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We examine the mobility and velocity fluctuations of a driven particle moving through an active
matter bath of self-mobile disks for varied density or area coverage and varied activity. We show
that the driven particle mobility can exhibit non-monotonic behavior that is correlated with distinct
changes in the spatio-temporal structures that arise in the active media. We demonstrate that the
probe particle velocity distributions exhibit specific features in the different dynamic regimes, and
identify an activity-induced uniform crystallization that occurs for moderate activity levels and
that is distinct from the previously observed higher activity cluster phase. The velocity distribution
in the cluster phase has telegraph noise characteristics produced when the probe particle moves
alternately through high mobility areas that are in the gas state and low mobility areas that are in
the dense phase. For higher densities and large activities, the system enters what we characterize
as an active jamming regime. Here the probe particle moves in intermittent jumps or avalanches
which have power-law distributed sizes that are similar to the avalanche distributions observed for
non-active disk systems near the jamming transition.

I. INTRODUCTION

In active microrheology, the properties of a medium
are probed using the mobility and velocity fluctuations
of an externally driven probe particle that is roughly the
same size as the particles that comprise the medium [1–
4]. For example, the nonlinear mobility of a probe par-
ticle dragged through a colloidal system changes across
the glass transition [5–8]. Other studies have examined
anomalous diffusion properties of the probe [9, 10], fea-
tures of the driven particle velocity fluctuations, and
threshold-to-motion or depinning type phenomena [11–
13]. In ordered systems, a driven particle can induce lo-
calized melting [14] or shear thinning effects [15]. Driven
particles or intruders have also been used to study the
onset of jamming as a function of the system density[16–
20]. As the jamming transition is approached, the parti-
cle mobility is strongly reduced, its motion becomes in-
creasingly intermittent, and just at jamming the velocity
fluctuations become power-law distributed [16–18].

Most active microrheology studies have focused on sys-
tems where the particles comprising the medium are not
driven or experience only thermal fluctuations. There
is, however, another class of systems to which the tech-
niques of active microrheology can be applied: collections
of self-motile particles or active matter [21, 22]. Exam-
ples of such systems include run-and-tumble bacteria [23–
26] or self-mobile colloidal particles [27–33], which are
commonly modeled as self-mobile sterically interacting
particles undergoing either active Brownian motion or
run-and-tumble dynamics. Such systems exhibit a tran-
sition from a uniform liquid state at low activities and
densities to a cluster or phase separated state at higher
activities and densities, where close-packed clusters are
surrounded by a low density gas [32–40]. For monodis-
perse particles confined to two dimensions, the clusters
have local triangular ordering, and the resulting crystal-
lites can move, break apart, and re-form [32, 33, 37–40].

A driven probe particle in an active matter system should
show clear changes in mobility or velocity fluctuations
depending on the spatio-temporal behavior exhibited by
the active matter, and thus could serve as a powerful tool
for understanding a wide range of active systems. In nu-
merical and theoretical studies of a driven probe particle
in an active nematic system, anomalous viscosity effects
such as a negative drag were predicted [41]. Experiments
on cargo transport through crowded living cells showed
that motion occurs in intermittent bursts which exhibit
scaling behavior similar to that found in critical jammed
solids [42].
Here we examine the dynamics of a probe particle

driven through a bath of run-and-tumble sterically in-
teracting particles for varied activity or run length and
varied particle density, the term we use for the area frac-
tion covered by the disks. We show that the probe mobil-
ity and velocity fluctuations are correlated with distinct
dynamic spatial structures that form in the bath. At
low densities the probe mobility decreases with increas-
ing run length, while the transition from a uniform active
liquid to a phase separated cluster state coincides with a
pronounced mobility drop. At high densities the mobility
becomes an increasingly non-monotonic function of the
activity. When the activity is low and the density is high,
the system is disordered and the mobility is high. When
the run length is increased slightly until it nearly matches
the average spacing between the surfaces of neighboring
particles, a uniform nearly crystalline state emerges that
is correlated with a drop in the mobility by several orders
of magnitude. As the run length is further increased, this
crystalline state becomes disordered, the system enters
a liquid phase, and the mobility increases by an order
of magnitude or more. For large run lengths the sys-
tem transitions from the liquid state to a phase-separated
state, in which the mobility drops again. At high density
and the largest run lengths, the system forms what we
call an actively jammed state characterized by strongly
reduced mobility. Here the probe velocity often drops
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FIG. 1: Particle locations for an active matter system with
an externally driven probe particle (red). (a) Uniform liquid
state at φ = 0.1885 and Rl = 160. Arrow: direction of the
probe driving force Fd. (b) Phase-separated cluster state at
φ = 0.5 and Rl = 160 consisting of a high density phase
with local crystal ordering coexisting with a low density liquid
phase. (c) The uniform liquid phase at φ = 0.5 and Rl = 1.0

to zero and the probe moves only in intermittent bursts
or avalanches with size distributions that can be fit to a
power law. These results suggest that, at least in the high
density regime, the addition of activity can induce criti-
cal behavior similar to the type associated with jamming
in granular systems [16–18, 43, 44].

II. SIMULATION

We consider a two-dimensional system of size L × L
with periodic boundary conditions containing N run-
and-tumble monodisperse disks of radius rd that interact
via a repulsive harmonic potential. The density of parti-
cles is given by φ = Nπr2d/L

2, where we take L = 50 and
rd = 0.5 in dimensionless simulation units. In the ab-
sence of activity, a hexagonal solid forms when φ > 0.9.
The dynamics of a single particle i is obtained by inte-
grating the overdamped equation of motion

η
dRi

dt
= F

m
i + F

s
i . (1)

Here η = 1.0 is the damping constant and F
m
i is the mo-

tor force, which drives the particle in a fixed randomly
chosen direction under a force of magnitude Fm = 0.5
during a run time τr. A new running direction is ran-

domly selected after each run time. The run length
Rl ≡ Fmτr is the distance the particle would move in
the absence of other particles. The steric interactions are

given by F
s
i =

∑N

i6=j(k/rd)(Reff − |rij |)Θ(Reff − |rij |)r̂ij ,
where rij = Ri −Rj , r̂ij = rij/|rij |, k = 20, Reff = 2rd,
and Ri(j) is the location of particle i(j). We add a sin-
gle non-active probe particle with Fm = 0 to the system
with the same radius and steric interactions as the ac-
tive particles and apply a constant force Fd = Fdx̂ with
Fd = 0.5 to only the probe particle, as shown in Fig. 1(a).
Since we are using overdamped dynamics, we employ a
forward Euler method to advance the equations of mo-
tion with an integration step of δt = 0.001 dimensionless
simulation time units. We have considered other val-
ues of Fm and find that, outside the limits Fd ≫ Fm

or Fd ≪ Fm, the general features of our results are ro-
bust against the exact choice of Fd/Fm. We initialize
the system by placings the particles in non-overlapping
randomly chosen positions. In active matter particle sys-
tems, it is known that in the regime where the system
forms clumps or becomes phase separated, there can be
long transient times before the sample reaches a steady
state [37, 46]. In all cases, prior to taking measurements
we wait a sufficient time for the system to settle into
a steady state, as determined by measuring when the
probe particle velocity and the fraction of sixfold coor-

dinated particles P6 =
∑N

i δ(zi − 6), where zi is the co-
ordination number of an individual particle as obtained
from a Voronoi construction, settle onto a steady state
value. The length of the transient time depends on the
density and run length, and ranges from 103 simulation
time steps in the liquid phase up to 106 or more simu-
lation time steps in the dense phase. We note that we
consider systems containing up to N = 11000 particles,
which limits the size of the transient times compared to
the considerably larger number of particles employed in
[37, 46].

To characterize the system we measure the time series
of the probe velocity fluctuations Vx(t) = (dRp/dt) · x̂,
where Rp is the probe position. In the absence of any
other particles, Fd/〈Vx〉 = 1.0. In previous simulations
of the same run-and-tumble system performed with no
probe particle, a transition from a liquid state to a clus-
ter state occurred for fixed φ and increasing Rl, or for
fixed Rl and increasing φ [40]. Very similar results have
been obtained for active Brownian particles, where at a
fixed density a transition to a cluster state occurs for in-
creasing persistence length [36, 37]. It has been shown
that run-and-tumble dynamics and active Brownian mo-
tion produce equivalent results when the mobility of the
particles is density dependent [45], which occurs when
particle-particle interactions are present, so we expect
our results to be general to either type of system.
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FIG. 2: (a) Mobility 〈Vx〉 of the probe particle vs run length
Rl for the system from Fig. 1(b,c) with φ = 0.5. (b) Corre-
sponding fraction of six-fold coordinated particles P6 vs Rl.
The Rl = 160 point illustrated in Fig. 1(b), where the sys-
tem is phase separated and the probe particle mobility is low,
is marked b, while the Rl = 1 point illustrated in Fig. 1(c),
where the system is in a liquid state and the mobility is higher,
is marked c.

III. PROBE MOBILITY VS RUN LENGTHS

AND φ

We first consider the mobility of the probe particle by
fixing Fd and conducting a series of simulations for varied
particle density φ and varied run length Rl. As a point
of reference, note that nonactive disks with Rl = 0 form
a triangular solid at a density of φ = 0.9. In Fig. 1(a) we
show snapshots of the active and drive particle positions
in a uniform liquid state at φ = 0.1885 and Rl = 160.
When the run length is held constant but the density is
increased, the system no longer remains a uniform liquid
but instead forms a phase separated or cluster state, as
shown in Fig. 1(b) at φ = 0.5 and Rl = 160. Within
an individual cluster, the local density φloc is just below
φloc = 0.9 and there is considerable hexagonal ordering
of the particles. The clusters are not static but gradually
change over time. For φ = 0.5, the cluster state appears
when Rl > 30. Figure 1(c) illustrates a sample with
φ = 0.5 and Rl = 1.0. Here the run length is small
enough that the clusters are lost and a uniform liquid
reappears.

In Fig. 2(a) we plot the mobility 〈Vx〉 of the probe
particle as a function of Rl for the system with φ = 0.5
illustrated in Fig. 1(b,c). In order to correlate the mo-
bility with different dynamical structures in the active
media, in Fig. 2(b) we plot the corresponding fraction
of sixfold-coordinated particles P6 versus Rl. In the dis-
ordered liquid state for low Rl, P6 is low, while in the
cluster state P6 > 0.8 since, within the clusters, most par-

ticles have six neighbors. The mobility initially decreases
with increasing Rl in the range 0.001 < Rl < 0.01,
passing through a local minimum near Rl = 0.1. For
0.3 < Rl < 8 there is small increase in 〈Vx〉, while for
Rl > 8 the mobility rapidly decreases with increasing
Rl. In Fig. 2(b), there is a local minimum in P6 near
Rl = 1.0 which coincides with the local maximum in the
mobility shown in Fig. 2(a). For Rl > 8.0, P6 begins
to grow rapidly with increasing Rl, indicating the onset
of cluster formation. The rise in P6 corresponds with a
decrease in the mobility in Fig. 2(a). At very low Rl the
system acts like a zero temperature non-active system
through which the probe particle can easily move. As Rl

increases for fixed φ, the probe particle encounters active
particles more frequently, decreasing its mobility. The
system becomes more disordered as Rl increases, reach-
ing a maximally disordered state at Rl = 1. The liquid
nature of the disordered state permits the probe particle
to move more easily through the sample, giving a small
increase in the mobility.

Once clusters begin to form for Rl > 8, the probe par-
ticle often becomes trapped within a cluster. During this
trapped period, the motion of the particle in the driv-
ing direction drops nearly to zero, so that a probe parti-
cle caught in a cluster is effectively in a locally jammed
state. Here, the term jamming refers to the impedance of
motion due to steric interparticle interactions. Since the
clusters are dynamical in nature, the driven particle even-
tually escapes from the cluster and promptly moves much
more rapidly as it passes through the low density liquid
phase that surrounds the clusters. As Rl increases, indi-
vidual clusters become longer-lived, so the probe spends
larger amounts of time trapped inside clusters in a low
mobility state, resulting in a net decrease of the average
mobility with increasing Rl.

The nonmontonic behavior of the mobility with Rl also
depends on φ. In Fig. 3(a) we plot 〈Vx〉 versus Rl for a
system with φ = 0.801. For 0.001 < Rl < 0.01, there is
a decrease in the mobility with increasing Rl which be-
comes more pronounced for Rl > 0.01 before 〈Vx〉 reaches
a local minimum near Rl = 0.005. For Rl > 1.0 the
mobility sharply increases with increasing Rl to a local
maximum near Rl = 2.0. The total drop and recovery
of 〈Vx〉 between Rl = 0.01 and Rl = 1 covers more than
an order of magnitude. In Fig. 3(b) we plot the corre-
sponding P6 versus Rl, where for 0.001 ≤ Rl < 0.01,
P6 increases with increasing Rl, indicating that the ac-
tivity is producing additional order in the system. For
0.01 < Rl < 0.02, there is a local maximum in P6 with
P6 = 0.99, indicating almost perfect triangular ordering
of the system. This same interval of Rl also corresponds
to the low mobility region in Fig. 3(a), as highlighted by
the vertical dashed lines. The peak in the mobility cen-
tered near Rl = 2.0 is matched by a local minimum in
P6 in Fig. 3(b), indicating that the activity has now dis-
ordered the system. There is no sharp signature in P6 at
the onset of the phase separated state, but P6 increases
with increasing Rl in this regime as the mobility drops.
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FIG. 3: (a) 〈Vx〉 vs Rl for a system with φ = 0.801. (b)
The corresponding P6 vs Rl. Point a, in the crystalline phase
where the mobility is low, is illustrated in Fig. 4(a). Point b,
in the liquid phase where the mobility is high, is illustrated
in Fig. 4(b). Point c, in the clump or phase separated phase
where the mobility decreases again, is illustrated in Fig. 4(c).
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FIG. 4: Voronoi construction images for the system in Fig. 3
with φ = 0.801. Particle coordination numbers: zi = 5 (dark
blue), zi = 6 (white), zi = 7 (green), zi ≥ 8 (light blue). The
driven particle is marked with a red dot. (a) At Rl = 0.04,
labeled a in Fig. 3, the system forms a crystallized state. (b)
At Rl = 2.0, labeled b in Fig. 3, the system forms a disordered
uniform liquid state. (c) At Rl = 160, labeled c in Fig. 3,
the system forms a phase separated state with high density
clusters and a low density gas of particles.

Figure 4(a) shows the Voronoi construction obtained
from the particle positions for the system in Fig. 3 at
φ = 0.801 and Rl = 0.04. Although φ = 0.801 is well
below the non-active crystallization density of φ = 0.9,
we find a uniform activity-stabilized triangular lattice in-
terspersed with a small number of defects. The fact that
the probe particle mobility drops nearly to zero in this
regime indicates that this phase behaves like a solid. This
crystalline state is distinct from the cluster phase in that
it is completely uniform and appears at much lower val-
ues of Rl. The crystallization occurs only when φ is rel-
atively high, so that each particle can be regarded, on
average, as filling φ percent of a hexagon of side lb cen-

tered on the particle: lb =
√

2πr2d/(3
√
3φ). Then the

average surface-to-surface spacing between neighboring
particles is ds = lb − rd. For φ = 0.801, ds = 0.11. Since
all of the particles are actively moving, a collision occurs
every time the particles traverse an average distance of
rs = ds/2 = 0.055. When Rl ∼ rs, there is a match-
ing effect in which each particle is struck, on average,
nearly uniformly around its circumference by neighbor-
ing particles, resulting in the formation of the crystalline
state. If φ decreases, rs becomes large enough that mul-
tiple collisions between neighboring particles can occur
as a particle moves the corresponding distance Rl, so the
crystalline ordering is lost. The crystallization is accom-
panied by a maximum in P6 in Fig. 3(b). When Rl ≪ rs,
the system is in an unjammed disordered state and the
probe particle can move easily through the sample.
Although the activity can induce a crystallization when

Rl ≈ rs, if Rl increases too much the forces exerted on
a given particle by its neighbors are no longer symmet-
ric; instead, an unbalanced excess force arises whenever
a long-lived contact with another particle forms for two
particles swimming in opposite directions toward each
other. Thus the crystalline order is lost when Rl is too
large, as illustrated in Fig. 4(b) for Rl = 2.0. The disor-
dering of the system appears as a drop in P6 in Fig. 3(b),
and Fig. 4(b) shows that the sample enters a uniform ac-
tive liquid state containing numerous dislocations. Since
the system is now a liquid instead of a solid, the probe
particle can pass through the sample much more easily
and the mobility in Fig. 3(a) increases. As Rl is further
increased, the system enters the cluster phase where large
regions of the sample have sixfold ordering, as illustrated
in Fig. 4(c) for φ = 0.801 and Rl = 160. At the cor-
responding density in Fig. 3, P6 is large again and the
mobility is low. The decrease in average mobility occurs
since the velocity of the probe particle drops nearly to
zero whenever it traverses a dense portion of the sample.
In Fig. 5(a) we plot 〈Vx〉 versus Rl for φ ranging from

φ = 0.1885 to φ = 0.8482, while in Fig. 5(b) we show
corresponding P6 versus Rl. There is a pronounced min-
imum in 〈Vx〉 for the φ = 0.801 and φ = 0.8482 curves
due to the occurrence of activity-induced crystallization
as described above. A small residue of this effect re-
mains at φ = 0.754. For 1 < Rl < 30, the system is
in a disordered liquid state at all the values of φ, while



5

0.001 0.01 0.1 1 10 100
Rl

0.4

0.6

0.8

P
6

φ=0.691
φ=0.754
φ=0.801
φ=0.848210

-3

10
-2

10
-1

10
0

<
V

x>

φ=0.1885
φ=0.3456
φ=0.5
φ=0.6273

(a)

(b)

a

b

c

d

e

f

a

b

c

d
e

f

FIG. 5: (a) Mobility 〈Vx〉 of the probe vs run length Rl for φ =
0.1885, 0.3456, 0.5, 0.6273, 0.691, 0.754, 0.801, and 0.8482,
from top to bottom. (b) Corresponding P6 vs Rl for φ =
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for Rl > 30, the increase in P6 indicates that the sys-
tem is entering the clump phase in which the mobility
drops. For φ = 0.1885, the system remains in the liquid
phase over the entire range of Rl and shows little change
in 〈Vx〉 or P6. These results indicate that the activity
induced crystallization at low Rl only occurs when φ is
sufficiently large, whereas the cluster phase at large Rl

appears over a wide range of φ.

To further characterize the change in the mobility with
the onset of clustering and ordering, in Fig. 6 we plot 〈Vx〉
and P6 versus φ for samples with Rl = 160 and Rl = 1.0.
For 0 < φ < 0.3, 〈Vx〉 is independent of Rl and decreases
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FIG. 7: (a) Portion of a probe velocity time series Vx(t) in
the uniform liquid state at φ = 0.1885 and Rl = 160. The
dashed line indicates the free probe velocity V0 = Fd = 0.5.
(b) The probability distribution of the velocity fluctuations
P (Vx) from (a). (c) Portion of Vx(t) in the phase separated
state at φ = 0.5 and Rl = 160 where two-level fluctuations
occur. (d) P (Vx) from (c) showing peaks at Vx = 0.0 and
Vx = V0 = 0.5.

linearly with increasing φ. For φ > 0.3, the Rl = 160 sys-
tem undergoes a transition to the cluster state, producing
a sharp increase in P6 and a simultaneous mobility drop.
As φ increases, 〈Vx〉 in the Rl = 1.0 system decreases lin-
early, while in the Rl = 160 system 〈Vx〉 drops rapidly in
the cluster phase until becoming nearly zero for φ > 0.75.
In the inset of Fig. 6(a), the plot of d〈Vx〉/dφ versus φ
shows the much earlier mobility drop of the Rl = 160 sys-
tem compared to the Rl = 1.0 system, where the drop
does not occur until φ ≈ 0.8. Near φ = 0.6, Fig. 6(a)
shows that 〈Vx〉 in the Rl = 160 system is more than ten
times smaller than in the Rl = 1 system. Close to the
hard sphere crystallization density of φ = 0.9, the two
systems have nearly equal mobilities.

IV. VELOCITY FLUCTUATION

DISTRIBUTIONS

We next examine the velocity fluctuation distributions
of the probe particle. In Fig. 7(a) we plot a represen-
tative portion of the probe velocity time series Vx(t)
in the liquid phase from Fig. 1(a) at φ = 0.1885 and
Rl = 160. The dashed line in Fig. 7(a) indicates the ve-
locity V0 = Fd = 0.5 at which the probe particle would
move in the absence of the active bath particles. Fig-
ure 7(b) shows that the corresponding probability distri-
bution function P (Vx) has a skewed Gaussian shape with
a maximum near Vx = 0.425. We find similar P (Vx) dis-
tributions in other uniform liquid states. For lower val-
ues of φ, a peak in P (Vx) at V = V0 begins to emerge
when the probe particle moves large distances before en-
countering another particle. Figure 7(c) shows Vx(t) for
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FIG. 8: (a) Portion of Vx(t) in the active jamming phase at
φ = 0.817 and Rl = 160 showing that the probe particle
moves in discrete jumps or avalanches. (b) Vx(t) in the uni-
form liquid state at φ = 0.817 and Rl = 1.0 where the probe
moves continuously. (c) Log-linear plot of P (Vx) from the
time series at φ = 0.817 with Rl = 160 (circles) and Rl = 1.0
(squares). Inset: log-log plot of P (Vx) for the positive Vx val-
ues at Rl = 160. Solid line: a power law fit with exponent
α = −2.0.

φ = 0.5 and Rl = 160 when the sample is in the cluster
phase illustrated in Fig. 1(b). Here the noise fluctuations
are of two-level or telegraph type, and Vx jumps between
the values Vx = 0.0 and Vx = V0 = 0.5, highlighted by
the dashed lines. The resulting P (Vx) contains two clear
peaks, as shown in Fig. 7(d). The two-level behavior
arises because the probe velocity is nearly zero when the
probe becomes trapped in a cluster, and nearly V0 when
the probe moves through the low density gas surrounding
the clusters where it undergoes very few collisions. The
peak at Vx = 0.5 for φ = 0.5 in Fig. 7(d) is quite sharp,
whereas the peak in P (Vx) at φ = 0.1885 in Fig. 7(b) is
centered at Vx = 0.425 even though the system is in a
low density liquid phase. The difference in peak sharp-
ness arises because the liquid density at φ = 0.1885, al-
though low, is considerably higher than the density in the
gas state surrounding the clusters that form at φ = 0.5,
and the resulting larger number of probe-bath particle
encounters in the liquid state broaden the peak relative
to its width in the gas state. We observe similar tele-
graph noise distributions in the other phase separated
regimes for Rl = 160 over the range 0.377 < φ < 0.75,
and find that the weight of the distribution shifts from
the Vx = 0.5 peak to the Vx = 0.0 peak as φ increases.
The telegraph noise signal can be viewed as a linear com-
bination of the velocity fluctuation distributions from the
low density phase, which has a skewed Gaussian shape
with a peak near the driving value of Fd = 0.5, and the
high density phase, which has one peak centered at zero
and a second peak centered at 0.5, similar to the shape
shown in Fig. 7(d).
For φ > 0.75 and Rl = 160, the probe is mostly sta-

tionary and only moves in short bursts or avalanches with
a broad distribution of jump sizes. This is illustrated by
the plot of Vx(t) in Fig. 8(a) for φ = 0.817 and Rl = 160.
If φ is held fixed and Rl is reduced to Rl = 1.0, the sys-
tem forms a disordered liquid state and the probe mo-
tion is no longer intermittent, as shown in the plot of
Vx(t) in Fig. 8(b). Figure 8(c) illustrates the correspond-
ing P (Vx) curves on a log-linear scale for Rl = 1.0 and
Rl = 160. For Rl = 160, P (Vx) has a pronounced peak
near Vx = 0.0 and a broad tail for Vx > 0.1, while for
Rl = 1.0, P (Vx) falls off more rapidly for Vx > 0.1 and
the maximum is centered slightly higher than Vx = 0.0.
The inset of Fig. 8(c) shows a log-log plot of P (Vx) for
positive values of Vx at Rl = 160. The solid line is a
power law fit to the form P (Vx) ∝ V −2

x . Similar fits can
be made for φ > 0.75 and Rl = 160.
We characterize the φ > 0.75 and Rl > 30 regime as

actively jammed, since this is where the probe particle
velocity is power-law distributed. For non-active mat-
ter systems very near the jamming transition, a driven
probe particle also moves in an intermittent fashion and
undergoes avalanches with a size distribution that can be
fit to a power law [17, 18]. The active matter avalanche
behavior suggests that the active system shares charac-
teristics with a jammed phase, but that these characteris-
tics arise at densities well below the non-active jamming
density. Jamming behavior of non-active disks has been
widely studied for bidisperse, rather than monodisperse,
disk sizes, which produce a disordered structure at high
densities. Jamming has been used as a general concept
for describing amorphous solids. In the phase-separated
active matter system, the dense regions of the sample
are polycrystalline rather than amorphous; however, the
polycrystalline structures are not static but dynamically
change, so that the system can be regarded as dynami-
cally amorphous. Images of the states that form at high φ
and large Rl show the formation of various grain bound-
ary structures, implying that a probe motion avalanche
might occur whenever a grain boundary passes over the
probe particle. There are, however, also other types of
defects and small voids present that can also affect the
probe particle motion. In addition, the probe particle can
itself nucleate local topological defects and voids, which
then interact with the motion of the probe particle. It is
beyond the scope of this work to definitively determine
whether the dense active phase is truly in a critical state;
however, the observed power-law exponent of α = −2.0
is consistent with the class of time-directed avalanche
systems [48]. Future directions include studying poly-
disperse active particle assemblies, active rods, or active
dumbbells.

V. CONCLUSION

In conclusion, we have examined the mobility and ve-
locity fluctuations of an externally driven probe particle
moving through a bath of active matter disks for varied
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activity and particle density. As a function of increasing
run length, we show that there is a pronounced drop in
the probe particle mobility at the transition from a uni-
form liquid state to a cluster or phase separated state.
The mobility reduction in the cluster state arises due to
the temporary trapping of the probe particle by dense
clusters. When the probe particle escapes a cluster, it
moves with a much higher, nearly free mobility until it en-
counters another cluster. The time series of the velocity
in the uniform liquid regime exhibits a skewed Gaussian
shape, while in the phase separated regime we observe
two-level velocity fluctuations as the particle jumps be-
tween dense low mobility regions of the sample and gas-
like high mobility regions of the sample. As the density
of active particles increases, we find strongly nonmono-
tonic behavior of the probe particle mobility as a func-
tion of run length. For finite but small run lengths, the
mobility initially drops by nearly two orders of magni-
tude when the system enters an activity-induced crystal-
lization regime. As the run length increases, the crys-
talline state becomes unstable, the system disorders, and
the mobility can increase by a few orders of magnitude.

At the largest run lengths the system enters the phase
separated regime and the mobility of the probe parti-
cle decreases again. We also find that in samples with
high densities and large run lengths, the probe particle
moves in an intermittent fashion via discrete jumps or
avalanches, and that the probe velocity is power-law dis-
tributed. The avalanche velocity distributions suggest
that the dense active system may exhibit a critical be-
havior similar to that found for a probe particle moving
through a non-active disordered 2D assembly just below
the jamming transition. Our results should be general
to both run-and-tumble active systems as well as active
Brownian particles.
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