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Nonstationary disordered materials and media - those for which the probability distribution

function of any property varies spatially when shifted in space - are abundant and encountered in

astrophysics, oceanography, air pollution patterns, large-scale porous media, biological tissues

and organs, and composite materials. Their reconstruction and modeling is a notoriously

difficult and largely unsolved problem. We propose a method for reconstructing a broad class

of such media based on partitioning them into locally-stationary zones. Two methods are used

for the patitioning. One is based on the Shannon entropy, while the second method utilizes

a watershed transform. The locally-stationary zones are then reconstructed based on a cross-

correlation function and one-dimensional raster path that we recently introduced [P. Tahmasebi

and M. Sahimi, Phys. Rev. Lett. 110, 078002 (2013)], with overlaps between the zones to

ensure seamless transition from one zone to another. A large number of examples, including

porous media, ecological systems, disordered materials and biological tissues and organs are

reconstructed and analyzed to demonstrate the accuracy of the method.

PACS number(s): 47.46.+r, 81.05.Rm, 61.43.Bn, 05.20.-y, 02.70.-c, 89.90.+n
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I. INTRODUCTION

Disordered media, ranging from man-made composite materials, to natural ones such as

rock, biological tissues and organs, and tree patterns in forests are ubiquitous and of fun-

damental importance to many phenomena and processes of scientific and practical interests

[1,2]. Thus, their characterization and modeling has been a long-standing problem. In princi-

ple, disordered materials and media may be divided into two broad classes. In one class are

spatially-stationary media - those for which the probability distribution function (PDF) of any

property does not change when shifted in space and, hence its various statistics do not vary in

space. Modeling and analysis of stationary systems have made great progress [3-6], particularly

over the last few years [7,8].

In the second class are spatially-nonstationary disordered (NSD) media, for which the PDF

of any property and its various statistical properties do vary spatially, when shifted in space.

Such media are also referred to has macroscopically-heterogeneous media, because there is no

representative volume element such that if the media’s properties are averaged over such a

volume, they will not change if measured in larger volumes or length scales. A review of a

broad class of disordered materials and media indicates that nonstationarity is more of a rule,

than an exception. Examples of NSD systems are encountered in astrophys [9], oceanography

[10], rock at large scales [11,12], spatial patterns of environmental pollution [13], and biological

tissues and organs [14]. In addition, medical diagnostics based on computations with three-

dimensional (3D) images [15] that are often nonstationary have become increasingly important.

Unlike stationary media though, the problem of modeling and analyzing the NSD systems

has proven to be fraught with difficulties. Almost all of the past approaches to the problem

suffer from shortcomings and inaccuracy, or are specific to a particular type of system without

any generality. Even in the case of large-scale porous media, a highly important and much

studied class of NSD systems, a methodology that can analyze them is still lacking, even though

there are ample experimental data indicating that the spatial distributions of the porosity,

permeability, the elastic moduli, and wave speeds of such porous media follow nonstationary

stochastic distributions (see below).

The goal of this paper is to introduce a general method for accurate description of NSD

media. We do this through an inverse method, usually referred to as a reconstruction technique
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[1-8]: given a certain amount of data, one tries to construct a model of a NSD medium that

closely matches the data, such that it also provides accurate predictions for those properties

of the system for which there are no data or, if there such data, they are not used in the

reconstruction. Exact reconstruction is not practical, but the method that we introduce is

capable of generating accurate realizations for a wide variety of systems.

The rest of this paper is organized as follows. In the next section we describe how to

partition a NSD system into locally-stationary zones. Sectin III describes the reconstruction of

the locally-stationary zones based on a cross-correlation function and a one-dimensional raster

path. To quantify the accuracy of the reconstruction we compute a multiple-point connectivity

function, whjich is described in Sec. IV. The results are presented in Sec. V, while important

generalizations of the method are discussed in Sec. VI. The paper is summarized in the last

section.

II. SEGMENTATION OF A NONSTATIONARY SYSTEM INTO

LOCALLY-STATIONARY REGIONS

Suppose that a d-dimensional data set is available for a NSD medium of interest, which may

be numerical or in the form of an image, such as, for example, medical images or a cross-section

of a disordered material. We consider a point x in the data set and a segment or window

centered around it. The latter may be divided into two components: a stationary component

and a nonstationary part that we refer to as trends. Due to the great progress over the last

few years [3-8], the stationary component may be reconstructed accurately. Thus, the main

task is to account for the trends that may be either deterministic or stochastic. If the trends

are only mildly varying, or are of low-variance statistics type, then accounting for them is not

too difficult. Our goal here is, however, devising a general method that is capable of modeling

strongly-varying trends. Breaking a data set into a stationary part plus trends has already been

developed for nonstationary time series and proven to be successful [16]. Here, we describe two

methods for partitioning a nonstationary medium into a set of locally-stationary zones.

A. Partitioning based on the Shannon entropy

We describe the method for 2D media; its extension to 3D media will be clear. Let G

represent the computational grid used in the reconstruction, partitioned into blocks or templates
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of size Lx×Ly . Likewise, the target system (TS) to be reconstructed is partitioned into exactly

the same number of blocks of the same size Lx × Ly. The templates of G and the TS are

denoted, respectively, by TG and TTS. We denote by DT (u) the data event at position u

in TG, i.e. a realization of the disorder generated to reconstruct the template TG centered

at u. We use “event” instead of “set,” because the realization of the disorder may change

during the reconstruction. Between every two neighboring blocks is an overlap region O of size

ℓx × ℓy, representing DT , where ℓx = Lx and ℓy ≪ Ly, if the overlap region is between two

neighboring blocks in the vertical (y) direction, and ℓy = Ly and ℓx ≪ Lx, if the O is between

two neighboring templates in the x direction; see Fig. 1. The purpose of the O regions is

to preserve the continuity near the common boundary between two neighboring blocks within

a stationary segment i, referred to as SSi, as well as between neighboring blocks, but in two

distinct segments, SSi and SSj.

Figure 1 shows the schematic representation of the approach. The segmentation is carried

out along a 1D raster path, as shown in Fig. 1(a). Suppose, for example, that the 1D raster

path is along the horizontal (x) direction. The algorithm begins at the path’s origin in G -

the leftmost bottom template, T
(1)
G - and moves along the raster path. It first identifies those

blocks of the TS that contain T
(1)
TS and constitute a locally-stationary region. To identify them,

one begins with T
(1)
TS and computes its Shannon entropy [17], given by,

S1 = −
n
∑

i=1

pi ln pi , (1)

with pi = histogramofsamplei/(length of the sample) being the probability of having a state i

in the TS, and n the number of pixels in the block. S1 is calculated by the same method, if the

TS is not represented by an image, but by a data set. Then, beginning with T
(1)
TS, we compute

the corresponding entropies of the nearest neighbors, next nearest neighbors, etc., of T
(1)
TS in

both directions, and denoted them by S2, S3, · · ·. So long as entropies S1, S2, · · · constitute

a second-order stationary set (or third order, if need be), i.e. one for which the average and

variance (and the third moment in case of third-order stationarity) are spatially invariant, we

consider the blocks as belonging to the same locally-stationary zone. But, if the stationarity

of the computed entropies is lost, the search stops and one obtains a zone of the TS of size

m1 × n1 blocks that is locally stationary. Figure 1(b) shows a 3× 3 zone. The same procedure

is used for the rest of the TS blocks in order to identify other locally-stationary zones. Figures
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1(c) - 1(e) present several such segments. Each zone is characterized by its own statistics, and

the trends are the variations of such statistics between the zones.

B. Partitioning based on the watershed transform

The watershed transform (WST) is a method used for partitioning a given system into

various distinct parts, and is based on an image. In doing so, the general shapes and topography

of three distinct set of points are considered that are, (i) the local minima; (ii) the points

between two different local minima, and (iii) the points with a probability (of occurence) equal

to that of the local minima. The idea behind the WST is quite simple: Suppose that there is a

“hole” in each local minimum through which water can flow with a constant flux. After a while,

one sees the separation “bridges” or lines that prevent merging the water from different holes.

Such lines represent the watershed boundaries that are good indicators for feature partitioning

[18-21].

An important application of the WST is identifying similar and distinct segments in an

image. Clearly, if a region contains small variations in some properties, it also has small gra-

dients in the same properties. This is taken advantage of for identifying the distinct segments.

First, the system is partitioned into cells or blocks. Then, each cell is expanded by adding the

boundary points to it, i.e. the points in the neighboring cells. This is done by computing a

distance function between two points x and y, defined by

d(x,y) = inf
{
∫

γ
||∇f [γ(s)]||ds

}

(2)

which defines a geodesic distance, where the infimum is over all the paths γ inside the domain

that we consider. The topological distance between a point x and a set in the domain is the

one that minimizes d, which also has the minimum slope among all the paths. In the present

case the function f is simply the pixeled image TS. Clearly, if two pixels are similar, or if the

average value of the pixels within two neighboring cells are equal or very close, then, d ≈ 0.

Thus, adding a new point is continued only if that point is at a smaller distance d to the

region than to the other regions (hence, smaller or zero gradient in the property). The process

of adding the points continues until there is no eligible point. Then, the remaining points

represent the watershed lines or boundaries.

The WST method is most useful for use in identification of locally-stationary zones of

disordered media in which there are large contrasts between the various zones. An example is

5



a fractured porous medium in which not only the permeabilities of the porous matrix and the

fractures differ by orders of magnitudes, the distribution of the orientations of the fractures

may also vary from zone to zone. Another system for which the WST method is useful is a

two-phase material in which the conductivities or elastic properties of the two phases differ very

significantly. An example is shown in Fig. 2(a) in which the dark areas represent, for example,

high conductivity or permeability regions, while the white areas indicate the opposite. It is

straightforward to show that the medium is nonstationary. In this particular case one can

visually detect three different zones. But, the aim is to use the WST to systematically identify

such zones in a complex NSD medium.

The WST method is suitable for such systems due to the essence of the algorithm, namely,

the aformentioned “flowing water” that creates large contrasts between the watershed lines

and the catchment basins. Without defining any number of regions, or partitioning the system

into several regions, we use the WST to identify and separate the locally-stationary regions. If,

however, we use the algorithm suitable for stationary systems [8] for reconstructing the medium

shown in Fig. 2(a), we obtain the realization shown in Fig. 2(b) that cannot clearly distinguish

the distinct directional dark regions in various zones.

In practice, given the TS, an initial segmentation procedure consists of, (a) clustering neigh-

boring pixels following an order based on increasing intensity gradients (and, hence, the distance

d), and (b) splitting the TS into different locally-stationary zones. The equivalent to the wa-

tershed line is the line separating two different locally-stationary zones. Consider two “sinks,”

such as, for example, two opposite boundaries of a NSD medium, such as a fractured porous

medium. If the TS is already pixeled, then one can directly use it. Otherwise, it is first parti-

tioned into cells or blocks that are ranked according to the intensity of the gradients, leading

to a ranked surface. They are sequentially occupied according to the rank, from the lowest to

the highest. Neighboring occupied blocks are then connected and considered part of the same

zone, except if their connection would promote the density of the two areas towards different

sinks. This can happen when different orientations change the flow direction that creates a

different sink. In this case, their connection is avoided as they should belong to different zones.

The edge between them is part of the watershed. At the end of the process, the set of such

edges forms one single watershed line that splits the TS into two separate zones.

Thus, the WST method may be summarized as follows:
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(i) Partition the TS into cells or blocks of fixed sizes. If the TS is a pixeled image, it will

not need partitioning.

(ii) Identify the edges between the background and the high contrast regions. If the disor-

dered medium is more or less a binary one, i.e. one in which the two phases are more or less

uniform, but with strong contrast between the two, we first carry out a pre-processing of the

TS by filtering it. To do so, we use two matrices,

Fx =















−1 0 1

−2 0 2

−1 0 1















, Fy =















1 2 1

0 0 0

−1 −2 −1















(3)

for filtering in the x and y directions in 2D systems (and similarly in 3D for which one must

use nine matrices). Then, the quantities

Cx(n1, n2) = Fx ∗ T =
3

∑

k1=1

3
∑

k2=1

Fx(k1, k2)T (n1 + k1, n2 + k2) ,

Cy(n1, n2) = Fy ∗ T =
3

∑

k1=1

3
∑

k2=1

Fy(k1, k2)T (n1 + k1, n2 + k2) , (4)

where ∗ denotes the convolution operator, T represents the target system TS, and the coordi-

nates of the pixels are (n1, n2). Finally, the quantity

G(n1, n2) =
√

C2
x(n1, n2) + C2

y(n1, n2) , (5)

is calculated. It is G(n1, n2) that is used in the computations with the WST, rather than the

TS itself, because the computations are typically much more accurate when a pre-processing is

carried out and, thus, G(n1, n2) is used.

(iii) Select a point at random, and calculate the distances d, defined by Eq. (2), between

that point and the neighboring points.

(iv) Add the neighboring points to a list of the points that belong to the zone that contains

the randomly-selected point, if the criterion for the addition is met. The criterion for addition

is that the distance between two points must be smaller than a threshold value.

(v) If the list has been expanded (by adding new points to it), repeat (iv).

(vi) Label all the points in the immediate neighborhood of the list as the watershed line.

(vii) Repeat (iii) - (vi), until the identification of the locally-stationary zones is complete.

7



The same procedure is used if the TS is partitioned into blocks or cells, except that one first

calculates the average property value (or pixels) within the cell, and then computes the distance

function between a point representing the average and those in the neighboring blocks or cells.

For example, the result for partitioning the nonstationary medium of Fig. 2(a) is shown in Fig.

3, indicating that the WST has correctly identified the three distinct nonstationary zones of

the medium.

Note that one can use larger matrices Fx and Fy, such as 5× 5 or 7× 7 matrices (in which

case the sums in Eq. (4) will run from 1 to 5 or to 7, respectively), but doing so will also

increase the computation time, and our own experience indicates that the 3×3 matrices suffice

for good accuracy. One also can use other types of filters as a pre-processing step before using

the WST. For example, by using an erosion or dilation filter one can remove or connect small

features in a TS to other structures. Such filters allow one to increase the size of the system to

be studied.

III. RECONSTRUCTION BASED ON A CROSS-CORRELATION FUNCTION

The next step is to reconstruct the identified locally-stationary zones. The reconstruction

may be unconditional - one in which the reconstructed system does not have to honor exactly

specific hard (quantitative) data in the TS - or conditional, one in which a certain amount of

hard data must be honored. We first describe the unconditional case, after which the conditional

case will be briefly described.

A. Unconditional reconstruction

The reconstruction of the locally-stationary zones is carried out by the method that we

recently introduced [8] for stationary media, where we demonstrated that, using a single 2D slice

of a 3D stationary medium as the input data, the method produces accurate realizations of the

entire 3D medium. Thus, not only is the method accurate, it also addresses the long-standing

practical problem of how to reconstruct a 3D medium based on 2D data. For completeness

we describe the method here. Let SSi(x, y) represent the datum at point (x, y) of a locally-

stationary zone SSi. Examining SSi, one focuses on a portion DT (u) of size ℓx × ℓy - the O

region - and reconstructs it based on a matching between the O and the entire SSi. We use a

8



cross-correlation function (CCF) [8] to quantify the quality of the matching:

C(j, k) =
ℓx−1
∑

x=0

ℓy−1
∑

y=0

S(x+ j, y + k)DT (x, y) , (6)

with j and k varying within the entire SSi, where S is the stationary segment SS. Equation

(6) indicates that the desired position of (j, k) - the best match with the SSi - is one that

maximizes C(j, k). Thus, the reconstruction of each locally-stationary segment proceeds as

follows [8]. Note that Eq. (6) is completely similar to Eqs. (4); that is, the CCF is simply a

convolution.

(i) As the location of the CCF’s maximum is not known a priori, we use 1/C and set a

threshold 0 ≤ δ ≤ 1. If δ = 0, the matching between the O regions and SS1 is perfect, where

as δ > 0 generates an ensemble of realizations that do not match the SS1 exactly. After some

preliminary simulations we used, δ = 0.2.

(ii) The blocks of G along the raster path, Fig. 1, are reconstructed one by one. For

block 1 we generate several realizations of the disorder in SS1, based on and constrained by its

statistics (such as the volume fractions of the phases), or by sampling SS1. For each realization

the CCF between the O region of block 1 (to its right at the interface between blocks 1 and 2)

and the entire SS1 is computed. Any realization for which 1/C < δ is accepted; otherwise, it is

discarded.

(iii) Once a large enough ensemble of acceptable realizations is generated, one of them is

selected at random and inserted in block 1. Typically, one generates 30-50 acceptable realiza-

tions.

(iv) Next, block 2 along the raster path within SS1 is filled up with an acceptable realization

of the disorder by steps (ii) and (iii), the new O with the next block to be reconstructed is

identified, and the procedure is repeated.

(v) Once the blocks of SS1 along the raster path have been reconstructed, the algorithm

moves into the next locally-stationary segment, SS2, which may share a row of block with SS1,

or a row of the O regions, which make the transition from SS1 to SS2 seamless. The algorithm

then reconstructs blocks 4 - 10 shown in Fig. 1(c), using only the properties of SS2. Once the

blocks along the 1D raster path at the bottom of the TS have been reconstructed, the path is

continued on the next horizontal row of blocks shown in Fig. 1(b).

(vi) To reconstruct block 11 in Fig. 1, we proceed in the same way as for block 1 (using the

9



image or statistics of SS1). Note that block 12, for example, contains two O regions, one with

block 10 and another with block 2. In this way all blocks of SS1 and SS2 are reconstructed.

The algorithm then moves into the locally-stationary segment SS3 and reconstructs its blocks

along the raster path, until it reaches SS4 and proceeds in a similar manner. The process

continues until a realization of the completely reconstructed TS is obtained. Clearly, one can

generate multiple realizations of the medium.

B. Conditional reconstruction

In this case the TS contains some hard data (HD) that must be honored exactly, due to

which the data event DT is the entire block, not just the overlap regions O. Thus, conditional

reconstruction is a two-step process. First, one identifies the realizations that honor the HD,

and then determines the matching with DT . The algorithm computes the CCF and checks

whether 1/C < δ, where δ is the threshold. Those realizations that honor the HD are identified

and one of them is selected randomly and inserted in the reconstruction grid G.

A problem may arise if the TS is very large, or if the generated realizations do not honor the

HD, leading to discontinuities and failure of the reconstruction. Such a case, which is extremely

rare, may be addressed by several approaches. One is to increase the threshold δ to obtain new

realizations that, although may have more significant differences with the O regions that are

larger than those with a lower value of δ, they are still acceptable. But, increasing δ also allows

the incorrect patterns to enter the ensemble, which may subsequently lead to the generation of

a poor realization of disorder. An alternative approach is based on template splitting. First, the

patterns of disorder that honor the HD with the initial threshold δ are identified. If, however,

no such pattern exists, the sector template is split into smaller templates and the reconstruction

proceeds with smaller parts. The splitting continues until the ensemble of the disorder patterns

that honor the HD has at least one member.

If the medium under consideration is anisotropic, then, the proposed method will need

modification for certain types of anisotropy. For example, if the anisotropy is due to layering,

as is the case in large-scale porous media, then, each layer is by itself isotropic, and it is the

stratification that gives rise to anisotropy. In that case, the method is still accurate. All one has

to do is using smaller templates or grid blocks at the interfaces between the various layers. If,

however, the anisotropy is due to other more complex factors, such as, for example, direction-
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dependent pore-size distribution, then the method would need modification, a matter that is

currently under study.

C. the parameters of the algorithm

The algorithm’s parameters are the sizes of the templates and the overlap regions O, and

the threshold δ for accepting a realization of the disorder. The size of the O regions is a

fraction of the templates’ (see Fig. 1), and is fixed once the templates’ is set. Our study of

the stationary systems [8], as well as the nonstationary ones described here indicated that the

templates’ size is the most important factor. The size depends on the heterogeneity of the TS:

for a relatively homogeneous TS a coarse grid suffices, whereas highly disordered media require

grids with small blocks. Thus, the templates’ size is decided by the desired precision.

IV. THE CONNECTIVITY FUNCTION

To quantify the accuracy of the reconstructed systems, we compute a general connectivity

function for both the TS and its reconstruction, which is the multiple-point connectivity (MPC)

function that has been used [8,22] in reconstructing large-scale geological formations. The MPC

is the probability p(r; s) of having a sequence of s points in a phase in a multiphase structure

in a given direction r. If an indicator function I(i)(u) is defined by

I(i)(u) =











1 , u ∈ phase i ,

0 , otherwise .
(7)

then, p(r; s) is given by

p(r; s) = Prob{I(i)(u) = 1, I(i)(u+ r) = 1, · · · , I(i)(u+ sr) = 1} . (8)

For the results that are described in this paper we computed p(r; s) for s = 100. We emphasize

that matching p(r; s) for a complex system with that of its reconstruction is a highly stringent

test of the accuracy of the method, as one demands a large number of points to be in the same

phase, as opposed to two-points requirement used in the past. For convenience we denote the

MPC function by p(r).

V. RESULTS
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In what follows we present and discuss several examples, selected from a variety of dis-

ciplines. In almost all the cases, we generated several realizations of reconstructed TS, and

computed the MPC function, all of which will be presented below.

A. Porous media

Various properties of large-scale porous media, such as oil reservoirs and groundwater

aquifers, are correlated, with the correlations being long-ranged and non-decaying. The spa-

tial distribution of the properties of such porous media, such as their permeability and elastic

moduli are often described [12,23] by a fractional Brownian motion (FBM), a nonstationary

stochastic process with a covariance function given by

C(r)− C(0) ∼ r2H , (9)

where r is the distance between two points, and H is the Hurst exponent such that H > 1/2

(H < 1/2) indicates long-range positive or persistent (negative or antipersistent) correlations,

whereas H = 1/2 represents the case in which the increments of the FBM are random. We

generated a 3D system of size 120× 120× 64 using the FBM with H = 0.6. Figure 4 presents

the model porous medium along with three examples of its reconstructed model. Also shown

is a comparison of the computed MPC functions p(r) (where r = |r|) for the realizations and

the original TS. The agreement is illuminating in that, since the synthetic porous medium is

precisely nonstationary, the method reproduces it very closely as well.

Another 3D example, shown in Fig. 5 [24], is also a synthetic complex porous medium of

size 200 × 150 × 30 in which the permeability varies spatially. Oil reservoirs typycally have

such a structure [25]. The nonstationarity of the medium is due to different distributions of the

orientations and thicknesses of the channels in various zones, and large contrasts between the

channels and the background. Its reconstructed model along with a comparison between the

computed MPC functions are also shown in Fig. 5. Once again, the agreement is excellent.

The next two examples are provided by 2D spatial distributions of ellipses. Figure 6 [26]

presents one in which the TS is composed of a uniform background in which oriented ellipses,

alligned in two distinct directions, at 45◦ and 135◦ relative to the horizontal line, have been

distributed. The size of the system is 200 × 200. Shown also is the reconstructed system and

a comparison of the computed MPC functions. The agreement is very good. A more complex
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example of the same type of system is shown in Fig. 7, where the TS contains a distribution of

ellipses with some of them having two main variable properties, their orientation and thickness

[27]. The orientations vary from the upper to lower parts, while the thickness of the particles

is different in upper/lower and middle parts. The size of the system is 100× 250. Figure 7 also

presents reconstruction of the system and compares the computed MPC functions. Overall,

the agreement is reasonable.

The last example is a cross section of a fracture surface of rock shown in Fig. 8, which

was already described in the discussion of the watershed transform. The size of the system is

100 × 140, in which the fractures have a constant thickness, but are orientated [27] with the

orientation distributions being different in various zones. Three examples of its reconstruction

along with a comparison of the computed MPC functions are also shown in Fig. 8. The

agreement is excellent. In fact, for some of the realizations one cannot even distinguish between

the MPC functions for the TS and the realization.

B. Ecological systems

Next, we present the results for several ecological systems. The first example is one in which

the TS is a shallow-water, tidal-dominated system [28] with a size 200×500. The comparison of

the original TS and its reconstructed model, as well as the computed MPC functions for several

rezalizations and the TS are shown in Fig. 9. The agreement between the two is good. Another

example is provided by the delta of the Ganges River [29], a highly complex and nonstationary

system. We reconstructed the map with a size of 400× 300. The results are shown in Fig. 10.

The agreement between the original map and the reconstructed model is very good, particularly

given the complexity of the system.

To illustrate the result with conditional simulation, we consider the system shown in Fig.

11 [30], a highly complex nonstationary system of size 200 × 200. Also shown are the hard

data for both the background and branching structure. The reconstructed system, along with

a comparison of the computed MPC functions are also shown in Figure 11. Once again, the

agreement is excellent. Clearly, honoring the HD imposes a more stringent constraint on the

reconstruction process, resulting in even better agreement.

The next example is a cross section of a dicot wooden stem, magnified by a factor of 400

[31] and shown in Fig. 12. A stem is one of two major structural axis of a vascular plant. The
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image was digitized into a 300×400 grid, the same as that of the grid G. Its reconstruction and

a comparison of the computed MPC functions are also presented in Fig. 12. The agreement is

excellent.

C. Disordered materials

One way of fabricating various structures and materials made of inorganic nanoparticles is

through the self-assembly by exploiting the interfacial properties of the particles in a solution

[32]. We consider an image of a self-assembly of nanosize spherical SiO2 particles [33], shown

in Fig. 13. The image was partitioned into a 300× 400 grid and reconstructed using a grid G

of the same size. The results are shown in Fig. 13, indicating good agreement.

Another example is provided by the cross section of a systetic fracture surface of a disor-

dered material of size 100 × 200, shown in Fig. 14 [34]. Its reconstruction and comparison of

the computed MPC functions are also shown in Fig. 14. The agreement is good, given the

complexity of the system.

D. Biological tissues and organs

Imaging, computing and analyzing living organs have become a highly active research field

[14,15]. Figure 15 presents a part of an image of a child’s brain [35]. A grid G of size 354×481,

the same as that of the TS, was used to reconstruct and analyze the image. The results are

shown in Fig. 15. The reconstruction mimics closely the original image. The quality of the

reconstructed model can be improved further and extended to full 3D images.

The final example is a cross section of human skin [36], a notoriously complex material. The

agreement between the original image of size 200× 400 and its reconstructed model, measured

in terms of the closeness of the computed MPC function for both, is good.

E. Numerical comparison

To further test the accuracy of the reconstruction method, we also computed the effective

permeabilities of the model porous media shown in Figs. 4 and 5. The effective permeabilities

of the model in Fig. 4 are 0.124, 0.85, and 0.101 (arbitrary units) in the x, y, and z directions,

respectively. The average effective permeabilities of the reconstructed models were 0.121, 0.88,

and 0.100, respectively. Similarly, the effective permeabilities of the model porous medium
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in Fig. 5 were computed to be 1.125, 0.98, and 1.114 in the x, y, and z directions, while the

corresponding average permeabilities of the reconstructed models turned out to be 1.135, 1.104,

and 1.121. In both cases, the agreement is excellent.

VI. DISCUSSION

Two important aspects of the method that we describe in this paper deserve further discus-

sions.

A. Reconstruction of three-dimensional systems using two-dimensional data

In two previous papers [8] we showed how the method that we proposed is capable of

reconstructing 3D stationary materials and media based on a single 2D slice of data. Clearly,

The same method cannot be used for nonstationary disordered media. While our work on

extending a modification of the method proposed in [8] to nonstationary media is currently

ongoing, we suspect that if a nonstationary medium contains n locally-stationary zones, at

most n 2D slices of data, one from each zone, would be sufficient in order to reconstruct a 3D

NSD medium. Thus, one uses the 2D slices as the hard data that must be honored and utilizes

the method described in this paper to reconstruct the rest of the system. This will be described

and discussed in a future paper.

B. Integrating several types of data

In this paper the TS was represented by an image. But, we point out that our reconstruction

method is not the only one that uses a conceptual framework - the image of the TS - for

reconstruction; others have done the same in the past. Moreover, with 3D printing approaching

commercialization, reconstruction of 3D images based on 3D images obtained from printing will

be a powerful tool for generating models of 3D disordered media.

But, what distinguishes the proposed method from the previous ones is that the CCF is a

multiscale function and, as such, it contains information from all the length scales relevant to the

medium under consideration. More importantly, in a separate paper [37] we have shown how to

integrate various types of data, either in terms of images or numerical data (such as, for example,

the porosity distribution or well log data), with the basic method based on the CCF that we

introduced previously [8] and used in this paper to reconstruct the locally-stationary zones in
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a NSD medium. Briefly, suppose that one has m types of hard (quantitative or numerical)

and/or “soft” (qualitative) data. One computes, according to the number of variables at hand,

the corresponding CCFs and, hence, selects the final pattern of heterogeneity based on such

functions. Thus, Eq. (6) is generalized to,

Coverall(x) = CT (DT , T ) +
m
∑

k=1

ωkCkT (kDT , kT ) , (10)

where 0 ≤ ωk ≤ 1 is the weight for the kth TS or data set, CkT its corresponding CCF, and

kDT is the data event for the kth type of data. One may include any type data, both numerical

and in the form of images. Extensive discussions and examples are described elsewhere [37].

VII. SUMMARY

This paper describes a method for reconstruction of nonstationary materials and media.

The method is based on partitioning a nonstationary medium into locally-stationary zones,

and reconstructing each zone based a cross-correlation function and a one-dimensional raster

path that we introduced previously [8]. The segmentation of the nonstationary system into

locally-stationary zones is done by two distinct methods. One is based on Shannon entropy,

while the second method is based on a new technique introduced in the present paper, which is

based on watershed transform. It was demonstrated that the method generates highly accurate

reconstruction and realizations a wide variety of materials and media.

In our view, the advantages of the approach are, (i) low computational cost; (ii) high acuracy;

(iii) applicability to any type of nonstationary system; (iv) the possibility of incorporating hard

data to be honored exactly, and (v) the possibility of carrying the computations in parallelizd

mode.

Past experience [1,2] has indicated that a reconstruction method that regenerates only low-

order statistics of a disordered medium is not sufficient for reproducing the high-order ones

and, thus, a high quality model. Our method addresses this deficiency by directly generating

realizations of multiple-scale structures in a stochastic manner that reproduce the medium’s

multiple-point statistics through the CCF and the overlap regions.

Clearly, the method is not expected to be accurate for all types of materials and media. Our

work has targetted highly heterogeneous materials and media, and the resulted presented here

and in Ref. [8] demonstrate that the method is accurate for reconstructing them. Whether it

can be equally accurate for other types of media remains for future investigations.
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Captions

Fig. 1 (Color online). (a) A two-dimensional grid G with the overlap regions O. Arrows

indicate the direction of the raster path. (b) - (e) Four locally-stationary zones. Numbers

indicate the order by which the templates are reconstructed.

Fig. 2. (a) A nonstationary fracture surface [38], and (b) its reconstruction by the method

for stationary media [8].

Fig. 3 (Color online). Segmentation of fracture surface of Fig. 2 by using the watershed

transform.

Fig. 4 (Color online). The TS is a 3D model of a large-scale porous medium, generated by

the FBM. Shown are its reconstruction and a comparison between the computed MPC functions

p(r).

Fig. 5 (Color online). The TS is a synthetic complex three-dimensional porous medium in

which the permeability varies spatially. The nonstationarity is due to different distributions of

the orientations and thicknesses of the channels in various zones.

Fig. 6. The TS is a distribution of oriented ellipses, alligned in two distinct directions, at

45◦ and 135◦, relative to the horizontal line.

Fig. 7. The TS is a distribution of ellipses in which some ellipses have two main spatially-

varying properties, orientation and size. The orientations are from the upper to lower part,

and the thicknesses are different in the upper/lower and middle parts.

Fig. 8. The TS is a fracture pattern in a cross section of rock. Shown are its reconstruction

and the comparison of the MPC functions.

Fig. 9 (Color online). The TS is a shallow-water tidal-dominated system.

Fig. 10 (Color online). The TS is the delta of Ganges River.

Fig. 11. Conditional reconstruction of the delta of a river with many channels or, more

generally, a disordered branched structure. We also indicate the spatial distribution of the hard

data. Note that the nonstationarity of the system is due to the average and variance of the

channels’ thickness and orientation being different in all the direction.

Fig. 12 (Color online). A cross section of the TS, dicot wooden stem, and its reconstruction.

Shown are the computed MPC functions.

Fig. 13 (Color online). The TS is a self-assembly array of SiO2 nanosphere. Shown are its

21



reconstruction, along with the computed MPC functions p(r).

Fig. 14. The TS is a synthetic fracture surface. The fractures have a constant thickness,

but are orientated, with the orientation distribution being different in various regions.

Fig. 15. The TS is a 2D image of a child’s brain. Shown are a realization of its reconstructed

image and the comparison of the computed MPC functions.

Fig. 16. The TS is a cross section of human skin
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