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Abstract

The effect of a local shear transformation on plastic deformation of a three-dimensional amor-

phous solid is studied using molecular dynamics simulations. We consider a spherical inclusion,

which is gradually transformed into an ellipsoid of the same volume and then converted back into

the sphere. It is shown that at sufficiently large strain amplitudes, the deformation of the material

involves localized plastic events that were identified based on the relative displacement of atoms

before and after the shear transformation. We found that the density profiles of cage jumps decay

away from the inclusion, which correlates well with the radial dependence of the local deformation

of the material. At the same strain amplitude, the plastic deformation becomes more pronounced

in the cases of weakly damped dynamics or large time scales of the shear transformation. We

showed that the density profiles can be characterized by the universal function of the radial dis-

tance multiplied by a dimensionless factor that depends on the friction coefficient and the time

scale of the shear event.

PACS numbers: 62.20.F-, 61.43.Fs, 83.10.Rs
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I. INTRODUCTION

Despite its long history, the prediction of mechanical response of amorphous materials,

such as metallic or polymer glasses, remains an area of active research [1, 2]. The main

challenge in this field is to fully characterize the dynamics of atomic scale rearrangements

during plastic deformation of glasses [3]. These localized rearrangements were first observed

by Argon and Kuo in two-dimensional bubble rafts [4, 5]. Later, Falk and Langer proposed

a dynamical mean-field theory of low temperature shear deformation in amorphous solids

in terms of the shear transformation zones, which accounts for many of the features seen in

simulations, including strain hardening and yield stress [6]. A number of studies considered

various criteria in order to identify regions susceptible to plastic rearrangement by examining

the local density [7], elastic moduli [8–10], short range order [11, 12], and “soft spots”

from the low-frequency vibrational modes [13–15]. Athermal quasistatic simulations have

clearly shown that heterogeneous plastic flow of two-dimensional amorphous solids involves

quadrupolar localized rearrangements and system spanning shear bands [16–19].

Twenty years ago, Argon and Bulatov [20] developed a model where plastic flow was

treated as a stochastic sequence of local inelastic rearrangements that interact via a long-

range elastic field [21]. In this model, each local rearrangement results in a global stress

drop and stress redistribution in its neighborhood, which in turn may drive nearby regions

towards their instability threshold and cause secondary plastic events [20]. In particular, a

transition from diffuse plastic flow at high temperatures to localized flow through shear bands

at low temperatures was observed [20]. Recent molecular dynamics simulations of a two-

dimensional amorphous system have shown that at finite shear rates long-range interactions

between local rearrangements give rise to directional quasilinear avalanches [22].

More recently, the elastic response of a two-dimensional amorphous solid to a local shear

transformation was studied using molecular dynamics simulations [23]. The fictitious trans-

formation due to an instantaneous displacement of about twenty particles within a circular

region replicated an elementary plastic event in a sheared system. It was found that at

small values of the shear strain, the averaged displacement field in the material agrees well

with the predictions of the continuum elasticity theory in both the stationary and transient

regimes [23]. It was also shown that the propagation of the elastic signal varies from a dif-

fusive transmission for strong damping to a propagative transmission in the case of weakly
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damped dynamics. One of the motivations of the current study is to investigate the effect

of a local shear transformation on plastic deformation of a three-dimensional model glass.

The mechanical response of amorphous materials to oscillatory shear deformations was

recently investigated experimentally [24–27] and by means of atomistic simulations [28–31].

It was found that at small strain amplitudes, the amorphous systems gradually settle into

dissipative limit cycles where particles are displaced periodically but then return to their

original positions [25, 28, 30]. Interestingly, the deformation process involves a number of

localized plastic events that are reversible with each cycle [24, 25, 30]. With increasing strain

amplitude above a critical value, the rearrangement of particles becomes irreversible, leading

to diffusive behavior [25, 28–31]. It was also shown that the structural relaxation process

at finite temperatures involves intermittent bursts of clusters of particles undergoing large

displacements [27, 29, 31].

In this paper, molecular dynamics simulations are carried out to study structural re-

laxation in an amorphous solid induced by a local shear transformation. We introduce a

reversible transformation of a spherical inclusion in a quiescent system. From a physical

point of view, this situation corresponds to a vibrating inclusion within an amorphous solid

(for example, a cyclic thermal or mechanical deformation of an embedded inclusion in an

amorphous matrix). The cage detection algorithm is used to identify large particle displace-

ments during the shear event. The spatial distribution of cage jumps is analyzed for different

damping conditions, strain amplitudes, and duration of the shear event, and then correlated

with the amplitude of the local deformation of the material.

The rest of the paper is organized as follows. The description of molecular dynamics

simulation model is given in the next section. In Sec. III, the results for the radial density

profiles of cage jumps as a function of the strain amplitude, the shear transformation time

scale, and the friction coefficient are presented. The conclusions are provided in the final

section.

II. DETAILS OF MOLECULAR DYNAMICS SIMULATIONS

We consider a three-dimensional system composed of N = 10 000 particles in a periodic

box (see Fig. 1). The model glass is represented by the Kob-Andersen (KA) binary (80:20)
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mixture with non-additive interaction parameters of the Lennard-Jones (LJ) potential in

order to avoid crystallization [32]. In the KA model, particles α, β = A,B interact via the

pairwise LJ potential

Vαβ(r) = 4 εαβ

[(σαβ

r

)

12

−
(σαβ

r

)

6
]

, (1)

with the parameters εAA = 1.0, εAB = 1.5, εBB = 0.5, σAB = 0.8, σBB = 0.88, and

mA = mB. In all simulations, the cutoff radius was chosen to be twice the minimum

position of the LJ potential, i.e., rc, αβ = 2.245 σαβ. The units of length, mass, and energy

are defined σ = σAA, m = mA, and ε = εAA, and, therefore, the unit of time is τ = σ
√

m/ε.

The time evolution of the system is described by the Langevin dynamics. For example,

the equation of motion in the x̂ direction is given by

mẍi +mΓẋi = −
∑

i 6=j

∂Vij

∂xi

+ fi , (2)

where Vij is the total interaction potential, Γ is the friction coefficient, and fi is a ran-

dom force with zero mean and variance 〈fi(0)fj(t)〉 = 2mkBTΓδ(t)δij determined by

the fluctuation-dissipation theorem. The Langevin thermostat temperature is set T =

10−2 ε/kB, where kB is the Boltzmann constant. The equations of motion were integrated us-

ing the fifth-order Gear predictor-corrector algorithm [33] with a time step △tMD = 0.005 τ .

The model glass was confined into a cubic box with a fixed side length L = 20.27 σ so that

the total density ρ = ρA+ρB = 1.2 σ−3 remained constant. The glass transition temperature

for the KA binary mixture at this density is about 0.45 ε/kB [32]. In our setup, periodic

boundary conditions were implemented along all three directions. At first, the system was

equilibrated for about 5 × 106 MD steps at the temperature 1.1 ε/kB and then gradually

quenched with the rate 10−5 ε/kBτ to the final temperature 10−2 ε/kB. The post-processing

analysis was performed in 504 independent samples.

The plastic deformation of the material was induced by a fictitious local shear trans-

formation. In our simulations, the inclusion consists of about 135 atoms within a sphere

of radius ri = 3 σ, which is located at the center of the simulation box (see Fig. 1). The

system was first aged for about 500 τ at the temperature 10−2 ε/kB, while the atoms within

the inclusion were kept fixed. Then, the inclusion atoms were gradually displaced so that

a sphere was transformed into an ellipsoid of the same volume. During this procedure, the

major axis of the ellipsoid was always oriented parallel to the (1, 1, 1) direction, as shown
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in Fig. 1. In the following, the ratio of the length of the ellipsoid semi-major axis and the

sphere radius ri defines the shear strain of the transformation. The shear strain was varied

during the time interval 0 6 t 6 τi according to the following equation

ǫ (t) = ǫ0 sin(πt/τi), (3)

where ǫ0 is the strain amplitude and τi is the time scale of the shear transformation. After t =

τi, the inclusion atoms were fixed again at their original positions (before the transformation)

and the system was equilibrated for additional 103 τ , and then the average positions of all

atoms were computed again. For each independent sample, the averaged atom positions

before and after the shear transformation were stored and then analyzed to determine plastic

deformation of the material.

III. RESULTS

In the absence of mechanical deformation, the atomic structure of the model glass lacks

the long-range order characteristic of a crystal but retains the short-range order, where all

atoms remain trapped inside cages formed by their neighbors [32]. When an amorphous

material is strained, the onset of plastic deformation is governed by the localized collective

rearrangements of small groups of atoms [6]. In this process, each rearrangement creates a

long-range elastic field [21] that leads to a stress redistribution in the system and may drive

a nearby region past its instability threshold, which in turn might trigger secondary shear

transformations [22]. In a driven system, however, this process is difficult to characterize [3].

An alternative approach to study the effects of the local rearrangement of atoms and prop-

agation of the mechanical signal on the structural relaxation of the material is to apply an

artificial shear transformation in a quiescent system [23].

In our study, the material was sheared by an artificial inclusion that consists of about 135

atoms forming a sphere, which is located at the center of the simulation cell (see Fig. 1). The

inclusion atoms do not interact with each other and undergo a reversible displacement dur-

ing the time interval τi. In order to maintain the same density of the material, the inclusion

was gradually deformed from a sphere into an ellipsoid of the same volume and then back to

the sphere with the strain amplitude varied according to Eq. (3). We note that the reversible

shear transformation described by Eq. (3) is different from the shear transformation consid-
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ered in [23], where a group of atoms forming an inclusion were instantaneously displaced and

fixed in the new position, thus mimicking an elementary plastic event occurring in deformed

glasses. In our study, the analysis of the plastic deformation was based on the averaged

atom positions before and after the shear transformation. Thus, the control parameters in

the problem include the strain amplitude ǫ0, the time scale of the shear transformation τi,

and the friction coefficient Γ that controls the damping term in Eq. (2).

As it was already mentioned in the previous study [23], if the strain amplitude of the

reversible shear transformation of an artificial inclusion is below a few percent, then the

material deforms elastically and the average relative displacement of atoms is less than

about 0.1 σ. In contrast, when the strain amplitude is sufficiently large, the deformation

usually involves several localized plastic events. In our study, the strain amplitude is greater

than 0.05, which typically results in a finite density of atoms that undergo large displacement

upon a reversible shear transformation. These large displacements, or cage jumps, can be

identified using the cage detection algorithm recently introduced by Candelier et al. [34]

and tested for a number of two-dimensional systems [35, 36]. In this method, the effective

distance between two segments of a particle trajectory is computed and then compared with

a typical cage size. Similar to the earlier studies [29, 31], in our analysis, a cage jump

was detected if the effective distance between particle positions before and after the shear

transformation is greater than 0.1 σ; otherwise, a particle returned to its cage.

Examples of typical cage jump configurations are presented in Fig. 2 for different strain

amplitudes of the induced shear transformation, which occurred during the time interval

τi = 10 τ in a regime of intermediate damping Γ = 1.0 τ−1. It can be seen that with

increasing strain amplitude, the number of cage jumps increases and they tend to aggregate

into compact clusters, although some mobile atoms appear to be isolated (see Fig. 2). In

order to quantify the spatial distribution of cage jumps, we computed the radial density

profiles, which were averaged in thin spherical shells of 0.1 σ. When the radius of the shell

was larger than half of the simulation box length, the volume of six spherical caps was

subtracted from the volume of the shell to properly normalize the density profiles. Due

to insufficient statistics, the data near the corners of the cubic box, r > L/
√
2, were not

reported.

Figure 3 shows the representative radial density profiles of cage jumps for two values of the
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shear transformation time scale τi = 10 τ and τi = 100 τ . In both cases, the average density

of cage jumps becomes larger as the strain amplitude increases, however, it remains much

smaller than the density of the material, i.e., ρ = 1.2 σ−3. Note that, somewhat unexpectedly,

the density of cage jumps increases from ri = 3 σ up to about 5 σ, despite a relatively large

deformation of the material near the inclusion during the shear transformation process. This

behavior can be explained by the fact that the outer surface of the inclusion is rough on

the molecular scale, and, therefore, the atoms of the material in contact with the inclusion

atoms have a part of their cages to be reversibly deformed, thus reducing the probability of

irreversible displacement of adjacent atoms. This trend in the density profiles was observed

for all control parameters in our study.

During the shear transformation process, the displacement field around the inclusion has

a quadrupolar symmetry with respect to the major axis of the ellipsoid [37], and, therefore,

the distribution of cage jumps is not expected to be spatially isotropic. We next computed

the radial density of cage jumps but averaged it within hollow cones with apex angles

ranging from 2 θ − 10◦ to 2 θ + 10◦. Figure 4 shows the radial density profiles of cage

jumps for different values of the angle θ measured with respect to the major axis of the

ellipsoid, which is oriented parallel to the vector (1, 1, 1). It could be seen that the data

are somewhat noisy despite a relatively large strain amplitude ǫ0 = 0.4. However, it is

clear that the orientational dependence of the density profiles is highly anisotropic; the

density is larger (smaller) in the direction parallel (perpendicular) to the major axis of the

ellipsoid. Furthermore, as illustrated in Fig. 2, cage jumps tend to aggregate into clusters.

The distribution of cluster sizes is reported in Fig. 5 for τi = 10 τ and τi = 100 τ . It is

observed that cluster sizes are roughly power-law distributed with the slope varying from

−2.5 at small strain amplitudes to about −1.0 for ǫ0 & 0.3 with the largest clusters of several

hundred atoms.

The local deformation of the material that facilitates cage jumps depends on how the

mechanical signal propagates in the system and the time scale of the induced shear trans-

formation. In Figure 6, we plot the radial density profiles of cage jumps for different values

of τi in the regime of intermediate damping Γ = 1.0 τ−1. It is evident that the density of

cage jumps increases with increasing shear transformation time scale. When τi is small,

then the amplitude of the local displacement field in the material during the shear event is
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smaller than it would be in the limit of quasistatic deformation; and, therefore, the prob-

ability of cage-to-cage jumps is reduced. In other words, for a given value of the strain

amplitude ǫ0, the largest particle displacement in the material occurs when the time scale of

the shear transformation is larger than the time scale of the propagation of the deformation

in the system. As shown in Fig. 6, with further increasing time scale of the shear event, i.e.,

τi & 300 τ , the density of cage jumps remains unchanged (within statistical uncertainty).

In order to establish a correlation between the density of cage jumps and deformation

of the material during the shear event, we performed a set of separate simulations where

the shear strain given by Eq. (3) was varied during the time interval 0 6 t 6 0.5 τi up to

a maximum value of ǫ0. The numerical procedure was applied as follows. Similar to the

case of the reversible shear transformation described in Sec. II, the binary glass was first

equilibrated while the inclusion atoms were fixed within a sphere of radius ri = 3 σ. Next,

the sphere was transformed into an ellipsoid of the same volume according to Eq. (3) during

the time interval 0 6 t 6 0.5 τi = 100 τ . When the maximum strain ǫ0 was attained, the

inclusion atoms were fixed again and the system was allowed to evolve for 103 τ . Then, the

average atom positions were collected and the relative displacement of atoms during the

sphere-to-ellipsoid transformation was analyzed.

The local deformation of the material after a sphere-to-ellipsoid transformation deviates

from the elastic behavior at sufficiently large values of ǫ0 and typically involves several

plastic events. Here, we introduce a measure of the local deformation, ∆d, based on the

relative displacement of neighboring particles. In the undeformed glass, we first identify

all tetrahedra formed by nearest-neighbor atoms with mutual distance less than rd = 1.2 σ.

For each tetrahedron, the difference between the longest and shortest edges, d, is computed.

After the sphere-to-ellipsoid transformation, the quantity d is determined again for the

same tetrahedra. Finally, the measure of the local deformation, ∆d, is calculated for each

tetrahedron by subtracting d in the undeformed state from d after the transformation, and

then averaged over all tetrahedra and all realizations of disorder. In this definition, the

quantity ∆d is insensitive to a pure rotation or translation of tetrahedra but it takes into

account the relative displacement of neighboring atoms.

The radial dependence of the local deformation, ∆d (r), is plotted on a log-log scale in

the inset of Fig. 6 along with the density profiles of cage jumps for ǫ0 = 0.3. It can be seen
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that the decay of the density profiles for different values of τi correlates well with ∆d (r)

for r & 6 σ. These results suggest that formation of cage jumps during the reversible shear

event is determined by the amplitude of the local deformation of the material. Note that

the density profiles are nearly constant at large distances r & L/2 due to periodic boundary

conditions. We also comment that the slope of ∆d (r) is rather insensitive to the exact value

of rd in the range 1.1 σ 6 rd 6 1.5 σ.

Furthermore, the effect of inertia on the density profiles of cage jumps is shown in Fig. 7

for the relatively large strain amplitude ǫ0 = 0.3 and time scale τi = 100 τ in order to obtain

better statistics. It is observed that with decreasing friction coefficient, the density of cage

jumps increases and it appears to saturate for Γ . 0.1 τ−1. In the strongly damped cases,

Γ = 5 τ−1 and 10 τ−1, the propagation of the displacement field occurs at times longer than

τi, which results in a smaller amplitude of the local strain and thus lower density of cage

jumps. Similar transient behavior of the elastic response to a local shear transformation was

reported in a two-dimensional model glass in the overdamped regime [23]. In the case of

weakly damped dynamics, Γ . 0.1 τ−1, the transmission of the elastic signal in the system

is faster than the duration of the shear event, which leads to the largest amplitude of the

displacement field and highest density of cage jumps (shown in Fig. 7).

Finally, the data reported in Figs. 6 and 7 can be made to collapse onto a single master

curve by plotting the density profiles as ρ(r)/s, where s is a scaling factor. The rescaled

density profiles are shown in Fig. 8 for the indicated values of Γ, τi and s. The collapse of

the data is quite good, except for the case τi = τ and Γ = τ−1, where the amplitude of the

density profile is relatively small. The results in Fig. 8 suggest that the density profiles as a

function of the distance r, the friction coefficient Γ, and the time scale of the shear event τi

obey the remarkable factorization

ρ(r,Γ, τi) = s(Γ, τi) f(r) (4)

in a wide range of parameters Γ and τi. Thus, the shape of the density profiles is determined

by the universal function f(r), which exhibits a maximum within about two molecular

diameters from the surface of the inclusion and follows a power-law decay at larger distances.

Interestingly, the variation of the scaling factor s is relatively small despite the fact that

parameters Γ and τi vary over about three orders of magnitude.
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IV. CONCLUSIONS

In summary, molecular dynamics simulations were performed to investigate the effect of

a local shear transformation on plastic deformation of an amorphous solid. We considered

a spherical inclusion, which was transformed into an ellipsoid with the major axis along one

of the diagonals of a cubic box and then converted back into the sphere. At sufficiently

large strain amplitudes, the deformation of the material typically involved several plastic

events, which were analyzed based on the averaged atom positions before and after the

shear transformation. Using the cage detection algorithm, the large particle displacements,

or cage jumps, were identified and their spatial distribution was studied as a function of the

strain amplitude, the time scale of the shear transformation, and the friction coefficient that

controls the damping in the system.

We found that, in general, the density of irreversible cage jumps increases with increasing

strain amplitude of the shear transformation. In a narrow region within about two particle

diameters from the surface of the inclusion, the probability of cage jumps is reduced because

of the strong influence of the inclusion atoms that undergo reversible displacements. It

was also shown that cage jumps tend to aggregate into clusters that are approximately

power-law distributed. The density profiles of cage jumps decay away from the center of

the inclusion, which agrees well with the radial dependence of the local deformation of the

material. Furthermore, due to the quadrupolar symmetry of the displacement field, the

distribution of cage jumps is highly anisotropic with a preferred direction along the major

axis of the ellipsoid. For a given strain amplitude, the density of cage jumps increases

upon either increasing time scale of the shear event or decreasing friction coefficient. These

trends were rationalized in terms of the maximum amplitude of the displacement field in

the material during the shear transformation.
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FIG. 1: (Color online) A snapshot of the equilibrated binary LJ glass in a periodic box. Atoms of

type A are indicated by large blue circles and atoms of type B are denoted by small red circles.

Atoms within a sphere (black circle) form an inclusion. The local shear transformation is introduced

by displacing the inclusion atoms into an ellipsoid of the same volume (dashed ellipse).
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FIG. 2: (Color online) Snapshots of cage jump configurations for the strain amplitudes (a) ǫ0 = 0.1,

(b) ǫ0 = 0.2, (c) ǫ0 = 0.3 and (d) ǫ0 = 0.4. The friction coefficient is Γ = 1.0 τ−1 and the time scale

of the shear event is τi = 10 τ . The artificial inclusion is located at the center of the simulation

cell (not shown).
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FIG. 3: (Color online) Averaged density profiles of cage jumps as a function of the distance from

the center of the inclusion for (a) τi = 10 τ and (b) τi = 100 τ . The friction coefficient is Γ = 1.0 τ−1

and the strain amplitude is ǫ0 = 0.05, 0.1, 0.15, 0.2, 0.3, and 0.4 from bottom to top.
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FIG. 4: (Color online) Averaged radial density profiles of cage jumps as a function of the angle

θ with respect to the (1, 1, 1) direction (see text for details). The strain amplitude in both cases

ǫ0 = 0.4 and the time scale of the shear transformation is (a) τi = 10 τ and (b) τi = 100 τ . The

angle is θ = 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, 90◦ from top to bottom.
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FIG. 5: (Color online) The probability distribution of cluster sizes of cage jumps for (a) τi = 10 τ

and (b) τi = 100 τ . The strain amplitude is ǫ0 = 0.05, 0.1, 0.15, 0.2, 0.3, and 0.4 from bottom to

top. The friction coefficient is Γ = 1.0 τ−1 in both cases. The straight lines with the slope of −2.5

(dashed lines) and −1 (dash-dotted lines) are plotted for reference.
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FIG. 6: (Color online) Averaged density profiles of cage jumps as a function of the distance from

the center of the inclusion for the strain amplitude ǫ0 = 0.3 and the friction coefficient Γ = 1.0 τ−1.

The time scale of the shear event is τi/τ = 1, 10, 100, 300, and 500. Inset: the same density profiles

are plotted on a logarithmic scale. The local deformation ∆d is denoted by the dashed curve (see

text for details). The scale for ∆d/σ is the same as for ρσ3. The straight line with a slope −4 is

shown for reference.
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FIG. 7: (Color online) Averaged density profiles of cage jumps as a function of the distance from

the center of the cell for ǫ0 = 0.3 and τi = 100 τ . The friction coefficient is Γτ = 0.01, 0.1, 1, 5, 10.

The inset shows the same density profiles on a log-log scale. The radial dependence of ∆d is the

same as in the inset of Fig. 6 (dashed curve). The scale for ∆d/σ and ρσ3 is the same. The black

line with a slope −4 is plotted as a reference.
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FIG. 8: (Color online) Collapse of the density profiles of cage jumps for the strain amplitude

ǫ0 = 0.3. The data are the same as in Figs. 6 and 7. The values of the friction coefficient Γ, the

time scale of the shear transformation τi, and the scaling factor s are tabulated in the inset.
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