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We perform molecular dynamics (MD) simulations of the crystallization process in binary
Lennard-Jones systems during heating and cooling to investigate atomic-scale crystallization ki-
netics in glass-forming materials. For the cooling protocol, we prepared equilibrated liquids above
the liquidus temperature Tl and cooled each sample to zero temperature at rate Rc. For the heating
protocol, we first cooled equilibrated liquids to zero temperature at rate Rp and then heated the
samples to temperature T > Tl at rate Rh. We measured the critical heating and cooling rates R∗

h

and R∗

c , below which the systems begin to form a substantial fraction of crystalline clusters during
the heating and cooling protocols. We show that R∗

h > R∗

c , and that the asymmetry ratio R∗

h/R
∗

c

includes an intrinsic contribution that increases with the glass-forming ability (GFA) of the system
and a preparation-rate dependent contribution that increases strongly as Rp → R∗

c from above. We
also show that the predictions from classical nucleation theory (CNT) can qualitatively describe the
dependence of the asymmetry ratio on the GFA and preparation rate Rp from the MD simulations
and results for the asymmetry ratio measured in Zr- and Au-based bulk metallic glasses (BMG).
This work emphasizes the need for and benefits of an improved understanding of crystallization
processes in BMGs and other glass-forming systems.

PACS numbers: 64.70.pe,64.70.Q-,61.43.Fs,61.66.Dk

I. INTRODUCTION

Crystallization, during which a material transforms
from a dense, amorphous liquid to a crystalline solid, oc-
curs via the nucleation and subsequent growth of small
crystalline domains [1]. Crystallization in metals has
been intensely studied over the past several decades with
the goal of developing the ability to tune the microstruc-
ture to optimize the mechanical properties of metal al-
loys [2–4]. However, in-situ observation of crystallization
in metallic melts is limited due to the rapid crystalliza-
tion kinetics of metals [5–7].
In contrast, bulk metallic glasses (BMGs), which are

amorphous metal alloys, can be supercooled to temper-
atures below the solidus temperature Ts and persist in a
dense, amorphous liquid state over more than 12 orders of
magnitude in time scales or viscosity [8]. Deep supercool-
ing of BMGs provides the ability to study crystallization
on time scales that are accessible to experiments [9–12].
These prior experimental studies have uncovered fun-

damental questions concerning crystallization kinetics in
BMGs. For example, when a BMG in the glass state
is heated to a temperature Tf < Ts in the supercooled
liquid region, crystallization is much faster than crystal-
lization that occurs when the metastable melt is cooled
to the same temperature Tf [13, 14]. Asymmetries in the
crystallization time scales upon heating versus cooling of
up to two orders of magnitude have been reported in ex-

periments [15, 16]. The asymmetry impacts industrial
applications of BMGs because rapid crystallization upon
heating limits the thermoplastic forming processing time
window for BMGs [17–20].

Recent studies have suggested that the asymmetry in
the crystallization time scales originates from the tem-
perature dependence of the the nucleation and growth
rates [15], i.e. that the nucleation rate is maximal at a
temperature below that at which the growth rate is max-
imal. According to this argument, crystallization upon
heating is faster because of the growth of the nascent
crystal nuclei that formed during the thermal quench to
the glass. In contrast, crystallization is slower upon cool-
ing since crystal nuclei are not able to form at high tem-
peratures in the melt. However, there has been no direct
visualization of the crystallization process in BMGs, and
it is not yet understood why the asymmetry varies from
one BMG to another [21] and how sensitively the asym-
metry depends on the cooling rate Rp used to prepare
the glass. An improved, predictive understanding of the
crystallization process in BMGs will aid the design of new
BMG-forming alloys with small crystallization asymme-
try ratios and large thermoplastic processing time win-
dows.

We employ molecular dynamics (MD) simulations of
bidisperse spheres interacting via Lennard-Jones poten-
tials [22–24] to visualize directly the crystallization pro-
cess upon heating and cooling in model metallic glass-
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FIG. 1: (Color online) Snapshots of the nucleation and growth of crystal clusters at several temperatures T as a monodisperse
Lennard-Jones system is heated from zero temperature to Tf = 2.0 at a rate Rh < R∗

h (top row) and cooled from initial
temperature Ti = 2.0 to zero temperature at a rate Rc < R∗

c (bottom row). Distinct, disconnected crystal nuclei are shaded
different colors. The far right panel indicates the number of clusters Nc normalized by L3/σ3

A of as a function of temperature
during a typical heating (top) and cooling (bottom) trajectory. The maximum number of clusters Nmax

c is indicated by the
horizontal dashed line.

forming systems. We perform thermal quenches of the
system from a high temperature Ti in the equilibrated
liquid regime to a glass at Tf = 0 and vary the cool-
ing rate Rc by several orders of magnitude. For cooling
rates below the critical cooling rate Rc < R∗

c , the system
begins to crystallize, whereas for Rc > R∗

c , the system
remains amorphous. We also performed MD simulations
in which we heat the zero-temperature glassy states (pre-
pared at cooling rate Rp > R∗

c) through the supercooled
liquid regime to Tf = Ti over a range of heating rates Rh.
For heating rates Rh < R∗

h, the system begins to crys-
tallize, whereas for Rh > R∗

h, it remains amorphous. We
also find that the critical heating rate has an intrinsic
contribution R∗

h(∞) and an Rp-dependent contribution
R∗

h(Rp)−R∗

h(∞) that increases with decreasing Rp. We
measured the asymmetry ratio R∗

h/R
∗

c as a function of
the glass-forming ability (GFA) and Rp for several bi-
nary Lennard-Jones mixtures and find that R∗

h/R
∗

c > 1
and the ratio grows with increasing GFA and decreas-
ing Rp. We show that these results are consistent with
predictions from classical nucleation theory (CNT) that
the maximal growth rate occurs at a higher temperature
than the maximal nucleation rate and that the separa-
tion between the nucleation and growth peaks increases
with the GFA. Further, CNT is able to qualitatively re-
capitulate the dependence of the asymmetry ratio on the
GFA as measured through R∗

c for both our MD simula-
tions and recent experiments on BMGs as well as on Rp

for the MD simulations [25].

The remainder of the manuscript is organized into
three sections: Sec. II: Methods, Sec. III: Results, and
Sec. IV: Conclusion. In Sec. II, we describe the MD sim-
ulations of binary Lennard-Jones mixtures, the compu-
tational methods to detect and structurally characterize

crystal nuclei, and measurements of the critical cooling
and heating rates, R∗

c and R∗

h. In Sec. III, we show results
from MD simulations for the time-temperature transfor-
mation diagram [26] and the asymmetry ratio R∗

h/R
∗

c as
a function of the glass-forming ability as measured by
the critical cooling rate R∗

c and the cooling rate used to
prepare the zero-temperature glasses Rp. We also com-
pare our simulation results for the asymmetry ratio to
experimental measurements of the ratio for two BMGs
and to predictions of the ratio from classical nucleation
theory. In Sec. IV, we briefly summarize our results and
put forward our conclusions.

II. METHODS

We performed MD simulations of binary Lennard-
Jones (LJ) mixtures of N = NA + NB spheres with
mass m at constant volume V = L3 in a cubic simulation
box with side length L and periodic boundary conditions.
We studied mixtures with NA = NB and diameter ratio
α = σB/σA < 1. We employed the LJ pairwise interac-
tion potential between spheres i and j:

u(rij) = 4ǫ[(σij/rij)
12 − (σij/rij)

6], (1)

where rij is their center-to-center separation, ǫ is the
depth of the minimum in the potential energy u(rij),
σij = (σi + σj)/2, and u(rij) has been truncated and
shifted so that the potential energy and force vanish for
separations rij ≥ 3.5σij [27]. We varied the system
volume V to fix the packing fraction φ = πσ3

A(NA +
α3NB)/6V = 0.5236 [28] at each diameter ratio α. For
most simulations, we considered N = 1372 spheres, but
we also studied N = 4000 and 8788 to assess finite-size
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effects. Below, energy, length, time, and temperature
scales are expressed in units of ǫ, σA, σA

√

m/ǫ, and ǫ/kB,
respectively, where the Boltzmann constant kB has been
set to be unity.

A. Cooling and Heating Protocols

For each particle diameter ratio, which yield differ-
ent glass-forming abilities, we performed MD simula-
tions to cool metastable liquids to zero temperature and
heat zero-temperature glasses into the metastable liquid
regime to measure R∗

c and R∗

h at which the systems be-
gin to crystallize. To measure R∗

c , we first equilibrate
the system at high temperature Ti = 2.0 using a Gaus-
sian constraint thermostat [27]. We then cool the system
by decreasing the temperature linearly at rate Rc from
Ti to Tf = 0:

T (t) = Ti −Rct. (2)

To measure the critical heating rate R∗

h(Rp) at finite
rate Rp, we first prepare the systems in a glass state
by cooling them from the high temperature liquid state
to zero-temperature at rate Rp > R∗

c . To measure the
intrinsic critical heating rate R∗

h(∞), we quench the sys-
tems infinitely fast to zero temperature using conjugate
gradient energy minimization. For both cases, we heat
the zero-temperature glasses using a linear ramp

T (t) = Rht (3)

until Tf = 2.0. For both heating and cooling protocols,
we carried out Ntot = 1000 independent trajectories and
averaged the results.

B. Identification of Crystal Nuclei

To detect the onset of crystallization in our simula-
tions [15], we differentiate ‘crystal-like’ versus ‘liquid-like’
particles based on the value of the area-weighted bond
orientational order parameter for each particle [29, 30].
We define the complex-valued bond orientational order
parameter for particle i:

qlm(i) =

∑Nb

j=1 AijYlm(θ(~rij), φ(~rij))
∑Nb

j=1 Aij

, (4)

where Ylm(θ(~rij), φ(~rij)) is the spherical harmonic of de-
gree l and order m, θ(~rij) and φ(~rij) are the polar and
azimuthal angles for the vector ~rij , j = 1, . . . , Nb gives
the index of the Voronoi neighbors of particle i, and Aij

is the area of the face of the Voronoi polyhedron com-
mon to particles i and j. The correlation coefficient [29]
between the bond orientational order parameters qlm(i)

and qlm(j), where particle j is a Voronoi neighbor of i,

Sij =

∑6

m=−6 q6m(i)q∗6m(j)
(

∑6

m=−6 | q6m(i) |2
)1/2 (

∑6

m=−6 | q6m(j) |2
)1/2

(5)
is sensitive to face-centered-cubic (FCC) order. When
Sij > 0.7, i and j are considered ‘connected’. If parti-
cle i has more than 10 connected Voronoi neighbors, it
is defined as ‘crystal-like’. The ratio Ncr/N gives the
fraction of crystal-like particles in a given configuration.
In addition, we also define a crystal cluster as the set of
crystal-like particles that possess mutual Voronoi neigh-
bors. Distinct crystal clusters that nucleate and grow
upon heating and cooling are shown in Fig. 1.
This general scheme for identifying crystal-like particle

clusters has been implemented in prior studies [39–41],
however, we made two improvements [42]. First, we de-
fined nearest-neighbor particles by Voronoi tessellation to
remove the arbitrariness associated with defining neigh-
bors using a cutoff distance. Second, the definition of
the bond orientational order parameter qlm weights each
bond between the central particle and its nearest neigh-
bors by the area of the associated Voronoi polyhedral
face, such that qlm is a continuous function of particle
coordinates.

C. Probability for Crystallization

For each diameter ratio and rate, we measure the prob-
ability for crystallization P (Rh,c) = NX/Ntot, where
NX is the number of trajectories that crystallized with
Ncr/N > 0.5 during the heating or cooling protocol and
Ntot is the total number of trajectories (cf. insets to
Fig. 2). We find that the data for P (Rh,c) collapses onto
a sigmoidal scaling function as shown in Fig. 2:

(P (Rh,c)− P∞

h,c)

P 0
h,c − P∞

h,c

=
1

2



1− tanh



log10

(

Rh,c

RM
h,c

)1/κh,c







 ,

(6)
where P∞

h,c is the probability for crystallization in the

limit of infinitely fast rates Rh,c → ∞, P 0
h,c is the proba-

bility for crystallization in the Rh,c → 0 limit, RM
h,c is the

rate at which P (Rh,c) = (P 0
h,c + P∞

h,c)/2, and κh,c is the
stretching factor. We find that κc ≈ 0.25 and κh ≈ 0.2
for α = 1.0, and these factors increase by only a few per-
cent over the range in α that we consider. We define the
critical heating and cooling rates R∗

h and R∗

c by the rates
at which P (Rh,c) = 0.5, i.e.

R∗

h,c = RM
h,c10

κh,c tanh−1

[

P0
h,c

+P∞

h,c
−1

P0
h,c

−P∞

h,c

]

. (7)

As shown in the insets to Fig. 2, for Rh,c ≪ R∗

h,c most of
the configurations crystallize during heating or cooling.
In contrast, for Rh,c ≫ R∗

h,c, none of the configurations
crystallize.
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FIG. 2: Shifted and normalized probability for crystalliza-
tion (P (Rh,c)− P∞

h,c)/(P
0

h,c − P∞

h,c) versus the scaled heating

or cooling rate log
10
(Rh,c/R

M
h,c)

1/κh,c . Circles (squares) in-
dicate data for cooling (heating) for diameter ratios α = 1.0
(filled symbols) and 0.97 (open symbols). The insets show
the fraction of crystal-like particles Ncr/N as a function of
temperature T during cooling (lower left) and heating (up-
per right) for 12 configurations with α = 1.0. The four solid,
dashed, and dot-dashed curves in each inset correspond to
cooling and heating trajectories with rates slower than R∗

h,c,
near R∗

h,c, and faster than R∗

h,c, respectively. Trajectories for
which Ncr/N exceeds 0.5 (above the horizontal dashed line)
are considered to have crystallized during the heating or cool-
ing protocol.

III. RESULTS

An advantage of MD simulations is that they can pro-
vide atomic-level structural details of the crystallization
dynamics that are often difficult to obtain in experi-
ments. In Fig. 1, we visualize the nucleation and growth
of clusters of crystal-like particles during the heating and
cooling simulations. In both cases, the number of clus-
ters reaches a maximum near T ≈ 0.5. In Fig. 3, we show
the maximum number of clusters Nmax

c (normalized by
L3/σ3

A) that form during the heating and cooling proto-
cols. We find that more crystal clusters form during the
heating protocol compared to the cooling protocol for all
particle diameter ratios studied, which is supported by
the measured time-temperature-transformation (TTT)
diagram. In addition, we will show below that the asym-
metry ratio R∗

h/R
∗

c > 1, and that the ratio grows with
increasing GFA (increasing diameter ratio) and decreas-
ing Rp. We find that CNT can qualitatively describe the
dependence of the asymmetry ratio on the GFA, as mea-
sured by the critical cooling rate R∗

c , for both our MD
simulations and recent experiments on BMGs, as well as
on the preparation cooling rate Rp for the MD simula-
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FIG. 3: Maximum value Nmax

c of the number of crystal clus-
ters Nc(T ) normalized by L3/σ3

A (averaged over 1000 tra-
jectories) during the cooling (squares) and heating (circles)
protocols at rates Rc ≈ 0.5R∗

c and Rh ≈ 0.5R∗

h for LJ mix-
tures with diameter ratios α = 1.0, 0.97, and 0.95. For all
systems, the maximum number of crystal clusters is larger for
the heating protocol compared to that for the cooling proto-
col and Nmax

c decreases with increasing glass-forming ability
(decreasing α).

tions.

A. Intrinsic Asymmetry Ratio

The critical heating and cooling rates can be obtained
by fitting the probability for crystallization P (Rh,c) as
a function of Rh or Rc to the sigmoidal form in Eq. 6.
We first investigate the minimum value for the asym-
metry ratio R∗

h(∞)/R∗

c , which is obtained by taking the
Rp → ∞ limit. (The asymmetry ratio R∗

h(Rp)/R
∗

c for fi-
nite preparation ratesRp will be considered in Sec. III C.)
In Fig. 4, we plot R∗

h(∞)/R∗

c versus R∗

c (for diameter ra-
tios α = 1.0, 0.97, 0.96, 0.95, and 0.93). We find that
R∗

h(∞) > R∗

c for all systems studied, which is consis-
tent with classical nucleation theory (CNT). As shown
in Fig. 1, more crystal nuclei form during the heating
protocol than during the cooling protocol. In addition,
CNT predicts that the growth rates for crystal nuclei are
larger during heating compared to cooling. In Sec. III B,
we will show that both factors contribute to an increased
probability for crystallization during heating.
In Fig. 4, we also show that the asymmetry ratio

R∗

h(∞)/R∗

c increases as the critical cooling rate R∗

c de-
creases, or equivalently as the glass-forming ability in-
creases. In the MD simulations, we were able to show
a correlation between the asymmetry ratio and the crit-
ical cooling rate over roughly an order of magnitude in
R∗

c . In Sec. III B, we introduce a model that describes
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FIG. 4: Intrinsic asymmetry ratio R∗

h(∞)/R∗

c versus the crit-
ical cooling rate R∗

c (for diameter ratios α = 1.0, 0.97, 0.96,
0.95, and 0.93) normalized by R0 = 1K/s on a logarithmic
scale. The inset shows the intrinsic asymmetry ratio versus
log

10
R∗

c/R0 on an expanded scale. The filled circles indi-
cate data from the MD simulations and filled squares indicate
data from experiments on Zr- and Au-based BMGs [15, 16].
The prediction (Eq. 12) from classical nucleation theory (solid
line) with A′ = (8πAD4

0)/3a
3 = 0.5 (in units of ǫ2/(m2σ4

A)),
Σ = 0.26, and Qeff = 2.6 interpolates between the MD sim-
ulation data at high R∗

c and experimental data from BMGs
at low R∗

c .

qualitatively this dependence of the asymmetry ratio on
R∗

c .

B. Classical Nucleation Theory Prediction for the

Asymmetry Ratio

In classical nucleation theory (CNT), the formation of
crystals is a nucleation and growth process: fluctuations
in the size of crystal nuclei that allow them to reach the
critical radius r∗, and then growth of post-critical nuclei
with r > r∗. Several recent studies [36–38] have explored
a two-step mechanism for nucleation in supercooled liq-
uids. In the current study, we measure the asymmetry
in the critical cooling and heating rates, which is not
sensitive to the nucleation mechanism.
To form a critical nucleus, the system must overcome

a nucleation free energy barrier:

∆G∗ =
16π

3

Σ3

∆G2
, (8)

where ∆G is the bulk Gibbs free energy difference per
volume (in units of ǫ/σ3

A) and Σ is the surface tension
between the solid and liquid phases (in units of ǫ/σ2

A).
We assume that ∆G = c(Tm−T ) [34], where Tm is melt-
ing temperature, Tm − T is the degree of undercooling,
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FIG. 5: The nucleation I/AD0 (solid lines; left axis) and
growth Ua/D0 (dashed lines; right axis) rates as a function
of temperature T for increasing values of the glass-forming
ability (GFA) c = 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5 (from
top to bottom) that span the range of diameter ratios from
α = 1.0 to 0.93. The filled circles indicate the maximum rates
(I∗ and U∗) for each GFA. As the GFA increases, I∗ and U∗

decrease and the difference TU −TI between the temperatures
at which the maxima in U(T ) and I(T ) occur increases (inset).

and c ∼ Lv/Tm is a dimensionless parameter that char-
acterizes the thermodynamic drive to crystallize and will
be used to tune the GFA of the system (where Lv is the
latent heat of fusion). Within CNT, the rate of forma-
tion of critical nuclei (i.e. the nucleation rate) is given
by:

I = AD0 exp

(

−
Qeff

T

)

exp

(

−
∆G∗

T

)

, (9)

where A is an O(1) constant with units σ−5
A , D0 is the

atomic diffusivity with units σA

√

ǫ/m, and Qeff is an
effective activation energy for the diffusivity with units
ǫ. After the nucleation free energy barrier ∆G∗ has been
overcome and crystal nuclei reach r ≥ r∗, the growth rate
of crystal nuclei is given by

U =
D0

a
exp

(

−
Qeff

T

)[

1− exp

(

−
∆GV

T

)]

, (10)

where a the characteristic interatomic spacing.
In Fig. 5, we plot the nucleation I/AD0 and growth

rates Ua/D0 with Qeff = 2.6 and Tm ≈ 1.40 from MD
simulations of binary LJ systems [32], Σ = 0.26, which is
typical for BMGs [15], while varying the GFA parameter
from c = 1.2 to 0.5 (corresponding to diameter ratios
from α = 1.0 to 0.93.) Both I(T ) and U(T ) are peaked
with maxima I∗ and U∗ at temperatures TI and TU . In
Fig. 5, we show that as the GFA increases, I∗ and U∗,
as well as TI and TU decrease. However, TI decreases
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faster than TU , so that the separation between the peaks,
TU − TI , increases with GFA.
To determine the critical heating and cooling rates, R∗

h
and R∗

c , we must calculate the fraction of the samples
NX that crystallize and the probability for crystallizing
P (Rh,c) = NX/Ntot, where Ntot is the total number of
samples, upon heating and cooling. Within classical nu-
cleation theory, the probability to crystallize upon cool-
ing from Ti to Tf is given by [33]:

P (Rc) =
4π

3R4
c

∫ Tf

Ti

I(T ′)

[

∫ Tf

T ′

U(T ′′)dT ′′

]3

dT ′. (11)

We assume that Ti is above the liquidus temperature
Tl, and Tf is below the glass transition temperature Tg,
where the time required to form crystal nuclei diverges.
We can rearrange Eq. 11 to solve for the critical cooling
rate at which P (R∗

c) = 0.5:

(R∗

c)
4 =

8π

3

∫ Tf

Ti

I(T ′)

[

∫ Tf

T ′

U(T ′′)dT ′′

]3

dT ′

= A′

∫ Tf

Ti

dT ′ exp

(

−
Qeff

T ′

)

exp

(

−
∆G∗

T ′

)

[

∫ Tf

T ′

exp

(

−
Qeff

T ′′

)[

1− exp

(

−
∆GV

T ′′

)]

dT ′′

]3

,

(12)

where A′ = (8πAD4
0)/(3a

3) and we assumed that A, D0,
and a are independent of temperature. A similar expres-
sion for the intrinsic critical heating rate R∗

h(∞) can be
obtained by reversing the bounds of integration in Eq. 12.
In Fig. 4, we plot the intrinsic asymmetry ratio

R∗

h(∞)/R∗

c predicted from Eq. 12 versus the critical cool-
ing rate R∗

c after choosing the best value A′ = 0.5 that
interpolates between the MD simulation data at high R∗

c

and experimental data from BMGs at low R∗

c . We find
that CNT qualitatively captures the increase in the asym-
metry ratio with increasing GFA over a wide range of
critical cooling rates from 1K/s (experiments on BMGs)
to 1012K/s (MD simulations of binary LJ systems). A
comparison of Figs. 4 and 5 reveals that the increase in
the intrinsic asymmetry ratio is caused by the separation
of the peaks in the growth and nucleation rates U(T ) and
I(T ) that occurs as the GFA increases. Thus, we predict
an enhanced value for TU − TI in experiments on BMGs
since the critical cooling rate in experiments is orders of
magnitude smaller than in the MD simulations.
The fact that R∗

h(∞) > R∗

c is also reflected in
the asymmetry of the “nose” of the time-temperature-
transformation (TTT) diagram. In Fig 6, we show the
probability P that the system has crystallized at a given
temperature T after a waiting time t for monodisperse LJ
systems. We find that Tmin ∼ 0.5-0.6 is the temperature
at which the waiting time for crystallization is minimized
and that the time to crystallize is in general longer for
T < Tmin compared to T > Tmin. Because crystallization

t

T

 

 

0 200 400 600 800
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P

0

0.2

0.4

0.6

0.8

FIG. 6: The time-temperature-transformation (TTT) dia-
gram during cooling is visualized by plotting the probability
to crystallize P (increasing from light to dark) from 96 sam-
ples as a function of temperature T and waiting time t for
LJ systems with diameter ratio α = 1.0. A sample is consid-
ered crystalline if the number of crystal-like particles satisfies
Ncr/N > 0.5. The initial states are dense liquids equilibrated
at T = 2.0. Each initial state is cooled (at rate Rc ≫ R∗

c ) to
temperature T < Tl, where Tl ≈ 1.4 is the liquidus tempera-
ture, and then run at fixed T for a time t.

on average occurs at a higher temperature during heating
and a lower temperature during cooling, the asymmetry
in the TTT diagram indicates that slower rates are re-
quired to crystallize during cooling than during heating,
i.e. R∗

c < R∗

h.

C. Asymmetry Ratio for Finite Rp

In Sec. III B, we assumed that the initial samples (i.e.
the zero-temperature glasses) for the heating protocol
were prepared in the Rp → ∞ limit and, thus were purely
amorphous. How does the asymmetry ratio R∗

h(Rp)/R
∗

c

depend on Rp when the preparation cooling rate Rp is
finite and partial crystalline order can occur in the sam-
ples? In this section, we show results for the asymme-
try ratio R∗

h(Rp)/R
∗

c for monodisperse systems using a
protocol where the samples are quenched from equili-
brated liquid states to zero temperature at a finite rate
Rp and then heated to temperature Tf at rate Rh. (See
Sec. II A.) Note that when Rp/R

∗

c ≈ 1, some of the
samples crystallize during the cooling preparation, yet
these samples are still included in the calculation of the
probability P (R∗

h(Rp)) to crystallize. In Fig. 7, we show
the results for the asymmetry ratio R∗

h(Rp)/R
∗

c from MD
simulations. We find that R∗

h(Rp)/R
∗

c grows rapidly as
Rp approachesR

∗

c from above and reaches a plateau value
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FIG. 7: Asymmetry ratio R∗

h(Rp)/R
∗

c plotted versus the
preparation cooling rate Rp normalized by the critical cooling
rate R∗

c from MD simulations with α = 1.0 (filled circles) and
the prediction from CNT (solid line) with the same parame-
ters used for the fit in Fig. 4 and the GFA parameter set to
c = 1.2. The vertical dashed line indicates Rp = R∗

c . The
horizontal dashed lines R∗

h(Rp)/R
∗

c = 1.18 and 1 indicate the
plateau value in the Rp ≫ R∗

c limit and R∗

h = R∗

c , respec-
tively. The gap between the horizontal dashed and dotted
lines give the magnitude of the intrinsic asymmetry ratio for
this particular GFA (cf. Fig. 4).

of ∼ 1.2 in the limit Rp/R
∗

c ≫ 1.

The critical heating rate R∗

h(Rp) at finite Rp can also
be calculated from CNT using an expression similar to
Eq. 12 with an additional term that accounts for cool-
ing the equilibrated liquid samples to zero temperature
at a finite rate. In Fig. 7, we show that the asymmetry
ratio R∗

h(Rp)/R
∗

c predicted using CNT agrees qualita-
tively with that from the MD simulations. The number
of crystal nuclei that form during the quench increases
with decreasing Rp, which causes R∗

h(Rp)/R
∗

c to diverge
as Rp → R∗

c . The predicted intrinsic contribution to the
asymmetry ratio for Rp ∼ R∗

c is small, and R∗

h(Rp)/R
∗

c is
dominated by the preparation protocol. In contrast, the
asymmetry ratio R∗

h(Rp)/R
∗

c ≈ 1.2 is dominated by the
intrinsic contribution in the Rp ≫ R∗

c limit. As shown in
Fig. 4, the size of the intrinsic contribution to the asym-
metry ratio can be tuned by varying the GFA, which con-
trols the separation between the peaks in the nucleation
I(T ) and growth U(T ) rates.

IV. CONCLUSION

We performed MD simulations of binary Lennard-
Jones systems to model the crystallization process during
heating and cooling protocols in metallic glasses. We fo-
cused on measurements of the ratio of the critical heating

R∗

h and cooling R∗

c rates, below which crystallization oc-
curs during the heating and cooling trajectories. We find:
1) R∗

h > R∗

c for all systems studied, 2) the asymmetry
ratio R∗

h/R
∗

c grows with increasing glass-forming ability
(GFA), and 3) the critical heating rate R∗

h(Rp) has an in-
trinsic contribution R∗

h(∞) and protocol-dependent con-
tribution R∗

h(Rp)−R∗

h(∞) that increases with decreasing
cooling rates Rp used to prepare the initial samples at
zero temperature. We show that these results are consis-
tent with the prediction from classical nucleation theory
that the maximal growth rate occurs at a higher temper-
ature than the maximal nucleation rate and that the sep-
aration between the peaks in nucleation I(T ) and growth
U(T ) rates increases with the GFA. Predictions from
CNT are able to qualitatively capture the dependence
of the asymmetry ratio on the GFA as measured through
R∗

c for both our MD simulations and recent experiments
on BMGs as well as on Rp for the MD simulations. Thus,
our simulations have addressed how the thermal process-
ing history affects crystallization, which strongly influ-
ences the thermoplastic formability of metallic glasses.
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