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We provide exact expressions for the electrostatic energy of uniformly-charged prolate and oblate spheroidal

shells. We find that uniformly-charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb

energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the high-

est Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a

uniformly-charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation

calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we con-

sider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa

two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium

free energy as a function of the shell’s aspect ratio for both area-constrained and volume-constrained cases.

Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for

high values of shell volume fractions.

I. INTRODUCTION

Shapes of physical systems as diverse as blood cell mem-

branes, colloidal particles, nanowires, and galaxies are often

considered as spheroidal with varying degrees of eccentric-

ity. Many charged structures such as colloids or emulsions are

usually modeled as spheroidal shells with a uniform surface

charge density. To our best knowledge, the expression for the

Coulomb energy of a uniformly-charged spheroidal shell is

not available in the literature. In this article, we provide the

needed result. Further, we derive a general expression for the

change in the Coulomb energy of a uniformly-charged shell

due to small, area-conserving perturbations on the spherical

shape. Using the result, we explore the existence of defor-

mations that can lower the electrostatic energy relative to the

unperturbed charged sphere.

We note that a closed-form expression for the electrostatic

potential energy of a solid homogeneously-charged spheroid

can been obtained [1]. Further, the electrostatic energy of a

conducting spheroidal shell as a function of the aspect ratio is

available elsewhere [2]. Calculations of the electrostatic po-

tential for a system of point charges inside dielectric spheroids

[3, 4] have been performed as well. On the other hand, it

is useful to note the work in the context of solving Poisson-

Boltzmann equation in spheroidal geometry [5, 6]. In this pa-

per, we provide a comprehensive study of the homogeneously-

charged spheroidal shell system which has been missing in the

literature.

Primary motivations behind our calculations stem from the

study carried out in Ref. 7, where equilibrium shapes of

charged, soft shells constrained to maintain a fixed volume

were analyzed using molecular dynamics simulations. Some

∗ vjadhao1@jhu.edu; Present address: Department of Physics and Astron-

omy, Johns Hopkins University, Baltimore, MD, 21218
† m-olvera@northwestern.edu

of the results derived in the present article were employed

to verify the oblate-shaped shell structures found in Ref. 7

and calculate the effects of ion condensation on the equilib-

rium shape of these structures. The supporting information

associated with Ref. 7 also contained a brief derivation of the

electrostatic energy of a uniformly-charged oblate spheroidal

shell. In this paper, we derive the general expression for the

Coulomb energy of prolate spheroidal shells. For the sake of

completeness we also include the derivation of the Coulomb

energy of oblate shells showing details that were omitted in

Ref. 7. We analyze the variation of the Coulomb energy

of spheroidal shells, subject to the constraints of fixed area

or volume, as the aspect ratio of the shell is changed. We

also examine the effects of ion condensation, computed via a

Manning-Oosawa two-state model analysis [8, 9], on the vari-

ation of the equilibrium free energy of the shell-counterion

system. Finally, we note that it is straightforward to augment

the energy expressions obtained here to reveal the gravita-

tional potential energy of a uniformly-dense spheroidal sur-

face which is often used as a model to study galaxies [10].

The key findings of this paper are: i) A homogeneous pro-

late (cigar-shaped) spheroidal shell with eccentricity greater

than ∼ 0.9 has a lower electrostatic energy than a spherical

shell of the same area. The lowest-energy shape of the shell,

constrained to maintain its area, is a very long and thin pro-

late spheroid whose energy approaches zero as its major-axis

length is stretched to infinity. ii) For shells that are constrained

to maintain their volume, the spherical shape has the maxi-

mum Coulomb energy. An infinitely long and thin wire-like

shape and a thin, flat disc of infinite area, are the degenerate

lowest-energy shapes with vanishing energy. iii) Perturbation

calculations show that, for the case of fixed area constraint, the

Coulomb energy of a uniformly-charged sphere can be low-

ered by a buckling-type deformation. iv) Results from the

two-state model approximation of the shell-counterion sys-

tem show that counterion condensation favors the formation

of spheroidal structures over a sphere of equal area for high

values of shell volume fractions.
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The paper is organized as follows. In Sec. II, we provide

the expression for the Coulomb energy of a uniformly-charged

spheroidal shell, discuss the important limiting cases, and spe-

cialize the expression for the case of constant area and con-

stant volume constraints. Sec. III shows the comparison be-

tween the energy of a sphere and nearly-spherical structures

formed by a small, generic perturbation around the spherical

shape. In Sec. IV, we discuss the effects of charge renormal-

ization on the energies obtained for the spheroidal shell sys-

tem and Sec. V is the conclusion. Appendices A and B present

the derivation of the Coulomb energy of uniformly-charged

prolate and oblate spheroidal shells respectively, and in Ap-

pendix C we derive the electrostatic energy of a uniformly-

charged circular disc.

II. ELECTROSTATIC ENERGY OF

UNIFORMLY-CHARGED SPHEROIDAL SHELLS

Consider a spheroidal shell with charge Q distributed uni-

formly over its surface such that the charge density is given by

σ = Q/A, where A is the area of the spheroid. A spheroid is

an ellipsoid two of whose semi-principal axes are equal. As-

suming that the equal lengths correspond to the dimensions

along the x and y axes, such that the cross section normal to

the z-axis is a circle, we can describe the spheroidal shell via

the equation:

r2

a2
+

z2

c2
= 1, (1)

where a and c are the semi-principal axes, and r =
√

x2 + y2

is the distance between the point on the surface of the spheroid

and the z-axis. A prolate spheroid is a spheroid where c > a,

whereas an oblate spheroid corresponds to the c < a condition

(see Fig. 1). Clearly when a = c, the spheroid reduces to a

sphere.

It is convenient to characterize the spheroid by defining the

aspect ratio λ defined as

λ =
c

a
. (2)

Values of λ < 1 correspond to oblate spheroid whereas a pro-

late spheroid is associated with λ > 1. λ → 0 corresponds to

a circular disc, λ = 1 is a sphere, and λ → ∞ limit produces

an infinitely long and thin rod-like spheroid. It is also useful

to introduce the eccentricity ep of a prolate spheroid defined

as:

ep =

√

1− a2

c2
. (3)

Similarly, we have the eccentricity eo for an oblate spheroid:

eo =

√

1− c2

a2
. (4)

Note that either eccentricities lie between 0 and 1. When

eo, ep → 0, the spheroid reduces to a sphere. The limit eo → 1

a

c

z

x

c

a x

z

(a) (b)

FIG. 1. Cross-section of a spheroid normal to the y-axis with c and

a as the semi-axis lengths and λ = c/a being the spheroid’s aspect

ratio. (a) Prolate spheroid with λ > 1. (b) Oblate spheroid with

λ < 1.

leads to a circular disc and ep → 1 corresponds to a very long

and thin rod like shape. We will invoke these limits at several

places in what follows.

In Appendix A, we derive the electrostatic energy of a

uniformly-charged prolate spheroidal shell. Our calculations,

which employ the standard method of separation of variables

[11, 12], lead to the following result:

U(ep, c, σ) = 4π2σ2c3
1− e2p
ep

×
∑

n∈even

2n+ 1

2
Pn(1/ep)Qn(1/ep) (Hn(ep))

2 ,

(5)

where n is an even integer, Pn and Qn are Legendre functions

of the first and second kind respectively, and Hn(ep) is the

integral

Hn(ep) =

∫ π

0

√

1− e2pcos2v Pn(cosv)sinv dv. (6)

It is useful to express the result in terms of the total charge Q
rather than σ. Using the fact that the area of a prolate spheroid

is

Ap(ep, c) = 2πc2
√

1− e2p T (ep), (7)

where

T (ep) =
√

1− e2p +
sin−1(ep)

ep

, (8)

we obtain the electrostatic energy of a homogeneously-

charged prolate spheroidal shell to be:

Up =
Q2

2c epT (ep)2

∑

n∈even

(2n+1)Pn

(

1

ep

)

Qn

(

1

ep

)

Hn(ep)
2

(9)

where Up ≡ Up(ep, c, Q). Eq. (9) provides the first key re-

sult of this paper. We point out that the above expression

for the Coulomb energy is obtained assuming that the pro-

late spheroidal shell is in vacuum. If the medium surrounding
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the shell is polarizable and uniform, the above result for the

energy must be scaled down by the dielectric constant of the

medium.

Appendix B provides the derivation for the Coulomb en-

ergy of the oblate spheroidal shell. We note that a brief ac-

count of this derivation appears in the supplementary infor-

mation of Ref. 7. We find the electrostatic energy to be:

U(eo, a, σ) =
4π2σ2a3i

eo

×

∑

n∈even

2n+ 1

2
Pn

(

i

√

1− e2o
eo

)

Qn

(

i

√

1− e2o
eo

)

In(eo)
2,

(10)

where n is an even integer and In(eo) is the integral

In(eo) =

∫ π

0

√

1− e2osin2v Pn(cosv)sinv dv. (11)

Once again, we express below the result in terms of the total

charge Q. Using the fact that the area of an oblate spheroid is

Ao(eo, a) = 2πa2S(eo), (12)

where

S(eo) = 1 +

(

1

eo

− eo

)

tanh−1eo, (13)

we obtain the electrostatic energy of the uniformly-charged

oblate spheroidal shell to be:

Uo =
Q2i

2aeoS(eo)2
×

∑

n∈even

(2n+ 1) Pn

(

i

√

1− e2o
eo

)

Qn

(

i

√

1− e2o
eo

)

In(eo)
2,

(14)

where Uo ≡ Uo(eo, a,Q). Eq. (14) provides the second key

result of this paper. In several physical situations, geomet-

ric constraints such as the constraint of fixed area or vol-

ume are naturally present and it is of interest to find the shell

shape that minimizes the Coulomb energy when only area-

preserving or volume-conserving deformations are allowed.

Using the above expressions for the electrostatic energy, we

analyze the Coulomb energy of a shell that is subjected to

these constraints and present the results in sections II B and

II C. Before that we take a quick look at the limiting cases of

the energy expressions found in Eqs. (9) and (14).

A. Limiting cases

We recall that both the prolate and oblate eccentricities lie

between 0 and 1. First we let ep, eo approach zero, which

corresponds to a spherical shell, and find

Up(ep → 0, a,Q) = Uo(eo → 0, a,Q) =
Q2

2a
. (15)

We recover the well-known result for the energy of a

uniformly-charged spherical shell.

Taking the limit eo → 1 of the oblate energy expression in

Eq. (14) gives

Uo(eo → 1, a,Q;n ≤ 6) = 0.84872
Q2

a
, (16)

where, because of the rapid convergence of the sum in

Eq. (14), we have included terms up to n = 6 in obtaining the

above result. The limit eo → 1 corresponds to the shape of

a circular disc. Unlike the spherical case, an exact expression

for the energy of a uniformly-charged disc to our best knowl-

edge has not been reported in the literature. It is possible to

arrive at this energy starting from the electrostatic potential

on the surface of the disc derived in Ref. [13]. We show the

derivation of the energy in Appendix C. The result is

Udisc =
8

3π

Q2

a
, (17)

where a is the radius of the disc and Q = πa2σ is the to-

tal charge. We can now compare the disc energy obtained in

Eq. (16) with the above exact result and find the deviation to

be ∼ 0.01%. Clearly, the two energies are in very good agree-

ment.

The prolate energy expression, Eq. (9), in the limit of pro-

late eccentricity approaching unity gives Up(ep → 1, a,Q) =
∞, that is, the energy diverges. In this limit, the prolate

spheroid is transformed into a thin, long rod-like shape where

the width of the rod is shrunk at the same time as the length

of the rod is stretched out. The divergence of the energy

arises because, as the width narrows, the distance between the

charges on the surface shrinks faster in comparison with the

charges growing apart due to the extension in the length. As

we will find out in the next section, when we impose con-

straints of constant shell area or volume, the prolate energy no

longer diverges when the aforesaid limit is taken.

B. Charged spheroidal shells of equal area

We begin with the results for the application of area con-

straint. We will assume the reference shell shape in the analy-

sis to be the sphere. The area of a prolate spheroid is given by

Eq. (7) which we rewrite below:

Ap(ep, c) = 2πc2
√

1− e2p

(

√

1− e2p +
sin−1(ep)

ep

)

. (18)

This equation suggests that if A is fixed, c and ep are coupled.

Assuming that the area is constrained to that of a sphere of

radius R, c and ep become related via the equation:

c(ep, R) = R

√

√

√

√

2
√

1− e2p

(√

1− e2p +
sin−1(ep)

ep

) . (19)

Eliminating c from Eq. (9) using the above equation, we arrive

at the expression for the electrostatic energy of a uniformly-

charged prolate spheroidal shell constrained to a fixed area of
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4πR2 as a function of the eccentricity ep:

Up,A(ep, R,Q) =

Q2

√

1− e2p +
√

1
e2p

− 1 sin−1(ep)

2R
√
2epT (ep)2

× (20)

∑

n∈even

(2n+ 1)Pn (1/ep)Qn (1/ep)Hn(ep)
2.

We proceed similarly with the case of an oblate spheroidal

shell. The area of an oblate spheroid is given by Eq. (12)

which we rewrite below:

Ao(eo, a) = 2πa2
(

1 +

(

1

eo

− eo

)

tanh−1eo

)

, (21)

where tanh−1 denotes the inverse hyperbolic tangent function.

We note that in the limit eo → 1, the oblate shell reduces to a

structure resembling a circular disc having two faces with total

area 2πa2. If Ao is fixed, eo and a are coupled and recalling

that the area is constrained to the value 4πR2, we obtain the

relation:

a(eo, R) = R

√

√

√

√

2

1 +
(

1
eo

− eo

)

tanh−1eo

. (22)

Eliminating a from Eq. (14) using the above equation, we

arrive at the expression for the electrostatic energy of a

uniformly-charged oblate spheroidal shell subject to the con-

straint of fixed area:

Uo,A(eo, R,Q) =

Q2i

√

1 +
(

1
eo

− eo

)

tanh−1eo

2R
√
2eoS(eo)2

× (23)

∑

n∈even

(2n+ 1) Pn

(

i

√

1− e2o
eo

)

Qn

(

i

√

1− e2o
eo

)

In(eo)
2.

It is useful to express the energies in Eqs. (20) and (23) as

a function of the aspect ratio λ defined in Eq. (2). Noting that

ep =
√
λ2 − 1/λ and eo =

√
1− λ2, we arrive at the result:

UA(λ) =

{

Uo,A(
√
1− λ2, R,Q) 0 < λ < 1

Up,A(
√
λ2 − 1/λ,R,Q) λ ≥ 1,

(24)

where we have suppressed the dependence of UA on other

variables for brevity. The values of λ ≥ 1 correspond to pro-

late spheroids and 0 < λ < 1 region corresponds to oblate

spheroids. Equation (24) provides the Coulomb energy of

uniformly-charged spheroidal shells, all having the same area,

for values of the aspect ratio λ ranging from 0 to ∞.

We now analyze the variation of UA(λ) as λ is changed.

We set Q = R = 1 for simplicity. We first confirm that

UA(λ → 1) = 0.5 as should be the case for a uniformly-

charged spherical shell (λ = 1 ⇒ a = c) for the aforesaid pa-

rameters. Further, it is easy to check that UA(λ → 0) ∼ 0.6
which is equivalent to the Coulomb energy of an infinitely

thin, uniformly-charged circular disc of unit radius. Taking

the opposite limit, we find UA(λ → ∞) = 0, which suggests

that the Coulomb energy of a very thin and long wire-like
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FIG. 2. Coulomb energy of charged spheroidal shells of equal area as

a function of their aspect ratio λ. The region 0 ≤ λ < 1 corresponds

to oblate shells and values of λ > 1 represent prolate shells. Solid

red line corresponds to the homogeneously-charged spheroidal shell

and dashed green line is the result for the conducting spheroidal shell.

The dotted blue line is energy of a spherical shell (reference) which is

0.5 for either cases (homogeneous or conducting). The above results

are for Q = 1, R = 1. See text for the meaning of symbols.

shape (of finite area) vanishes. We graph the function UA(λ)
as a function of λ in Fig. 2. We choose the number of terms

appearing in the series expansion in the energy expressions

derived in Eqs. (20) and (23) to be n = 6 as the series con-

verges rapidly. As is evident from Fig. 2, we observe that the

sphere shape is a local minimum. However, as the aspect ratio

is increased to values beyond∼ 2.286, which corresponds to a

prolate eccentricity of ∼ 0.9, the Coulomb energy is lowered

below that of the sphere. The energy continues to decrease as

λ increases further and we find that the shape that corresponds

to the lowest Coulomb energy is the very thin and long pro-

late spheroidal shell (of area 4π), the minimum energy being

0. Further, the energy of the oblate spheroidal shell increases

upon increasing its eccentricity (or lowering the aspect ratio

λ), with the thin circular disc corresponding to the shape of

maximum energy.

It is instructive to compare the results for the case of

uniformly-charged spheroidal shells with that of conducting

spheroidal shells. Exact expressions for the latter have been

obtained elsewhere [2]. Using these exact results, the particu-

lar expression for the case where the area is held fixed can be

easily derived and we summarize the final results below:

UA(λ) =







Q2

2a(
√
1−λ2,R)

1√
1−λ2

tan−1
√
1−λ2

λ 0 < λ < 1

Q2

2c(
√
1−λ2/λ,R)

λ√
λ2−1

tanh−1(
√
λ2−1
λ ) λ ≥ 1.

(25)

In the above equation, the functions a and c are given by

Eqs. (22) and (19) respectively. Similar to the above analysis

for homogeneously charged shells, we can evaluate the varia-

tion of UA as a function of λ and we obtain the green dashed

line in Fig. 2. We find that this line is always below the red

solid line. This implies that allowing the surface charges to
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move freely, as is the case with the conducting shell, lowers

the Coulomb energy. In addition, it is important to note that

all the prolate conducting shells have a lower energy than a

spherical conducting shell. In sharp contrast, for uniformly-

charged shells, the spherical shape is a clear local minimum

as evidenced by the red solid curve in the inset of Fig. 2.

C. Charged spheroidal shells of equal volume

We now analyze the Coulomb energy of spheroidal shells

that are subjected to the volume constraint, that is all the shells

have the same volume. This analysis is very similar to the

one presented in the last subsection and so we will keep the

following discussion brief. The volume of a prolate spheroid

is

Ωp(ep, c) =
4

3
πc3

(

1− e2p
)

. (26)

This equation suggests that if Ωp is fixed to (4/3)πR3, then c
and ep are related via the equation:

c(ep, R) =
R

(

1− e2p
)1/3

. (27)

Eliminating c from Eq. (9) using the above equation, we arrive

at the expression for the electrostatic energy of a uniformly-

charged prolate spheroidal shell constrained to a fixed volume

of (4/3)πR3 as a function of the eccentricity ep:

Up,V (ep, R,Q) =

(

1− e2p
)1/3

Q2

2RepT (ep)2
× (28)

∑

n∈even

(2n+ 1)Pn (1/ep)Qn (1/ep)Hn(ep)
2.

We proceed similarly with the case of an oblate spheroidal

shell. The volume of an oblate spheroid is given by

Ωo(eo, a) =
4

3
πa3

√

1− e2o . (29)

If Ωo is fixed, eo and a are coupled and recalling that the vol-

ume is constrained to the value (4/3)πR3, we obtain the rela-

tion:

a(eo, R) =
R

(1− e2o)
1/6

. (30)

Eliminating a from Eq. (14) using the above equation, we

arrive at the expression for the electrostatic energy of a

uniformly-charged oblate spheroidal shell subject to the con-

straint of fixed volume:

Uo,V (eo, R,Q) =
Q2i(1− e2o)

1/6

2ReoS(eo)2
×

∑

n∈even

(2n+ 1) Pn

(

i

√

1− e2o
eo

)

Qn

(

i

√

1− e2o
eo

)

In(eo)
2.

(31)
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FIG. 3. Coulomb energy of charged spheroidal shells of equal vol-

ume as a function of their aspect ratio λ. The region 0 ≤ λ < 1

corresponds to oblate shells and values of λ > 1 represent prolate

shells. Solid red line corresponds to the homogeneously-charged

spheroidal shell and dashed green line is the result for the conducting

spheroidal shell. The dotted blue line is energy of a spherical shell

(reference) which is 0.5 for either cases (homogeneous or conduct-

ing). The above result is for Q = 1, R = 1. See text for the meaning

of symbols.

As in the case of the area constraint, it is useful to express

the energies in Eqs. (28) and (31) as a function of the aspect

ratio λ. Carrying out the transformation from eccentricities

ep, eo to λ, we arrive at the result:

UV (λ) =

{

Uo,V (
√
1− λ2, R,Q) 0 < λ < 1

Up,V (
√
λ2 − 1/λ,R,Q) λ ≥ 1,

(32)

where we have suppressed the dependence of UV on other

variables for brevity. Equation (32) provides the Coulomb

energy of uniformly-charged spheroidal shells, all having the

same volume, for values of λ ranging from 0 to ∞.

In Fig. 3, we plot the change in UV as λ is varied for the pa-

rametersQ = 1 andR = 1. We find thatUV (λ → 1) = 0.5 as

expected for the homogeneously-charged sphere. We notice

that the sphere represents the shape of maximum Coulomb en-

ergy which is in sharp contrast with the above analyzed case of

the area-constrained charged shells. We observe in Fig. 3 that

every other energy value is degenerate, in the sense that there

are two distinct shapes that correspond to the same energy, one

of the shapes being an oblate and the other a prolate. We find

that the minimum energy for the volume-constrained charged

spheroidal shell is 0. The two shapes that correspond to this

value are a thin charged disc (of infinite area), and a long and

thin prolate spheroidal shape (of infinite area). Again, this

is in sharp contrast with the area-constrained charged shell

where the shape of minimum energy is unique and is a prolate

as pointed out in Sec. II B.

We compare the results for the uniformly-charged shells

with conducting spheroidal shells. The energy expression for

the volume-constrained conducting shell problem is the same

as Eq. (25) except that the functions a and c are now deter-
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mined by Eqs. (30) and (27) respectively. Similar to Fig. 2,

we find the Coulomb energy of a conducting shell is always

lower than that of the homogeneously charged shell. Again,

we attribute this to the fact that for a conducting shell, the

charges will move until the shell surface becomes an equipo-

tential, and this movement always lowers the Coulomb en-

ergy. Finally, we note that in Fig. 3, the energy profiles for

the two different scenarios (homogeneous and conducting) are

similar in shape which is in contrast with Fig. 2 for the area-

constrained case.

III. ENERGY ANALYSIS OF PERTURBED SPHERES

Results of the preceding sections indicate that a uniformly-

charged sphere is locally stable to perturbations towards a pro-

late or oblate spheroid if the deformations preserve the surface

area. The stability of the charged sphere for arbitrary pertur-

bations in shape that preserve the area and maintain the unifor-

mity of the surface charge distribution is not addressed yet. In

this section, we explore this problem by deriving the expres-

sion for the energy variation of the shell due to small generic

perturbations on the spherical shape.

Consider a sphere of radius R0 that is represented by

~R0(θ, φ) = (R0 sin θ cosφ,R0 sin θ sinφ,R0 cos θ), (33)

where θ ∈ [0, π] and φ ∈ [0, 2π). A generic small perturba-

tion h(θ, φ) on the sphere produces a shape that can be repre-

sented by

~R(θ, φ) = ~R0(θ, φ) + h(θ, φ)N̂ (θ, φ), (34)

where N̂(θ, φ) = R−1
0

~R0(θ, φ) is the unit normal vector on

the sphere. Note that ~R(θ, φ) = ~R0(θ, φ)(1 + h(θ, φ)/R0)
and we consider perturbations to be small when they satisfy

the condition |h|/R0 ≪ 1. The metric tensor of the unde-

formed sphere is

gij =

(

R2
0 0
0 R2

0 sin
2 θ

)

, (35)

with its determinant g0 = (g0)11(g0)22 = R4
0 sin

2 θ. The de-

terminant of the metric tensor of the deformed shape defined

in Eq.(34) is [14]:

g = g0 + δg, (36)

where

δg = g0
[

4hH + (g0)
ijhihj + h2(4H2 + 2K)

]

+O(h3),
(37)

with H = 1/R0 and K = (1/R0)
2.

We assume that the charges on the surface interact via a

pair potential V (r) which only depends on the distance r
between them. We consider a homogeneous surface and al-

low only those deformations that keep the area unchanged.

Thus, the charge density is the same even in the deformed

shape. The charge elements on the unperturbed shape are

dq0 = σ0dA0 = σ0
√
g0d

2~x where σ0 = Q/A0 is the uni-

form charge density. The charge elements on the perturbed

shape are dq = σ0dA = σ0
√
gd2~x. Note that d2~x is a short-

hand for dθdφ. The change in the interaction energy brought

about by the deformation of the charged sphere is

H [h] =
σ2
0

2

∫

√

g(~x)d2~x
√

g(~x′)d2~x′ V
(∣

∣

∣

~R(~x′)− ~R(~x)
∣

∣

∣

)

− σ2
0

2

∫

√

g0(~x)d
2~x
√

g0(~x′)d2~x′ V
(∣

∣

∣

~R0(~x
′)− ~R0(~x)

∣

∣

∣

)

,

(38)

where the integration is over x1 = θ, x2 = φ, x′
1 = θ′, x′

2 =
φ′. We note that if H < 0, the energy of the perturbed sphere

is lower than that of the spherical system. The distance be-

tween two arbitrary points on the deformed sphere is

r =
∣

∣

∣

~R(~x′)− ~R(~x)
∣

∣

∣

=
∣

∣

∣

(

~R0(~x
′)− ~R0(~x)

)

+
(

h(~x′)N̂ (~x′)− h(~x)N̂(~x)
)
∣

∣

∣

= |~r0 + δ~r| = r0 +∆r, (39)

where ~r0 = ~R0(~x
′) − ~R0(~x) and δ~r = h(~x′)N̂(~x′) −

h(~x)N̂(~x). The r in Eq. (39) can be expanded in terms of

δ~r according to

∣

∣

∣

~f + δ ~f
∣

∣

∣
= f +∆f, (40)

where f = |~f | and

∆f =
~f · δ ~f
f

+
1

2

δ ~f · δ ~f
f

− 1

2

(~f · δ ~f)2
f3

+O(δf3). (41)

Therefore,

∆r =
1

2

r0
R0

(h(~x) + h(~x′)) +
1

2r0
(h(~x)− h(~x′))

2
(42)

+
1

2

r0
R2

0

h(~x)h(~x′)− r0
8R2

0

(h(~x) + h(~x′))
2
+O(h3).

We expand V (r) and
√

g(~x)g(~x′) in terms of h up to the

quadratic order:

V (r) = V (r0 +∆r) (43)

= V (r0) +
dV (r0)

dr0
∆r +

1

2

d2V (r0)

dr20
(∆r)2 +O(∆r3),

√

g(~x)
√

g(~x′) =
√

g0g′0 × (44)
[

1 +
1

2

(

δg

g0
+

δg′

g′0
+

δgδg′

g0g′0

)

− 1

8

(

δg

g0
+

δg′

g′0

)2
]

+O(h3),

where the prime on functions g0 and δg denotes that the vari-

able of the function is ~x′, e.g., g′0 is short for g0(~x
′). Note that

δg contains terms linear in h.

We formally write
√

g(~x)
√

g(~x′) =
√

g0g′0
(

1 + α(h) + β(h2)
)

and V (r) = V (r0) + A(h) +

B(h2), where α(h) and A(h) are terms linear in h and β(h2)
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and B(h2) represent terms quadratic in h. Eq. (38) can

therefore be written as

H =
σ2
0

2

∫

d2~xd2~x′√g0g′0 [A(h) + α(h)V (r0)]

+
σ2
0

2

∫

d2~xd2~x′√g0g′0
[

B(h2) + α(h)A(h) + β(h2)V (r0)
]

+O(h3). (45)

Using Eqs. (37) and (42), we obtain A(h) = r0
2R0

dV (r0)
dr0

(h +

h′) and α(h) = 2
R0

(h + h′). Up to the linear term in h,

Eq. (45) becomes

H =
σ2
0R

3
0

2

∫

dθdφdθ′dφ′ sin θ sin θ′
[

2V (r0) +
r0
2

dV (r0)

dr0

]

× (h(θ, φ) + h(θ′, φ′)) +O(h2). (46)

Note:

r0(θ, φ, θ
′, φ′) = (47)

R0

√

2 [1− cos θ cos θ′ − cos(φ− φ′) sin θ sin θ′].

The existence of terms linear in h in Eq. (46) suggests that

the spherical shape is not necessarily an energy extreme, open-

ing the possibility of shapes with lower energy than that of the

sphere. For V (r0) = 1/rα0 , the term in the square bracket

becomes

2V (r0) +
1

2
r0

dV (r0)

dr0
=

1

rα0

(

2− α

2

)

. (48)

We find that for α = 1, which represents the Coulomb poten-

tial, this term is non-zero. This indicates that the spherical sys-

tem may be unstable to the long-range Coulomb interaction.

We note that for α = 4, the above term vanishes implying

there are no linear terms in h for this potential. Furthermore,

the sign of the energy changes as the value ofα goes beyond 4,

implying the distinct stability behaviors of the spherical shape

for long- and short-range potentials.

We now investigate if there exists a perturbation that can

lower the Coulomb energy of the uniformly-charged sphere,

in other words, a deformation for which H < 0. We consider

a generic form for the perturbation h represented by h(θ, φ) =
∑

l,m almYlm(θ, φ), where Ylm are the spherical harmonic

functions with l = 0, 1, 2, . . . and m = −l,−l+1, . . . , l. Here

alm are the unknown expansion coefficients or modes. As h
is taken to be a small perturbation, we require |alm| ≪ R0.

We take m = 0, thus examining axisymmetric deformations.

The constraint of fixed area leads to the relation between the

coefficients al0. The variation of area [14] is

δA = 2
√
4πa00R0 +

∑

lm

|alm|2
(

1 +
1

2
l(l + 1)

)

. (49)

Setting δA = 0 leads to

2
√
4πa00R0 = −

∑

lm

|alm|2
(

1 +
1

2
l(l + 1)

)

. (50)

We find that a00 is always negative, implying a uniform

shrinking of the shell to preserve the area. When only uni-

form shrinking (or expansion) is allowed, al0 = 0 for l >
0. For this case, from Eq. (50), we obtain the relation:

2
√
4πa00R0 + a200 = 0. This equation has two solutions,

a00 = −4
√
πR0, which is unphysical as |a00| > R0, and

a00 = 0. The latter solution indicates no deformations on the

sphere.

Now we consider perturbations characterized by two modes

a00 and a10:

h(θ, φ) =
a00√
4π

+ a10

√

3

4π
cos θ, (51)

where θ ∈ [0, π]. We note that the modes a00 and a10 are

coupled due to the constraint of fixed area, Eq. (50), leading

to the relation:

1

2
a200 + 2

√
πR0a00 + a210 = 0. (52)

Recall that a00 ≤ 0 and the above equation implies a10 can

assume positive or negative values. Physically, the perturba-

tion h of Eq. (51) corresponds to a buckling of the spherical

shape. If we identify θ = 0 as the north pole and consequently

θ = π as the south pole, we find that the north pole is buckled

inward for a10 < 0 and the south pole is buckled inwards for

a10 > 0.
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FIG. 4. The total Coulomb energy change H vs the coefficient a00.

The inset shows the variation of H with a10. The shape of the per-

turbed sphere is characterized by the two modes a00 and a10, which

are coupled due to the constraint of the fixed area.

The change in the total Coulomb energy H of the system

(up to linear terms in h) for this perturbation can be calculated

from Eq. (46) and we find:

H =
3σ2

0R
3
0

2
√
4π

∫

dθdφdθ′dφ′ sin θ sin θ′
a00 + a10

√
3 cos θ

r0
.

(53)

We note that the shape of the perturbed sphere is independent

of the sign of the coefficient a10; to reverse the sign of a10
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is to rotate the shape by π. This suggests that terms linear in

a10 should be absent in H . By making use of the parity of the

integrand in the four quadrants: {θ ∈ [0, π/2], θ′ ∈ [0, π/2]},

{θ ∈ [0, π/2], θ′ ∈ [π/2, π]}, {θ ∈ [π/2, π], θ′ ∈ [0, π/2]},

and {θ ∈ [π/2, π], θ′ ∈ [π/2, π]}, we find that the integral

involving the a10 cos θ term in Eq. (53) vanishes. Noting that

the remaining integral (involving the a00 term) in Eq. (53) can

be read as the total Coulomb energy of a uniformly-charged

spherical shell, we arrive at the following analytical result for

H :

H = 12π3/2σ2
0R

2
0a00. (54)

Because a00 ≤ 0, we see from Eq. (54) that H ≤ 0. In other

words, the perturbation in Eq. (51) lowers the Coulomb en-

ergy of the original unperturbed spherical shape. In Fig. 4, we

plot H vs a00 for σ0 = 1 and R0 = 1. Recalling that a00
characterizes the amount of buckling in the deformed shape,

we find that the system energy keeps decreasing with the rise

in the buckling of the shape. Noting that a00 and a10 are cou-

pled via Eq. (50), we obtain H as a function of a10 using

Eq. (54):

H = 12π3/2σ2
0R

2
0

(

√

4πR2
0 − 2a210 −

√

4πR2
0

)

. (55)

As expected, H is found to be independent of the sign of a10.

In the inset of Fig. 4, we show the variation of H with a10.

The above calculations demonstrate that a uniformly-charged

sphere is electrostatically unstable to a buckling-type defor-

mation in the constraint of fixed area.

Alongside the computation of H , which quantifies the

change in the total Coulomb energy, it is instructive to exam-

ine how the Coulomb energy changes locally at specific points

on the shell surface as a result of the deformation proposed in

Eq. (51). We define the local Coulomb energy at a point as the

interaction energy of the charge element at that point with all

the other charges on the surface. For the uniformly-charged

sphere (undeformed state), the local Coulomb energy is the

same at all points on the surface.

We discuss, without any loss of generality, the case of

a10 < 0 for which the north pole (θ = 0) is buckled inwards.

For simplicity, we perform calculations for two points on the

surface: the north and the south poles. For the perturbation h
given by Eq. (51), we find the change in the local Coulomb

energy (relative to the original spherical conformation) of a

charge element located at the north pole to be:

dH =
1

2
σ2
0dA

′
∫

R0 sin θdθdφ
3

2r0
(h (θ, φ) + h (0, 0)) ,

(56)

where dA′ =
√

g0(xN )d2xN is the area element associated

with the charge in the undeformed (spherical) conformation

and r0 = 2R0 sin(θ/2). We are primarily interested in the

sign of dH ; if this interaction energy is negative (positive),

that would imply the local Coulomb energy for the deformed

shape is lowered (raised) relative to the original sphere. We

define

HN = σ2
0R0

∫

dθdφ sin θ
3

2r0
(h (θ, φ) + h (0, 0)) (57)

and note that HN and dH have the same sign and differ by

a constant prefactor. Upon substituting h from Eq. (51) in

Eq. (57), the latter becomes

HN = 6
√
πσ2

0

(

a00 +
2√
3
a10

)

. (58)

We follow a similar procedure to obtain the change in the lo-

cal Coulomb energy density HS at the south pole. We find

that HS is given by Eq. (58) with a10 replaced by −a10. Fi-

nally, noting that the two modes a00 and a10 are coupled via

Eq. (50), we express HN and HS as functions of a00:

HN,S = 6
√
πσ2

0

(

a00 ∓
√

2

3

(

−4
√
πa00R2

0 − a200
)

)

,

(59)

where the −(+) sign corresponds to the north (south) pole.

We plot HN and HS vs a00 in Fig. 5 for σ0 = 1, R0 = 1.

We find that as the magnitude a00 of the deformation (buck-

ling) is increased, the local Coulomb energy is lowered at the

north pole (HN ≤ 0). On the other hand, at the south pole,

the local Coulomb energy is higher relative to its value in the

undeformed spherical case (HS ≥ 0).
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 0

 0.5
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-0.01 -0.008 -0.006 -0.004 -0.002  0

a00
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FIG. 5. HN (dashed green) and HS (solid red) vs a00 for the pertur-

bation h characterized by two modes a00 and a10. The above plot is

for the case when a10 < 0, which corresponds to the inward buckling

of the north pole. See text for the meaning of the symbols.

IV. CHARGE RENORMALIZATION IN SPHEROIDAL

SHELLS

In previous sections, we analyzed the Coulomb energy

of uniformly-charged spheroidal and sphere-like shells and

determined the conformations that correspond to the lowest

Coulomb energy under a given geometric constraint. The

shell was considered to be an isolated system in vacuum with

charges embedded on its surface. In realistic settings, how-

ever, we expect the shells to be in an environment where

the surrounding medium (solvent) contains counterions that
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neutralize the shell charge, rendering the overall system elec-

troneutral. In this light, results obtained thus far are reliable

in the event that the associated counterions remain in the bulk,

far from the shell surface. In situations where a significant

fraction of the total number of counterions condense on the

shell, the free energy of the shell-counterion system, deter-

mines the equilibrium shell conformations. We note that at

infinite dilution, in the spherical case, the entropy is expected

to dominate the shell-counterion Coulomb attraction, leading

to no counterion condensation on the shell surface. However,

at finite shell concentrations (volume fractions), condensa-

tion is expected to occur, even in salt-free settings [15–17].

The condensation of the counterions can be viewed as renor-

malizing the (bare) charge on the shell [15]. This renormal-

ized charge and consequently the behavior of the equilibrium

free energy of the shell-counterion system can be obtained

in a qualitative way by using the Manning-Oosawa two-state

model [8, 9, 16, 18]. In this section, we use this two-state

model approximation and compute the renormalized charge

on uniformly-charged oblate and prolate spheroidal shells at

finite shell concentrations in salt-free settings and find the

variation of the equilibrium free energy of the system as a

function of the shell aspect ratio.

We investigate the effects of counterion condensation on

spheroidal shells of equal area and spheroidal shells of equal

volume. For either case, we take the area (volume) to be

constrained to that of a sphere of radius R. We consider a

Wigner-Seitz (WS) cell of volume VWS containing a single

shell of volume Ω, with Q charge on its surface, placed at

the center. We work with finite values of the shell concentra-

tion η = Ω/VWS. The cell also contains N counterions, each

of charge Q/N making the overall shell-counterion system

electroneutral. The counterions are separated into two dis-

tinct groups: free ions and condensed ions. The condensed

counterions are restricted to have translational motion in a

thin layer of volume Vc = A(λ,R)b surrounding the shell,

where A(λ,R) is the area of the shell and b is the thickness of

the layer. Note that as we restrict our analysis to shells con-

strained to a fixed area or volume, the area A (and the volume

Ω) of the shell can be considered as a function of the aspect

ratio λ and R. Free ions occupy the available space in the

WS cell which in the dilute limit can be approximated to be

the volume of the cell. We choose experimentally relevant pa-

rameters: total chargeQ = 600 electron units (which amounts

to ∼100 mV of surface potential),N = 1000 counterions, and

R = 10 nm. Calculations are performed for room tempera-

ture T = 300 K and we take water as the dielectric medium

surrounding the shell.

Let α be the fraction of counterions that condense. Clearly,

(1−α)N ions remain free in the bulk. Further, the condensed

ions neutralize the surface charge on the shell reducing the

net charge to (1 − α)Q. We approximate the WS cell to be

spherical with volume VWS = (4/3)πR3
WS, with RWS being

the radius of the cell that gets determined by the shell volume

fraction (concentration) η. We vary the shell concentration η
from 10−12 to 10−4. We write the free energy (in units of

kBT ) associated with the shell as:

F (α, λ) = (1 − α)2U(λ) + αN ln

(

αNΛ3

A(λ,R)b

)

− αN

+ (1− α)N ln

(

(1− α)NΛ3

VWS

)

− (1 − α)N,

(60)

where Λ is the thermal de Broglie wavelength. The first term

is the electrostatic potential energy of the shell with renormal-

ized charge (1 − α)Q. The function U (shown below) rep-

resents the bare (unrenormalized) Coulomb energy and is de-

termined based on particular geometric constraint employed.

The second and third terms stem from the entropic contribu-

tion of the αN condensed ions, and the last two terms cor-

respond to the entropy of (1 − α)N free counterions. Note

that within this model, the entropy of both free and condensed

ions is assumed to be that of an ideal gas. Also, just like U ,

the form of the area A of the shell and its volume Ω depends

on the constraint applied as shown below.

For the case of shells subject to the equal area constraint,

the function U(λ) reads

U(λ) = UA(λ) =

{

lBUo,A(
√
1− λ2, R,Q) 0 < λ < 1

lBUp,A(
√
λ2 − 1/λ,R,Q) λ ≥ 1,

(61)

where Uo,A and Up,A are available from Eq. (24), which pro-

vides the expression for the Coulomb energy of uniformly-

charged spheroidal shells of equal area, and the above re-

sult is expressed in units of kBT by introducing the Bjerrum

length lB. Recall that the values of λ ≥ 1 correspond to pro-

late spheroids and 0 < λ < 1 region corresponds to oblate

spheroids. Owing to the constraint, the area of the shell is

simply A(λ,R) = 4πR2. The shell volume Ω follows from

Eqs. (26), (19), (29), and (22):

Ω(λ,R) =

{

Ωo

(√
1− λ2, a

(√
1− λ2, R

))

0 < λ < 1

Ωp

(√
λ2 − 1/λ, c

(√
λ2 − 1/λ,R

))

λ ≥ 1.
(62)

For the volume-constrained problem, U(λ) follows from

Eq. (32):

U(λ) = UV (λ) =

{

lBUo,V (
√
1− λ2, R,Q) 0 < λ < 1

lBUp,V (
√
λ2 − 1/λ,R,Q) λ ≥ 1.

(63)

Following Eqs. (7), (12), (27), and (30), the area function A
for this case becomes

A(λ,R) =

{

Ao

(√
1− λ2, a

(√
1− λ2, R

))

0 < λ < 1

Ap

(√
λ2 − 1/λ, c

(√
λ2 − 1/λ,R

))

λ ≥ 1.
(64)

Finally, owing to the constraint, the shell volume is simply

Ω = 4πR3/3.

We approximate the thickness b of the condensed layer by

the Gouy-Chapman (GC) length b = 1/(2πlBσ), where σ is

the unrenormalized charge density on the shell surface [18].

Higher charge density or longer Bjerrum length leads to a

stronger shell-counterion attraction implying a thin condensed
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layer; this is indeed reflected when b is chosen as the layer

thickness as seen from the above expression. We also note

that the GC length is a length scale associated with the planar

interface and hence our analysis is limited to the regime where

b is shorter than the characteristic lengths associated with the

shell. We have carried out the following analysis by choosing

the Bjerrum length lB as the thickness of the condensed-layer

and we find no changes in the conclusions reached below.

The free energy F in Eq. (60) can be considered as a func-

tion of λ and α. For a given λ (shape), we minimize the free

energy with respect to α to find the fraction of counterions that

condense on the shell. We obtain the extremum condition:

−ξ(1− α) +N ln

(

α

1− α

1

η

Ω(λ,R)

A(λ,R)b

)

= 0, (65)

where ξ = 2U(λ) measures the strength of the Coulomb in-

teractions and η is the volume fraction of the shells given by

η =
Ω

VWS

. (66)

For a given λ and η, we solve Eq. (65) using Mathematica

and obtain α as a function of λ. We carry out the study for

a wide range of shell volume fractions ranging from 10−12

to 10−4. Using the value of α, the renormalized electrostatic

energyU of the shell at equilibrium is known from Eq. (61) or

Eq. (63) (depending on the constrained problem under study),

by replacing Q with (1− α)Q:

U(λ,Q) = U(λ, (1− α)Q). (67)

Employing the above result and the equilibrium value of the

condensate fraction α (obtained as the solution of Eq. (65)), it

is easy to show that the difference in the equilibrium free en-

ergies of a spheroidal shell and a spherical shell, dF , defined

as

dF (λ) = F (λ)− F (λ → 1) (68)

is given by:

dF =
1 + α

1− α
U − 1 + αs

1− αs

U s +N ln
1− α

1− αs

. (69)

In Eq. (69), αs and U s denote, respectively, the values of the

condensate fraction and the renormalized Coulomb energy for

a spherical shell.

We now analyze the variation of dF as λ is changed. We

consider λ values from 0 to 4 like in the study of the Coulomb

energy of isolated, homogeneously-charged spheroidal shells

recorded in Figs. 2 and 3. We begin with the case of fixed

shell area. In Fig. 6, we plot dF , computed from Eq. (69), as

a function of λ for various values of η. The red solid line is

the Coulomb energy dU of isolated spheroidal shells of equal

area measured relative to the Coulomb energy of the spherical

shell with identical parameters. This line acts as a reference

curve to all other lines which are the result of taking ion con-

densation into consideration. Recall that for the counterion-

free case, the spherical shape is a local energy minimum as
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FIG. 6. Equilibrium free energy difference, dF , between a

homogeneously-charged spheroidal shell and a sphere of identical

parameters (z = 0.6, N = 1000, R = 10 nm) as a function of the

aspect ratio λ for the area-constrained system. The effects of charge

renormalization due to counterion condensation are included via a

two-state model analysis calculation. The red curve is the case for

the counterion-free system and acts as a reference line. All other

curves take into account ion condensation on the shell surface and

correspond to different values of the shell volume fraction η. Results

are shown for η = 10
−12 (green squares), 10−10 (blue circles), 10−8

(orange triangles), 10−6 (cyan inverted triangles), and 10
−4 (brown

diamonds). We find that the spherical conformation, which is a lo-

cal minimum for the isolated spheroidal system (red line), becomes

a free-energy maximum at η = 10
−4.

evidenced by the dU plot. For low η (= 10−12), which cor-

responds to a very dilute system, we find that the dF curve

(green squares) lies in the vicinity of the no-condensation re-

sult (dU ). However, as η rises, we observe significant devi-

ations from the unrenormalized energy curve for both oblate

(λ < 1) and prolate λ > 1 regions.

We find that for all shapes (λ), as the volume fraction η
is increased, α increases, that is more counterions condense

on the shell surface. A major consequence of the enhanced

charge renormalization is the reduction of the positive free en-

ergy difference between the spheroidal shell and the sphere

(see Fig. 6 inset). Further, for high η values (η = 10−6,

10−4), we find that all prolate shells have less free energy as

compared to the sphere which is in stark contrast from the

no-condensation result (red line). For the same η values, we

also find that oblate shells with small aspect ratios have lower

free energy than a spherical shell (dF < 0). For the volume

fraction of η = 10−4 (brown diamonds), the spherical shell

has the maximum equilibrium free energy among all shapes.

Thus, according to the above analysis based on the two-state

model, for the area-constrained shell system, counterion con-

densation has a profound effect in modifying the energy land-

scape associated with the isolated shell, favoring the forma-

tion of spheroidal structures over the spherically-shaped ones

as the shell volume fraction is increased.

Fig. 7 shows the variation of dF with λ for different η val-

ues in the case of fixed-volume constraint. Once again, the
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FIG. 7. Equilibrium free energy difference, dF , between a

homogeneously-charged spheroidal shell and a sphere of identical

parameters (z = 0.6, N = 1000, R = 10 nm) as a function of

the aspect ratio λ for the volume-constrained system. The effects of

charge renormalization due to counterion condensation are included

via a two-state model analysis calculation. The red curve is the case

for the counterion-free system and acts as a reference line. All other

curves take into account ion condensation on the shell surface and

correspond to different values of the shell volume fraction η. Results

are shown for η = 10
−12 (green squares), 10−10 (blue circles), 10−8

(orange triangles), 10−6 (cyan inverted triangles), and 10
−4 (brown

diamonds). We find that in the event of ion condensation, for all val-

ues of η, the spherical conformation continues to have the highest

free energy among all spheroidal shapes.

solid red line corresponds to the counterion-free system and is

the Coulomb energy of the uniformly-charged spheroidal shell

measured relative to the electrostatic energy of the sphere.

As Fig. 3 shows, the spherical shape is the conformation of

maximum energy for this particular constraint. This conclu-

sion remains unchanged when we include the effects of charge

renormalization via the two-state model analysis as seen from

Fig. 7. For a very dilute system, η = 10−12 (green squares),

we find that the dF curve lies in the vicinity of the dU line.

Increasing η leads to a rise in α which is seen to weaken the

(negative) difference between the equilibrium free energies of

spheroidal and spherical shells (see Fig. 7 inset). Thus, judg-

ing by the variation of dF determined by the two-state model

analysis, we find that oblate and prolate shaped structures con-

tinue to be energetically favored over the spherical confor-

mation in the event of counterion condensation. Further, the

monotonic trend of free energy decrease with increasing the

eccentricity of the spheroidal shell observed for the isolated

shell system is seen to persist in the wake of counterion con-

densation as well.

We note that as the counterions are mobile, under certain

conditions, the charged shell is better approximated as a con-

ducting surface as opposed to a homogeneously-charged one.

In that event, the above analysis can be carried out using the

expressions of electrostatic energy for conducting spheroidal

shells provided in Eq. (25). We observe that for all values

of η, the conducting spheroidal shell has a lower free energy

upon deformation in comparison with the homogeneously-

charged shell (see Ref. 7 for details of this calculation for

oblate spheroidal shells under the constraint of constant vol-

ume). Further, we find that the main conclusions regarding the

effects of counterion condensation reached above for either

constraints remain unchanged when we repeat the two-state

model analysis assuming that the shell is an equipotential sur-

face.

Finally, we note that the study of condensation effects

based on the above two-state model employs a number of ap-

proximations. For example, the free energy associated with

this model, Eq. (60), does not take into account the shell-

counterion and counterion-counterion Coulomb interactions

explicitly. Another approximation is to put the shell in a

counterion-only, salt-free environment. Also, the distribution

of counterions around the spheroidal shell is considered to be

isotropic which is clearly a simplification for shapes that devi-

ate significantly from the spherical conformation. In this light,

we view the above results as qualitative. Quantitative results

that address many of the aforesaid simplifications can be ob-

tained by employing approaches based on the solution of the

Poisson-Boltzmann equation for spheroidal geometry [19].

V. CONCLUSION

We report the exact expression for the electrostatic energy

of a uniformly-charged spheroidal shell. We analyze the vari-

ation in the electrostatic energy as the aspect ratio of the

shell is changed from 0 to ∞ for the area-constrained and

volume-constrained cases. The prolate spheroidal shell with

its major-axis length stretched to infinity is found to have

the lowest Coulomb energy among spheroidal shells of equal

area. Further, we reveal the non-monotonous variation in the

Coulomb energy when a spherical shell is elongated to a pro-

late spheroid keeping the shell area fixed. For spheroidal

shells that have the same volume, a sphere has the highest

Coulomb energy. In addition, our perturbation calculations

show that there exist area-conserving buckling-type deforma-

tions on the sphere that can lower the total Coulomb energy.

For the spheroidal shell system, we use a two-state model of

free and condensed ions to evaluate the renormalization of the

shell charge due to counterion condensation. We find that ion

condensation has a significant effect in modifying the free en-

ergy landscape with spheroidal structures being favored over

a sphere of the same area as the shell volume fraction is in-

creased. These results add to the theoretical foundation re-

quired to understand the control of spheroidal shapes in mate-

rials using electrostatics in combination with other forces such

as those arising due to the elastic nature of the material [7].
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Appendix A: Coulomb energy of uniformly-charged prolate

spheroidal shells

In this section we derive the expression shown in Eq. (9)

for the Coulomb energy of a homogeneously-charged prolate

spheroidal shell. We consider prolate spheroidal coordinates

u, v, φ, which are related to the Cartesian coordinates x, y, z
by

x = cep sinh(u)sin(v)cos(φ), (A1)

y = cep sinh(u)sin(v)sin(φ), (A2)

z = cep cosh(u)cos(v), (A3)

where

0 ≤ u < ∞, 0 ≤ v ≤ π, −π < φ ≤ π. (A4)

The set (u, v, φ) uniquely characterizes a point in the 3-

dimensional space. It is straightforward to show that the met-

ric coefficients are

hu = hv = cep

√

sinh2u+ sin2v, hφ = cep sinhu sinv
(A5)

using which the form for the Laplacian ∇2Φ is readily ob-

tained to be [12]

∇2Φ =
1

c2e2p(sinh2u+ sin2v)
×

(

1

sinhu

δ

δu

(

sinhu
δΦ

δu

)

+
1

sinv

δ

δv

(

sinv
δΦ

δv

))

+
1

c2e2psinh2u sin2v

δ2Φ

δ2φ
. (A6)

The prolate spheroidal shell in these coordinates is repre-

sented by the simple equation u = u0, where u0 is connected

to the eccentricity via the relation

sechu0 = ep. (A7)

The region of space interior to the spheroid corresponds to

the values 0 ≤ u < u0 and the exterior region is repre-

sented by the u > u0 domain. We begin by finding the elec-

trostatic potential generated by the uniformly-charged prolate

shell represented by the equation u = u0. Since there is ax-

ial symmetry in the problem, the electrostatic potential will

depend only on coordinates u and v. Writing the solution

as Φ(u, v) = U(u)V (v) and substituting it in the Laplace

equation ∇2Φ = 0, we find, upon using Eq. (A6), that the

variables separate and the functions U and V satisfy the dif-

ferential equations:

1

sinhu

δ

δu

(

sinhu
δU

δu

)

− nU = 0, (A8)

1

sinv

δ

δv

(

sinv
δV

δv

)

+ nV = 0. (A9)

A closer examination of these equations reveals the general

solution for the potential to be:

Φ(u, v) =

∞
∑

n=0

(AnPn(coshu) +BnQn(coshu))Pn(cosv)

(A10)

where n is an integer, Pn and Qn are Legendre functions of

the first and second kind respectively, and An and Bn are un-

known coefficients. In order to ensure that the solutions are

bounded in the interior and exterior regions of the spheroid,

we find that An must vanish in the domain u > u0 and

Bn = 0 in the region where 0 < u < u0. We thus have the

following form for the potential inside and outside the oblate

shell:

Φin(u, v) =
∞
∑

n=0

AnPn(coshu)Pn(cosv), (A11)

Φout(u, v) =

∞
∑

n=0

BnQn(coshu)Pn(cosv). (A12)

The potential must be continuous at the shell surface u −
u0 = 0, that is, Φin(u0, v) = Φout(u0, v). This boundary

condition leads to the relation

AnPn(coshu0) = BnQn(coshu0) (A13)

for n = 0, 1, 2, . . .. Note that coshu0 = 1/ep. The discontinu-

ity in the normal component of the electric field at the charged

surface provides another boundary condition:

−û · ∇Φout + û · ∇Φin = 4πσ, at u = u0. (A14)

Using the expression for the gradient in prolate spheroidal co-

ordinates, the above equation becomes

1

hu

δΦin

δu

∣

∣

∣

u=u0

− 1

hu

δΦout

δu

∣

∣

∣

u=u0

= 4πσ. (A15)

Employing equations (A11), (A12), and (A5), the above

boundary condition leads to the relation

∞
∑

n=0

(AnP
′
n(1/ep)−BnQ

′
n(1/ep))Pn(cosv)

=
4πσcep
√

1− e2p

√

1− e2pcos2v.
(A16)

Eqs. (A13) and (A16) allow us to evaluate the undetermined

functions An and Bn. We first eliminate Bn in favor of An

using Eq. (A13) obtaining

Bn =
AnPn(1/ep)

Qn(1/ep)
. (A17)

Substituting Bn from above in Eq. (A16), we obtain

∞
∑

n=0

(

AnP
′
n(1/ep)−

AnPn(1/ep)

Qn(1/ep)
Q′

n(1/ep)

)

Pn(cosv)

=
4πσaep
√

1− e2p

√

1− e2pcos2v.

(A18)
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Using the fact that the Wronskian ofPn(z) andQn(z) is given

by

W (Pn(z), Qn(z)) =
1

1− z2
, (A19)

Eq. (A18) can be simplified to

∞
∑

n=0

AnPn(cosv)

Qn(1/ep)
=

4πσc
√

1− e2p

ep

√

1− e2pcos2v. (A20)

Multiplying both sides of the above equation with

Pl(cosv)sinv and using the orthogonality relation:

∫ π

0

Pn(cosv)Pl(cosv)sinv dv =
2

2n+ 1
δnl, (A21)

we obtain

An =
2n+ 1

2
4πσc

√

1− e2p

ep

Qn(1/ep)Hn(ep), (A22)

where Hn(ep) is the integral

Hn(ep) =

∫ π

0

√

1− e2pcos2v Pn(cosv)sinv dv. (A23)

It is easily checked that for odd n the integral in the above

equation vanishes. Hence, we have A1 = A3 = A5 . . . = 0.

Using An in Eq. (A17), Bn is known as well, and conse-

quently from Eqs. (A11) and (A12), we obtain the desired

electrostatic potential at any point in space.

For the computation of the electrostatic energy, the knowl-

edge of the potential on the shell surface suffices. Using

Eqs. (A11) and (A22), we obtain the surface potential as

Φshell(v, ep, c) =
4πσc

√

1− e2p

ep

×
∑

n∈even

2n+ 1

2
Pn(1/ep)Qn(1/ep)Hn(ep)Pn(cosv),

(A24)

where the summation is over even integers n = 0, 2, 4, . . ..
The electrostatic energy of a charged spheroidal shell can be

written as

U =
1

2

∫

σΦshell dA. (A25)

The shell surface area element in the prolate spheroidal coor-

dinates is given by

dA = hvhφdvdφ = c2
√

1− e2p

√

1− e2pcos2v sinv dvdφ

(A26)

where the second equality follows from Eq. (A5). After sub-

stituting this expression for the area element in Eq. (A25), us-

ing Eq. (A24), and changing the variable from σ to Q, we

obtain the expression in Eq. (9).

Appendix B: Coulomb energy of uniformly-charged oblate

spheroidal shells

We now derive the expression for the electrostatic energy of

a uniformly-charged oblate spheroidal shell. As most of the

steps involved in this derivation are analogous to the above

derivation for the prolate case, we will present only the key

steps of the procedure. We begin by employing the oblate

spheroidal coordinates u, v, φ, which are related to the Carte-

sian coordinates x, y, z by

x = aeo cosh(u)sin(v)cos(φ), (B1)

y = aeo cosh(u)sin(v)sin(φ), (B2)

z = aeo sinh(u)cos(v), (B3)

where

0 ≤ u < ∞, 0 ≤ v ≤ π, −π < φ ≤ π. (B4)

The set (u, v, φ) uniquely characterizes a point in the 3-

dimensional space. It is straightforward to show that the met-

ric coefficients are

hu = hv = aeo

√

sinh2u+ cos2v, hφ = aeo coshu sinv
(B5)

using which the form for the Laplacian ∇2Φ = 0 is readily

obtained. The oblate spheroidal shell in these coordinates is

represented by the simple equation u = u0, where u0 is con-

nected to the eccentricity via the relation

sechu0 = eo. (B6)

The region of space interior to the spheroid corresponds to the

values 0 ≤ u < u0 and the exterior region is represented by

the u > u0 domain.

Once again, we start by determining the electrostatic poten-

tial generated by this uniformly-charged oblate shell. Since

this system has axial symmetry, the electrostatic potential cre-

ated by the oblate spheroid will depend only on the coordi-

nates u and v. Employing separation of variables we can write

the solution as Φ(u, v) = U(u)V (v), upon which the Laplace

equation separates into two differential equations for u and v.

A closer examination of these equations reveals the general

solution for the potential to be:

Φ(u, v) =

∞
∑

n=0

(AnPn(i sinhu) +BnQn(i sinhu))Pn(cosv),

(B7)

where Pn and Qn are Legendre functions of the first and sec-

ond kind respectively, and An and Bn are unknown coeffi-

cients. In order to ensure that the solutions are bounded in

the interior and exterior regions of the spheroid, we find that

An = 0 in the domain u > u0, andBn = 0when 0 < u < u0.

We thus have the following form for the potential inside and

outside the oblate shell:

Φin =
∞
∑

n=0

AnPn(i sinhu)Pn(cosv), (B8)

Φout =

∞
∑

n=0

BnQn(i sinhu)Pn(cosv). (B9)
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The boundary condition that the potential must be continu-

ous at the shell surface u− u0 = 0 leads to the relation

AnPn(i sinhu0) = BnQn(i sinhu0) (B10)

for n = 0, 1, 2, . . .. Note that sinhu0 = (1/eo)
√

1− e2o .

The discontinuity in the normal component of the gradient of

the electric potential at the charged surface provides another

boundary condition which upon employing the expression for

the gradient in oblate coordinates becomes:

∞
∑

n=0

(AnP
′
n(i sinhu0)−BnQ

′
n(i sinhu0)) icoshu0Pn(cosv)

= 4πσa

√

1− e2osin2v.

(B11)

Using Eqs. (B10) in (B11), we can eliminate Bn in favor of

An and solve for the latter, obtaining

An =
2n+ 1

2

4πσa i

eo

Qn

(

i

√

1− e2o
eo

)

In(eo), (B12)

where In(eo) is the integral

In(eo) =

∫ π

0

√

1− e2osin2v Pn(cosv)sinv dv. (B13)

As before, in arriving at this result we employed the prop-

erty of the Wronskian of the Legendre polynomials and their

orthogonality relation. It is easily checked that for odd n,

In(eo) vanishes, implying A1 = A3 = A5 . . . = 0. Using An

in Eq. (B10), Bn can be evaluated as well and consequently

from Eqs. (B8) and (B9), the electrostatic potential is known

everywhere in space.

For the computation of the electrostatic energy, the knowl-

edge of the potential on the shell surface suffices. Using

Eqs. (B8) and (B12), we obtain the surface potential as

Φshell(v, eo, a) =
4πσa i

eo

∑

n∈even

2n+ 1

2
×

Pn

(

i

√

1− e2o
eo

)

Qn

(

i

√

1− e2o
eo

)

In(eo)Pn(cosv).

(B14)

The shell surface area element in the oblate spheroidal co-

ordinates is given by

dA = a2
√

1− e2osin2v sinv dvdφ. (B15)

Using Eqs. (B14) and (B15) in Eq. (A25), and changing the

variable from σ to Q, we obtain the energy expression in

Eq. (14).

Appendix C: Coulomb energy of a uniformly-charged disc

In this appendix, we derive the exact expression for the

Coulomb energy of a uniformly-charged circular disc of ra-

dius a, total charge Q, and uniform charge density σ =
Q/(πa2). The potential on the surface of the disc as a func-

tion of ρ, the radial coordinate, has been derived in Ref. 13

and is given by:

V (ρ) = 4σaE

(

ρ2

a2

)

, (C1)

where E(m) is the complete elliptic integral of the second

kind:

E(m) =

∫ π/2

0

√

1−m sin2θ dθ. (C2)

Note that 0 ≤ ρ ≤ a. This result can be used to obtain the

electrostatic energy Udisc of this disc. Interestingly, while the

potential on the disc surface is only available as an elliptic

integral, we will soon see that the total electrostatic energy of

the disc reduces to a simple form.

Starting with the definition of the electrostatic energy, U =
(1/2)

∫

σV dA, we have

Udisc =
1

2
σ

∫ a

0

V (ρ)2πρdρ. (C3)

Substituting V (ρ) from Eq. (C1) and using Eq. (C2), we ob-

tain

Udisc = 4πσ2a

∫ a

0

dρ

∫ π/2

0

dθ

√

1− ρ2

a2
sin2θ ρ. (C4)

Carrying out the integral with respect to ρ first by employing

the substitution t = 1− ρ2sin2θ/a2, we obtain

Udisc = 4πσ2 a
3

3

∫ π/2

0

1− cos3θ

sin2θ
dθ. (C5)

The integral over θ equates to 2 leading to the following ex-

pression for the energy:

Udisc =
8π

3
σ2a3. (C6)

To our best knowledge, this expression is reported here for the

first time.
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