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Abstract

Colloidal particles interacting via a long-range repulsion can, in contrast to hard-sphere systems, exhibit

crystalline ordering at low volume fraction. Here we experimentally investigate the structure and properties of

such ‘colloidal Wigner crystals’. We find a body-centered-cubic crystalline phase at volume fractions of φ & 15%,

which exhibits large fluctuations of individual particles from their average positions. We determine the three

independent crystalline elastic constants, and find that these crystals are very compliant and highly anisotropic.

1 Introduction

Colloidal particles are often used to model atomic and molecular crystals, from the face-centered-cubic crystals

formed by monodisperse hard-sphere or near-hard-sphere particles [1], to more complex crystal structures formed

by heterogeneous mixtures of particles [2]. Colloidal crystals can also form at low volume fraction in a system

with long-range repulsion [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. These crystals exhibit a body-centered-cubic structure,

and are often called colloidal ‘Wigner’ crystals, in analogy to the minimum-energy configuration of electrons in a

metal at low density and low temperature predicted by Eugene Wigner [13]. These crystals can be modeled by

a screened-Coulomb or Yukawa potential [14, 15], and have been found to be extremely soft [5, 6, 7]. Yet only

recently has the advent of confocal microscopy allowed direct visualization of individual particles in such crystals

[10, 11, 12], which has raised many open questions regarding local fluctuations in these soft crystals.

Here we present a study of the detailed local structure and material properties of crystals formed by an

experimental model system of charged colloids with a long-range repulsion. We demonstrate the formation of

body-centered-cubic ‘Wigner’ crystals at volume fractions of φ ≈ 15 - 26%, and directly observe the local structure
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using confocal microscopy. We measure the fluctuations of particles from their positions in the crystalline lattice,

and find that these fluctuations are unusually large relative to the conventional expectation of the Lindemann

melting correlation. We calculate the thermally-activated local strains in the system, and find that these strains

are correlated over short ranges of about two to three lattice constants. We determine the three independent

crystalline elastic constants as a function of particle number density; these elastic constants exhibit a strong

anisotropy, and we find that this anisotropy increases as we approach the melting volume fraction.

2 Experimental

Particles of poly-methyl-methacrylate (PMMA; 1.8µm diameter) coated with a brush of poly-hydroxystearic acid

(PHSA) are suspended in a nonpolar solvent mixture of decahydronapthalene (decalin) and tetrachloroethylene

(t.c.e.). The solvent ratio (roughly 55% decalin / 45% t.c.e. by volume) is chosen to match the mass density of

the particles, and hence to minimize the effects of gravitational pressure. The particles are fluorescently dyed, and

the refractive index of the solvent mixture is sufficiently close to that of the particles to permit imaging in three

dimensions using confocal microscopy.

A long-range repulsion between particles is introduced by the addition of 10mM of the surfactant dioctyl sodium

sulfosuccinate (commonly known as aerosol-OT or AOT). Above its critical micelle concenctration (≈ 1mM), AOT

forms micelles, of radius on the order of 1.5 nm; these micelles act as charge carriers in the solution, with roughly

one in 105 micelles acquiring a single elementary charge [16]. They furthermore enable the dissociation of the PHSA

groups on the surface of the particles, with the dissociated proton entering a micelle core, so that the particles

acquire a negative charge and the interparticle interaction becomes repulsive [16]. The 10mM concentration was

chosen to generate an optimum balance between highly charged particles (at large [AOT]) and long screening

lengths (at low [AOT]), in order to achieve large interparticle spacings; at this AOT concentration, we anticipate

a charge-carrier concentration on the order of 4 nM, and a Debye screening length of κ−1 ≈ 0.8 - 1µm [16, 17, 18].

Samples are prepared at fixed volume fractions, and allowed to equilibrate over eight days before observations.

We obtain three-dimensional image stacks using confocal microscopy, and employ standard analysis techniques

[19, 20] to obtain precise locations over time of each particle in the imaging volume [21].

3 Results and discussion

Body-centered-cubic ‘colloidal Wigner crystals’ formed over a range of moderate particle number densities of

n = 0.054 - 0.085(µm)−3 (corresponding to volume fractions of φ ≈ 15 - 26%) [22]. Samples were polycrystalline,
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Figure 1: Confocal microscope images of repulsive charged-sphere systems at several number densities. a) (110)
plane of a b.c.c. crystal at n = 0.085(µm)−3 (φ ≈ 26%). b) (110) plane of a b.c.c. crystal at n = 0.054(µm)−3

(φ ≈ 16%). c) Colloidal fluid at n = 0.035(µm)−3 (φ ≈ 10%). All images are 82µm on a side.

with typical grain sizes between hundreds of micrometers and several millimeters; the number density within a

single sample was not uniform, but varied by about ∆n ≈ 0.002(µm)−3 across different grains. The crystals always

formed with a (110) plane parallel to the coverslip; examples of single planes are shown in Fig. 1a,b. This (110)

plane has a stretched hexagonal structure and is the closest-packed plane of the b.c.c. crystal. The orientation

indicates a boundary effect in the formation of the crystals, but we found that in most samples, the boundary

effects did not extend to the fluctuations or material properties. The b.c.c. crystal gave way to a colloidal fluid at

lower number densities of n . 0.045(µm)−3 (Fig. 1c).

Individual particles fluctuate significant distances from their positions in the average lattice. This is visible in

single snapshots of the crystal (e.g. Fig. 1a,b), where both the average lattice and the deviations of particles from

the average lattice are apparent. The dynamics of these fluctuations are also readibly visible from data collected

over time, with particles moving on the timescale of seconds.

One measure of the degree of motion in the system is the mean-squared displacement (m.s.d.) of particles over

a delay time ∆t:

m.s.d.(∆t) =
〈(
x(t+ ∆t)− x(t)

)2〉− 〈(x(t+ ∆t)− x(t)
)〉2

(1)

with the average taken over all particles and all starting times t. In particular, the m.s.d. at long delay times

indicates whether the system behaves as a fluid or as a solid, and for a solid, indicates the time- and length-scales

of the fluctuations of particles about their average positions. For a crystalline sample, we expect the m.s.d. to

increase linearly with time at short times, as the particles diffuse within the potential wells due to interparticle

interactions, and then to reach a plateau at long times, as particles are localized on the lattice, and in the absence

of lattice defects, unable to diffuse freely. Several examples of the mean-squared displacements for crystalline
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samples are shown in Fig. 2a; the experimental resolution of 2s is similar to the localization timescale, so that

the short-time increase is barely captured, but the plateau region is clearly apparent. The value at which the

root-mean-squared displacement (r.m.s.d.) plateaus, δrt, can be considered as a ‘localization lengthscale’ of the

fluctuations. In some samples, the m.s.d. increases again at later times, suggestive of particles slowly diffusing

through the crystal; this could be the result of particles moving to different lattice sites, but our analysis is not

conclusive.

The unitless Lindemann parameter δL gives the r.m.s.d. from the average position, δrr̄, as a proportion of

the nearest-neighbor spacing a: δL ≡ δrr̄/a ≈ δrt/(
√

2a). This parameter is associated with the assumption

of Lindemann, commonly reformulated to state that the value of this proportion at melting is a constant for

monatomic solids; this assumption has been observed to be a good correlation for many elemental metals with

cubic structures, with a critical value of δL,c ≈ 0.07 - 0.1, and is often interpreted as a melting criterion or law

[23, 24]. In these experimental colloidal Wigner crystals, the Lindemann parameter appears to be nearly constant

with number density over the range investigated (Fig. 2b), with perhaps a slight increase at the lowest number

densities. At all number densities, it is significantly larger than 0.1.

An average lattice can be fit to all the particle positions. The lattice is constrained to have a b.c.c. structure,

enforcing a single lengthscale and orthonormality of the cubic crystal axes. The lattice is then described by seven

parameters: one lengthscale, for which we use the side length l of the cubic unit cell; three angles representing the

rotation of the cubic lattice directions with respect to the imaging coordinates, expressed as a 3x3 orthonormal

rotation matrix; and the three-component offset vector giving the translation of the lattice origin with respect to

the origin of the imaging coordinates. These seven parameters are calculated independently at each timestep from

the 3D locations of typically 1000-2000 particles in a single imaging volume.

The fit of the particle positions to a b.c.c. lattice is good. We examine the constraint that the three lengthscales

of the crystalline lattice are equal by calculating the overall uniaxial strain of the system in each of the three cubic

lattice directions. Taking the sample at n = 0.054(µm)−3 as an example, we find a slight extension in the (lattice)

X direction, and a slight compression in the (lattice) Z direction, but that the magnitude of the uniaxial strain

in any dimension is less than 1%. Similarly, we examine the constraint that the crystalline cubic axes are normal

by considering the overall shear of the system in each of the three cubic planes. We find slight shear strains in

each component, but again less than 1%. Thus we are confident that our description of the system by an average

b.c.c. lattice is valid. We further find that the definition of the average lattice is stable with time. The lattice

parameters fluctuate with time, but the variations are small: the lattice cube side varies by less than 0.5%; the

rotation angles by less than 1◦; while the offset of the origin moves by less than 0.5µm. Finally, we verify that the
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Figure 2: Scale of fluctuations of particles in experimental colloidal Wigner crystals. a) Total mean-squared
displacements of particles with time for crystalline samples. Number density is indicated by shading: from
dark to light, n = 0.085, 0.073, 0.065, 0.060, and 0.054(µm)−3. Note that the curves show a distinct plateau at
intermediate times, indicating the localization of particles near the lattice positions. b) Lindemann parameter
δL ≡ δrr̄/a, calculated using the temporal mean-squared displacements (δL ≡ δrt/(

√
2a), lower curve), and using

displacements from the nearest average-lattice position (δL ≡ δrl/a, upper curve). Note that both measures give
values larger than the conventional Lindemann correlation at the melting point, δL,c ≈ 0.1, and both are roughly
constant with number density.
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calculation of the average lattice does not change significantly if we use subsets of a 3D image to fit the lattice.

Using this average lattice, each particle can be identified with a nearest lattice position, and its displacement

from that lattice position determined; the root-mean-squared average displacement from the lattice position, δrl,

provides a time-independent measure of the fluctuations in the crystal. This r.m.s.d. from the lattice position is

then used to calculate another Lindemann parameter, δL = δrl/a, to be compared to the value calculated using

the temporal r.m.s.d. (Fig. 2b). Curiously, these two measures of the mean-squared displacement give slightly

different results. However, both calculations give large values of the Lindemann parameter, and little variation

with number density.

Local deformation of the lattice is quantified by the local strains. We calculate these strains from the locations

of a central particle and its crystallographic nearest- and next-nearest-neighbors (up to 15 particles in total), by

finding the best affine deformation tensor from the particles’ reference lattice positions to their measured positions,

and taking the symmetric part as the strain tensor ¯̄ε (this method is originally due to Falk and Langer) [25, 26, 27].

Strains are expressed in the coordinates of the cubic axes of the lattice, and the strains are related to the tensor

components by eii = εii for tensile strains, and eij = εij + εji = 2 · εij for shear strains. A shear strain tensor

component, εxy, is visualized for one sample in Fig. 3a. While small strains are most common, strains of up to

≈ 20% are readily observed.

We use the thermal distributions of strains to calculate the elastic constants of the system [26, 27]. Creation

of an average shear strain e over volume V requires energy E = 1
2µe

2V , where µ is the shear modulus, and

for thermal excitations, we expect a Boltzmann distribution with P (E) ∝ exp (−E/kBT ). Thus a linear fit

to logP vs. E/µkBT = 1
2e

2V/kBT yields the elastic constant µ as the negative of the slope. Here we use an

averaging volume of a cube of side two lattice units, so that V = (2l)3, and an averaging volume typically contains

16 particles.

Thermal distributions of different strain components are used to determine different elastic moduli. A cubic

crystal is characterized by three independent elastic constants: c11, c12, and c44. The shear modulus c44 is directly

obtained from the distribution of shear strains {exy, exz, eyz} expressed relative to the cubic axes. The other elastic

constants, c11 and c12, are obtained indirectly from two other moduli: the bulk modulus B, which is calculated

from the distribution of dilatations δ ≡ exx + eyy + ezz; and the ‘rotated shear modulus’ µ′shear, that is, the shear

modulus in a coordinate system rotated by 45◦ around one of the cubic axes (e.g. the lattice Z-axis), calculated

from the shear strains ex′y′ in the rotated frame. Then

c11 = B +
4

3
µ′shear , c12 = B − 2

3
µ′shear (2)
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Figure 3: (Color online) a) Local shear strains in a colloidal Wigner crystal. Particles are shown on their lattice
positions rather than their true positions, and are color-coded according to the local value of shear strain εxy. The
cubic axes of the crystal are indicated as the X, Y , and Z directions. b) Thermal distribution of strain energies,
calculated using an averaging volume V = (2l)3 ≈ 300(µm)3. Distributions are shown for energy contributions
of the shear strain relative to the cubic axes (blue, lower curve); dilatation (grey/black, middle curve); and shear
strain relative to a rotated reference frame (orange/red, upper curve). For both shear strains, the distribution is
the sum of the distributions of the three equivalent components. Shown with best-fit lines; the slopes of these
lines give the shear modulus c44; the bulk modulus B; and a ‘rotated shear modulus’ µ′shear, respectively. c)
Distribution of strain energies for dilatation, with positive strains (expansion; filled blue circles) and negative
strains (compression; open orange squares) distinguished. Shown with best-fit lines, giving approximate bulk
modulus for expansion (B+ = 6.6mPa) and for compression (B− = 12mPa). In (b,c), distributions are aggregated
over all timesteps. All plots are for number density n = 0.054(µm)−3.
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Example averaged strain energy distributions for the sample at number density n = 0.054(µm)−3 are shown

in Fig. 3b, with the fits giving the elastic moduli c44 = 13mPa, B = 7.7mPa, and µ′shear = 5.4mPa. Note that

the two shear moduli are different, that is, the shear modulus depends on the direction of shear relative to the

crystalline axes. Distributions for equivalent shear strain components (e.g. exy, exz, and eyz) are summed before

fitting. The deviation from the exponential behavior at small values of E/µkT is not yet understood, but may be

related to the density of states [28].

The crystalline elastic constants vary with number density (Fig. 4a). The relations c12 . c44 < c11 always

hold, and the elastic constants increase with number density as expected. Furthermore, the crystals are strongly

anisotropic at all number densities. The anisotropy is quantified by ∆ ≡ 2c44 − (c11 − c12), so that ∆ = 0 for an

isotropic system. We find ∆ > 0 at all number densities (Fig. 4b), with an increase in anisotropy as the number

density decreases toward the melting transition.

We also observe the nonlinearity of the stress-strain relationship in the distribution of dilatations. The elastic

‘constant’ applies only at small strains, where the potential well experienced by a particle due to interparticle

interactions is harmonic; at larger strains, the stress-strain relationship may soften or stiffen. The difference

between expansion and compression in the dilatations is readily seen, by separating the distributions for positive

and for negative strain (Fig. 3c). In the example at number density n = 0.054(µm)−3, the ‘average’ elastic constant

for expansion is B+ = 6.6mPa, while the ‘average’ elastic constant for compression is B− = 12mPa.

These results are in qualitative agreement with several previous experiments. These experiments were carried

out with smaller particles at higher number density; to make order-of-magnitude comparisons, we assume that

the elastic moduli vary roughly linearly with number density, that is, that the energy of interaction is of the same

magnitude across systems [5]. Using this scaling, we find order-of-magnitude agreement of our c11 with Young’s

modulus measured from the variation of lattice constant with gravitational pressure [5]; of c44 with an isotropically

averaged shear modulus measured mechanically [7]; and of all three elastic constants with those obtained by

measuring dispersion curves using light-scattering [6]. The anisotropy in our crystals is much larger than that

found in these latter experiments, presumably due to our larger value of the interparticle spacing relative to the

screening length κ−1, quantified by the parameter λ ≡ κn−1/3; in our experiments, λ ≈ 5-6, whereas ∆/c44 ≈ 0.14

at λ ≈ 4 in the previous experiments [6].

Our experimental results do not agree with early lattice dynamics simulations [15], which found much larger

anisotropies (∆/c44 > 1.7 for λ ≥ 1); these simulations found the relation c12 ≈ c11 to hold [15], giving the large

anisotropy, in contrast to the relation c12 . c44 < c11 in our experiments. The source of this discrepancy is

unknown.
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Figure 4: (Color online) a) Variation of elastic constants with number density: tensile modulus c11 (blue circles);
bulk modulus B (black diamonds); shear modulus c44 (green squares); c12 (red up-triangles); and rotated shear
modulus µ′shear (grey down-triangles). Error bars give the 95% confidence intervals on the fits. Lines are guides
to the eye. b) Variation of elastic anisotropy with number density: ∆/c44 (upper curve) and µ′shear/c44 (lower
curve) are two complementary measures of the anisotropy. ∆/c44 is 0 for an isotropic system, with a maximum
possible value of 2 for a shear-stable system; note that these crystal are markedly anisotropic, with ∆/c44 > 0 at
all number densities accessed.

9



The experimental results are largely reproduced by simple numerical estimates. We assume a Yukawa interac-

tion

U/particle = U0
1

2

∑
i

exp (−κri)
ri

(3)

with the sum taken over neighboring particles, and ri the interparticle distance; we consider particles on a perfect

b.c.c. lattice, taking into account the interactions with 64 nearest neighbors (the first 6 neighbor shells). The value

of the screening length, κ−1 = 0.45µm, is chosen to reproduce the experimental values of the anisotropy at the

same number densities, while the overall energy scaling factor U0 = 10−23Jm ≈ 60(eV · µm) is chosen to obtain

elastic constants of the same order of magnitude. The resulting numerical estimates for the elastic moduli and

anisotropy are shown in Fig. 5.

The values κ−1 = 0.45µm and U0 = 10−23Jm are in line with our expectations. Our a priori estimate of the

screening length κ−1 was on the order of ≈ 0.8 - 1µm, based on the added AOT concentration and the results of

earlier conductivity measurements in particle-free AOT solutions [16, 17]. We expect the addition of particles to

decrease the screening length, as the additional counterions that dissociate from the particle surfaces contribute to

the screening; indeed, we expect κ−1 to decrease further with increasing number density, which is not accounted

for in the simple numerical model. If we estimate an effective particle charge from the interaction strength, we

find Z∗ ≈
√
U0εε0 ≈ 100e. This is a very rough order of magnitude estimate, but is consistent with the effective

charges reported in a number of earlier studies [16, 17, 18].

These numerical estimates reproduce many aspects of our experimental results (Fig. 4). Most notably, the

increase in anisotropy with decreasing number density is similar. The elastic constants themselves increase with

increasing number density as expected; the slower increase in the experimental results compared to the numerical

estimates may be a result of the experimental value of κ−1 changing with number density as discussed above.

The nonlinearity of the stress-strain relationship is also reproduced: relative to its value at small strains (δ ≈ 0),

the numerical second derivative of system energy with respect to dilatation, ∂2U/∂δ2 ≈ B, is 24% smaller when

evaluated at δ = 0.1 (expansion), and 31% larger when evaluated at δ = −0.1 (compression). The shear stress-

strain relationship, in contrast, is quite linear even up to large strains of e = 0.2, with the second derivative of

energy ∂2U/∂e2 ≈ c44 varying by less than 7%. We note, however, that the values of c11, c12, and B given by the

numerical estimates are larger relative to c44 than are those values calculated from the experimental results. This

may be an indication of the presence of many-body effects, which contribute to these bulk elastic constants but not

to the shear elastic constant [29]; we discuss this possibility further below. The discrepancy may also be related

to the nonlinearity in the bulk elastic constants; while the numerical estimates give c11 and B in the small-strain

limit, the values obtained experimentally are a less well-defined average of the elastic constants over a range of
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Figure 5: (Color online) Variation with number density of a) elastic constants and b) anisotropy, calculated using
a simple numerical model of particles on a perfect b.c.c. lattice interacting via a Yukawa potential. U0 = 10−23Jm,
κ−1 = 0.45µm. c44, c11, and B are calculated directly; c12 and µ′shear are inferred from c11 and B. The range of
number densities is chosen to match our experimental results.
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strain values encompassing both expansion and compression. Yet for the most part, a very simple model captures

the qualitative behavior of the experimental system, and in particular the variation of the anisotropy with number

density.

The Cauchy relation predicts that c12 = c44 for the centrosymmetric b.c.c. lattice with two-body Yukawa

interactions [30]. Our experimental results suggest that c12 < c44 at most number densities, suggesting the

possible importance of many-body interactions, though the results are not conclusive. These results are similar to

those found in earlier experiments on face-centered-cubic (f.c.c.) crystals of charged colloids, where the violation

of the Cauchy relation provided clear evidence that many-body effects are important in charged colloids at high

volume fraction [29]. Our possible violation is of a smaller magnitude than that in the f.c.c. crystals, likely because

our particle volume fraction is lower. Violation of the Cauchy relation is just one source of evidence for many-body

interactions in charged colloid systems: three-body effective forces have been predicted by numerical solutions to

the non-linearized Poisson-Boltzmann equation [31]; and many-body forces have been measured directly in recent

experiments on isolated systems of just a few colloidal particles under experimental conditions similar to ours [32].

Particle fluctuations are not independent, but have a collective nature. This collective behavior is quantified

by the correlations of the fluctuations; in particular, we calculate the spatial autocorrelation for each strain

component:

Cεij (∆r) ≡

〈(
εij(r)− 〈εij〉

)
·
(
εij(r + ∆r)− 〈εij〉

)〉〈(
εij(r)− 〈εij〉

)2〉 (4)

with the average taken over all reference positions r and all times t. We restrict the displacements ∆r to the

lattice vectors, and associate each particle with its nearest lattice position to calculate the correlation; this avoids

calculating correlations at non-lattice-vector displacements with very low statistics. Examples of these correlations

are shown in Fig. 6. These fields show only short-range correlations of strains in the system, over about 3 lattice

spacings. That we do not observe evidence of longer-range vibrational modes is consistent with earlier experiments.

Propagating transverse modes have been predicted at long wavelengths [6, 7], while modes with small damping

coefficients appear as resonant modes of externally-driven standing shear waves, and are used to measure the

shear moduli of colloidal crystals [7, 33]. More recently, the transition from overdamped to propagating transverse

modes in aqueous b.c.c. colloidal crystals was observed for the first time [34]; however, such propagating modes are

not observable when the sample dimensions are too small [6, 34], as we expect to be the case in our experiments.

Finally, we note that the correlation fields are constant across different number densities. For many examples

of strain component and direction, there is little variation or trend with number density. This type of correlation

field is characteristic of the Wigner crystals over the range of number densities studied.
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Figure 6: (Color online) Normalized spatial autocorrelations of the strain components in a colloidal Wigner crystal.
(a-d) Correlation fields of a) the uniaxial strain εxx, plotted in the XY plane; b) the shear strain εxy, plotted
in the XY plane; c) the uniaxial strain εxx, plotted in the nearest-neighbor plane, parallel to, but 1/2 a lattice
constant offset from the plane in (a); d) the shear strain εxy, plotted in the same nearest-neighbor plane. In (a-d),
∆r is restricted to lattice vectors, and particles associated with their nearest lattice position before calculating the
correlation. (e-f) One-dimensional cuts of the correlation fields along several directions for e) the uniaxial strain
εxx correlation and f) the shear strain εxy correlation. Red circles: the cut along the (cubic) X axis (e) and Z
axis (f); black squares: the average of the cuts along the other two cubic axes; blue triangles: the average of the
cuts along the nearest-neighbor directions. All plots are for number density n = 0.054(µm)−3; results for other
number densities are similar.
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4 Conclusion

We have observed that a charged-sphere system of colloidal particles with long-range repulsion forms body-

centered-cubic colloidal ‘Wigner’ crystals at low volume fractions of φ & 15%, in contrast to hard-sphere crystals

which form face-centered-cubic structures only at much higher volume fractions. The soft interactions in a col-

loidal Wigner crystal permit large fluctuations of the particles within the crystal, with typical root-mean-squared

displacements up to ≈ 20% of the nearest-neighbor spacing (Lindemann parameter of δL ≈ 0.20). This parameter

is roughly constant over the range of number densities observed. We also measure the thermally-activated local

strains in the system as a measure of the fluctuations, and find that in spite of the long-range ordering, the damp-

ing fluid restricts correlations in the strains to about two to three lattice spacings; the correlations are also almost

uniform with volume fraction.

We measure the crystalline elastic constants c11, c12, and c44, and find them all to be on the order of 10mPa,

emphasizing the pronounced softness of these crystals. The crystals remain strongly anisotropic at all number

densities, as indicated by the nonzero values of ∆ ≡ 2c44−(c11−c12), with the anisotropy increasing with decreasing

volume fraction. These results are qualitatively consistent with numerical estimates and with values reported in

the literature.

These colloidal Wigner crystals offer the opportunity to study remarkably soft crystals with a structure un-

common in colloidal systems, and to study both the unusually large fluctuations and the material properties of

this phase.
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