatively low field
since the tube contains a large number of molecules.

The slower, linear in H2 rise in SH intensity at higher
fields can be understood from the field dependence of
the characteristic width ξ of the inversion walls. In the
simple model described above, ξ2 ∝ H2 and then using
I2ω ∼ p22ω ∼ P 2

f ∼ ξ−2 (see Eq. (6)), we get I2ω ∼ H2.

Dependence of SH signal on sample thickness : So far
we have made only limited measurements of the SHLS in-
tensity for different sample thicknesses. In a 0.1 mm thick
samples, exposed to the same experimental conditions as
our 1 mm samples, we find the angular distribution of
SHLS is similar to the arc-like patterns in Fig. 3 but the
overall signal is ∼ 100 times weaker. The somewhat sur-
prising result that the signal does not simply scale with
thickness can be attributed to a reduction in the density
of the inversion loops observed in the thinner cells. As
Fig. 9(d) reveals, the number of loops pinned at the sur-
faces in the 0.1 mm sample of 5CB is substantially lower
than in the 1 mm sample, over an equal surface area. We
can explain this difference as follows: Thermal gradients
are significantly diminished in the narrower cell, result-
ing in reduced (and more confined) convective flow as the
sample passes through the isotropic–nematic transition.

According to our earlier discussion, this implies a lower
population of inversion loops generated in the presence
of the magnetic field [39]. In addition, if the loops do not
extend as far into the bulk in thinner samples, the SH
intensity would be further reduced.

Temperature dependence of θ0: As the temperature is
decreased in the nematic phase, the orientational elastic
constants and the diamagnetic anisotropy both increase;
thus the elastic and field energies in the distorted regions
of the inversion wall loop increase at lower temperature.
To offset this increase, the dimensions of the loop can
shrink, producing an increase in the angle θ0 correspond-
ing to the peak in SH scattering. Strictly speaking, this
argument applies to the bulk; the diameter of the loop
at the surface may not change as much. A direct confir-
mation of changing loop size requires imaging with bet-
ter three-dimensional resolution than our microscope is
presently capable of.

Material dependence of θ0 and peak SH power : At
fixed temperature relative to TNI and fixed H ,
the value of θ0 increases in the order of materials
BCN → 5CB → C7 (Fig. 3), which also corresponds to
the order of increasing refractive index anisotropy ∆n.
For the former two, the magnitude of the diamagnetic
anisotropy correlates with ∆n, so we expect a lower
inversion loop energy in fixed field, and hence a higher
D and lower θ0, in the BCN. Assuming the magnitudes
of ∆n and ∆χ are correlated for C7, this material
would be expected to show the largest θ0, as observed.
Unfortunately, we are not aware of any measurements of
∆χ for C7.

The SH signal recorded from the nonpolar compound
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C7 is weaker than the other materials. In nonpolar meso-
gens, a polarization induced by distortion in n can arise
due to a quadrupolar flexoelectric effect [40]. Although
one would expect this to be of higher order, it has in fact
been reported to have a similar order of magnitude as
dipolar flexoelectricity [41].
The signals detected from the polar rodlike mesogen

(5CB) and the BCN are comparable. Based on the model
described above, one might conclude that the flexoelec-
tric coefficients should have the same order of magnitude
for the two compounds. This conclusion assumes the
density of inversion loops is also comparable in the two
nematics, which is not clear from the images in Fig. 9.
However, when thin samples of the BCN are subjected to
direct mechanical flexure, the induced polarization cur-
rent is found to be several orders of magnitude higher
than for standard nematics like 5CB [22]. As was pointed
out in [22], the large polarization current cannot be ex-
plained by the conventional molecular statistical theory
of flexoelectricity [42] together with the phenomenologi-
cal expression in Eq. (1). Instead, it may arise from the
response of the unconventional cybotactic nanostructure
[19] of the BCN to mechanical stresses.

V. CONCLUSION AND OUTLOOK

We have described small angle, second-harmonic light
scattering studies performed on magnetically-aligned
samples of various NLCs. The angular distribution of
scattered SH power can be clearly related to the presence
of inversion wall loops – defects in which two regions of
uniform nematic director are separated by a π inversion
wall – and specifically to the flexoelectric polarization
(non-centrosymmetry) associated with the distortion of n
in the walls. Our results are consistent with the relation
e1 ≃ −e3 between the flexoelectric coefficients in quite

different nematic materials, a rod-like and a bent-core
compound. This is at present a qualitative conclusion,
but one which we hope stimulate further development of
the SHLS approach.

Indeed, there are several interesting directions for
such development, which could enable more quantitative
study of flexoelectric properties. Various technologies
to pattern periodic one- and two-dimensional arrays of
defects in the nematic director field have been demon-
strated recently. These include optical patterning by
light-induced reorientation of n [43], patterning of align-
ment layers by AFM [44] or by photo-lithography [45],
and the use of controlled flows in microfluidic channels
to produce parallel arrays of disclination walls [29]. In
such patterned arrays, where spatial periods of ∼ 10 µm
are currently achievable over ∼ mm dimensions, a precise
spatially-periodic variation of the flexoelectric polariza-
tion Pf (r) in terms of parameters e1 and e3 would be
prescribed, and could then be tailored to optimally define
the angular distribution of SH light. Alternatively, while
with our present set-up we are not able to detect the sig-
nal from single defects, there are straightforward means
by which the SH sensitivity could be improved [47], po-
tentially obviating the need to produce controlled arrays
or to obtain high densities of spontaneously formed de-
fects. In either case, true quantitative comparisons of the
flexoelectric parameters among different nematics would
still require separate measurements of the relevant com-
ponents of χ(3), but these can be carried out by third
harmonic generation [46], for example.

In a more general sense, SHLS provides a potentially
useful approach to investigate, on optical length scales,
the polar structure of topological defects in liquid crys-
talline materials.
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along ẑ that for small scattering angle θ contributes at
order θ2 (i.e., negligibly) to the SH intensity.

[39] The fact that the optical ovens used to heat our sam-
ples in 1 mm cuvettes and 0.1 mm thinner cells are differ
somewhat in design and construction may also contribute
to a difference in the thermal gradients produced in the
samples during heating or cooling, and thus to a differ-
ence in the density of inversion wall defects generated
under the applied field.

[40] J. Prost and J. Marcerou, On the microscopic interpre-
tation of flexoelectricity, J. Physique 38, 315 (1977).

[41] J. P. Marcerou and J. Prost, The Different Aspects of
Flexoelectricity in Nematics, Mol. Cryst. Liq. Cryst. 58,
259 (1980).

[42] W. Helfrich, A simple method to observe the piezoelectric-
ity of liquid crystals, Phys. Lett. 35A, 393 (1971); The
Strength of Piezoelectricity in Liquid Crystals, Z. Natur-
forsch. 26a, 833 (1971).

[43] P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J.
Laviada, Y. Lansac, and I. I. Smalyukh, Laser-directed

hierarchical assembly of liquid crystal defects and control
of optical phase singularities, Scientific Reports 2, 414
(2012).

[44] B. S. Murray, R. A. Pelcovits, and C. Rosenblatt, Cre-
ating arbitrary arrays of two-dimensional topological de-
fects, Phys. Rev. E 90, 052501 (2014).

[45] Q. Wei (private communication).
[46] See, for example, K. Y. Wong and A. F. Garito, Third-

harmonic-generation study of orientational order in ne-
matic liquid crystals, Phys. Rev. A 34, 5051 (1986).

[47] The sensitivity to single nematic defects (specifically in-
version loops of the size shown in Fig. 9) can be improved
by reducing the sources of noise associated with back-
ground signals, as well as reducing non-sample related
background sources such as stray room light. The two
main sources of background noise are SH scattering from
director fluctuations in the nematic medium and the dark
noise of the detection system (camera). For the latter, one
can probably do better than our current system with the
latest CCD technology optimized for the lowest achiev-
able dark current. Regarding noise arising from direc-
tor fluctuations, we can offer the following analysis. The
average SH power scattered from pinned (or otherwise

stabilized) nematic defects is P̄
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τA

)2

fτ ,

where Ep is the energy per laser pulse incident onto cross-
sectional area A of the sample, τ is the temporal pulse
width, f is the repetition rate of the pulses, and Ndef

is the number of defects illuminated; for a single defect,
Ndef = 1. The average SH power scattered by director

fluctuations is P̄
(2)
def ∝ Villum

〈ξ3〉

(

Ep

τA

)2

fτ , with Villum be-

ing the illuminated volume of sample and 〈ξ3〉 the av-
erage correlation volume for the fluctuations. For sin-
gle defect detection, the signal-to-noise ratio is therefore
P̄

(2)
def

T
√

P̄
(2)
def

T

∝ Ep

τA

√

fτ

Villum

√
T where T is the signal acquisi-

tion time. Thus, by focusing from the present ≃ 1 mm
beam diameter down to ≃ 10 µm and illuminating a sin-

gle defect while keeping
Ep

τA
constant to avoid damage to

the sample, we can obtain a factor of 10 improvement
in sensitivity. Another factor of 10 improvement can be
realized with a higher duty cycle pulsed laser; a suitable
commercial system is available with 100 times larger fτ
than our present laser. Finally, an additional factor of
∼ 3 is feasible with 10 times longer integration time T .
With these enhancements, and assuming dark noise does
not become the limiting factor (we think it would not),
SHLS sensitivity to single loops is probably achievable.


