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We model the packing structure of a marginally jammed bulk ensemble of polydisperse spheres.
To this end we expand on the granocentric model [Clusel et al., Nature 460, 611 (2009)] explicitly
taking into account rattlers. This leads to a relationship between the characteristic parameters of
the packing, such as the mean number of neighbors and the fraction of rattlers, and the radial
distribution function g(r). We find excellent agreement between the model predictions for g(r) and
packing simulations as well as experiments on jammed emulsion droplets. The observed quantitative
agreement opens the path towards a full structural characterization of jammed particle systems for

imaging and scattering experiments.

I. INTRODUCTION

The question how to optimally pack objects of vari-
ous shape in space has been of fundamental interest in
mathematics and physics for centuries [1, 2]. It is also
highly relevant for many practical problems ranging from
storage and industrial packing to the properties of soft
materials such as emulsions, foams or granular materials
[3-11]. Amorphous packings are particularly difficult to
understand due to the complexity when dealing with dis-
ordered non-equilibrium structures. There exists a broad
agreement that disordered assemblies of spheres can be
driven into a solid state by filling space up to a certain
critical volume fraction ¢, ~ 0.64 [12, 13]. At this point,
denoted random close packing or jamming, the system
is marginally stable. Mechanical stability is provided by
an average isostatic number of contacts which in three
dimensions is Z; = 6 for frictionless spheres [4, 14, 15].
The advent of powerful simulation techniques over the
last two decades has led to numerous new results and pre-
dictions. Soft spheres can be quenched into a compressed
state @ > ¢. and many relevant physical quantities, such
as the modulus or the pressure, have been predicted to
scale with the excess number of contacts AZ = Z; — 6
[4, 14]. Despite the recent progress made, the experimen-
tal relevance of these predictions has been questioned
[15]. As matter of fact there are only few experimen-
tal studies which attempt to verify the numerical predic-
tions [16—18] and study their relevance with respect to
bulk properties of practically relevant materials [19, 20].
This is partly due to the fact that the model assumptions
made, such as the interaction potential between spheres
or the size distribution, do not realistically reflect the
situation in experimental systems such as in emulsions,
dispersions or foams [1-6]. Another important shortcom-
ing of numerical studies is that these are generally carried
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out on real space assemblies whereas many experiments
rely on scattering techniques that operate in k—space.
While real-space experiments are rather straightforward
in two dimensions [16], they are much more difficult to
carry out in three dimensions [17], in particular when
other physical properties, such as mechanical strength or
internal dynamic modes, need to be studied as well. For
this case scattering techniques, often in combination with
mechanical shear measurements, have long been meth-
ods of choice to study soft disordered materials in the
bulk [21-24]. Although scattering methods are highly
appropriate for soft systems, certain dynamic scattering
methods can be highly sensitive to the rattlers in poly-
disperse systems, e.g. leading to ensemble-average mean
square displacements that appear to relax more rapidly,
when predicted via a generalized Stokes-Einstein rela-
tion (GSER) [25], than what is reflected by macroscopic
rheology. A direct comparison between numerical results
and both structural as well as dynamic experiments how-
ever is again complicated by the idealisations made in the
models. It would therefore be desirable to derive more
general concepts that allow a direct comparison between
experiment and theory.

In the present work we address this problem and
demonstrate how to model polydisperse sphere packings,
taking into account explicitly the population of mechan-
ically unstable particles, or rattlers. To this end we ex-
pand on the granocentric model (GCM) introduced by
Brujic and coworkers [26, 27] by uniformly distributing
non-contact neighbors and by taking into account size
correlations between particle and shell. We show that
such an extended granocentric model (eGCM) provides
an accurate description of the statistical ensemble which
in turn allows the comparison to measureable bulk quan-
tities such as the radial distribution function g(r). The
latter is one of the most important structural measures
for amorphous solids that is readily observable both in a
real-space and in a scattering experiment, via the struc-
ture factor S(k) = 1+ 4mp/k [~ dr rsin (kr) [g (r) — 1],
where p is the particle number density [28]. The im-
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FIG. 1. (Color online) Granocentric model. Modelling the
shell of first neighbors of a central particle with radius a.
using a one dimensional statistical approach. Particles with
radius a are drawn randomly from a distribution ps(a) and
added one after another as explained in the text. The solid
angles occupied by the already added particles are shown as
colored blocks. The remaining accessible solid angle for sub-
sequent additions is denoted €2,. The dashed line indicates
the threshold solid angle Qmax.

portance of this quantity has recently been pointed out
when studying the vestige of the jamming transition in
an experiment both in two [18] and three dimensions [29].

II. THE EXTENDED GRANOCENTRIC MODEL

The granocentric model addresses the packing problem
from the perspective of a single particle. The statistical
properties of the local packing structure are obtained by
the random formation of nearest neighbors in a one di-
mensional model [26]. By numerical evaluation predic-
tions are made about the number of neighbors and con-
tacts as well as the local packing fraction of polydisperse
spheres at random close packing. Built upon the origi-
nal model an improved version, denoted GCM 2.0 [27],
has been introduced by the same group soon after. The
latter can also be applied to monodisperse systems while
the original one could not. Despite these improvements
the GCM 2.0 still does not allow predictions to be made
readily about bulk quantities such as the radial distribu-
tion function.

To overcome this limitation, in our extended granocen-
tric model (eGCM), we explicitly take into account rat-
tlers and introduce some improvements to the model as
outlined in the following. We divide the particles into two
groups: mechanically stable jammed particles and freely
floating rattlers, then take averages over a representative
set of all particles rather than considering only particles
in contact. We first consider the probability of finding a
central particle with radius a which is equal to particle
size distribution p(a). The polydispersity PD = da/a is
defined by the standard deviation da of p(a) divided by
its mean @ = [ap(a)da. For the probability to find a
neighboring particle of a certain size pa(a) we explicitly
consider the influence of size correlations between parti-
cles and their shell, previously neglected [26]. Packing
simulations suggest [30]

pa(a) o pla) [1+ (a/a)?] (1)

, which we are using here. Next we address the distribu-
tion G4(s) of surface-to-surface separations s = r — 2a.

The latter has to be modeled independently for the sta-
ble particles and for the rattlers. We can use the scaling

of the excess number of contacts AZ ~ \/Z; — 6 to de-
rive Gys(s) ~ s~1/2 [31]. For the rattlers we take the
simple ad-hoc assumption that their neighbors are dis-
tributed uniformly G4r = const. The shell of neighbors
is bounded by a cutoff distance scuiof. Here, we label
particles that are in contact with ’J’ and particles that
are rattlers with 'R’; if labels ’J” or 'R’ do not appear,
then we are referring to all particles. The eGCM can
be evaluated numerically and we can obtain statistical
information directly from the model. However, a more
general approach would be to reduce the discussion, e.g.
of the radial distribution function, to its dependence on
a small set of characteristic parameters, such as the aver-
age number of neighbors (N, Ng) of jammed or rattling
particles, the fraction of rattlers ¢ and the distance scutoft-
To this end we can write

1

9(r) = 4mr2p

/f(ac)Gs(r —z)dx (2)

were f(z) = [p(a)p2(x—a)da is the probability of finding
a central particle with radius a and another particle with
radius z—a, for all possible a and G(s) = (1—q)Gs(s)+
qGsr(s). The link to the average number of neighbors
is established by normalization via Gsr(s) = Ngr/Scutoft
and

GSJ(S) B { %(NJ — 6)(Scutoﬁ'5)7% (S > 0)’ (3)

The numerical implementation of our eGCM is guided
by the original work [26, 27] albeit with some modifica-
tions. In practice we start by considering a particle that
is closely surrounded by neighbors. The size of this cen-
tral particle is randomly chosen from the size distribution
function p(a). The solid angle occupied by a neighbor can
be characterized by :

w:27r(1—\/1—(a+50+8)2). (4)

where a. and a are the radii of the central particle and
the neighboring particle, respectively and s is again the
surface to surface separation. For a given central parti-
cle, its neighbors cannot fill up the whole solid angle 47
due to geometrical constraints [26]. We thus introduce a
threshold solid angle as Qax, as illustrated in Figure 1.

Neighbors are added one at a time with sizes randomly
chosen from the size distribution of neighbors ps(a). The
probability that an added neighbor is in contact with the
central particles is assumed to be

Q, \?
c:a<QmaX> , (5)

where (2, is the accessible solid angle and « is an ad-
justable prefactor. Non-contact neighbors are placed ac-
cording to Eq. 3. Then neighbors are added consecu-
tively until the total solid angle exceeds the threshold




Qmax- In half of the cases, chosen randomly, we either
add or remove the last added neighbor with equal prob-
ability.

Relation 5 is new in our model and can be motivated as
follows: Using a constant probability of contact (as it was
done in [20]) will lead to an overestimation of the fraction
of rattlers. This can be seen when considering a monodis-
perse system with an average number of ~14 neighbors.
This implies for the contact ratio ¢ = 6/14 ~ 0.43 and
we can easily calculate the ratio of rattlers

g=(1-0"+ (114) (1—c)
+ (124> (1—¢)'2c + (i) (1—¢c)'c®=0.084 (6)

, where (") is the combination operator. This value
is distinctively higher than the value for monodisperse
packings observed in packing simulations, known to be
of the order of ~ 2% [30]. Using the probability of con-
tact given by Eq. (5), however, we find excellent agree-
ment with packing simulations, both for monodisperse
and polydisperse packings, as shown later in the text.

For the numerically evaluation of the extended gra-
nocentric model (eGCM) a limited set of input param-
eters is taken from packing simulations [30]. The lat-
ter suggest isostatic values Ny = 14.3 and ¢ = 0.62
for the jamming volume fraction of spheres in contact,
independent of polydispersity [30, 32]. Shells are filled
up to a maximum solid angle .« treated as an ad-
justable parameter in the numerical evaluation of the
model. We generate 50000 neighboring shells follow-
ing the generic approach of refs.[26, 30]. Central par-
ticles with a contact number Z < 4 are considered as
rattlers and all their neighbors are redistributed uni-
formly. Z; is obtained by taking the average over all
central particles with Z > 4.We adjust «, Scutoff, max
until Z7, Ny, ¢! converge towards their isostatic values
and thus obtain predictions for N, Z, ¢, ¢.. Moreover we
find scutor/@ € [0.75,1] and Qumax € [3.337,3.537] (see
also [20]).

To calculate the volume fraction ¢ directly from the
eGCM results we follow the approach introduced in [26].
For each neighbor, a cone is formed by its corresponding
solid angle. Using the Voronoi radical tessellation sur-
face at the bottom of this cone a corresponding volume
can be calculated. Summing up all neighbors of a cen-
tral particle 4, the cell volume V%, is obtained. Since the
actual total solid angle Q;y¢q; < 47, we use Vcieuﬁ as
the total cell volume of the i*" particle. Thus the volume
fraction can be written as:

o Zz Vpiarticle 7
o= S ovio_dn (7)
i " cell Q¢

total

FIG. 2. (Color online) Three-dimensional imaging of jammed
emulsions droplets with an average droplet radius a =1.05um.
(a) Raw image of a plane in the bulk of the sample obtained
by laser scanning confocal microscopy of light emitted by the
fluorescent dye Nile-red at A = 595nm. The droplets are
marginally jammed and the volume fraction is ¢ ~ 0.646 +
0.014. (b) Three-dimensional reconstruction of the droplet
positions using the sphere matching method (SMM). The lines
show the Voronoi radical tessellation around the droplet cen-
troids. The total dimensions are 51.2pumx51.2pmx20.1pm.
One corner is cut out to reveal the internal structure of the
jammed system.

III. EXPERIMENTS

We compare the model predictions with experiments
on micron scale emulsion droplets under marginal jam-
ming conditions. For the experiments we prepare a 3:1
mixture by weight of PDMS and silicone oil (AR200) and
emulsify it with sodium dodecyl sulfate (SDS) surfactant
in water by shearing in a custom made Couette shear cell.
Stabilized with SDS, the droplets are fractionated by size
using depletion sedimentation [33]. The size segregation
is repeated until the desired polydispersity is reached.
Subsequently the surfactant SDS is exchanged by the
block-copolymer surfactant Pluronic F108, in order to
sterically stablize the droplets. Finally Formamide and
Dimethylacetamid (DMAC) are added to the solvent in
order to match the density and refractive index simulta-
neously under experimental conditions at room temper-
ature T = 22°C. Optical contrast between the droplets
and the dispersion medium is obtained by adding the flu-
orescent dye Nile-red. Although the dye is present both
in the solvent and the oil the emission spectra are dif-
ferent which allows to clearly distinguish both phases as
shown in Figure 2 a. The particle size and polydispersity
are obtained from widefield microscopy. For the polydis-



persities considered we find the size distribution of the
emulsion droplets to be close to log-normal. Equally,
simulation data and the eGCM are evaluated for two-
parameter log-normal size distributions. Here we include
experimental data for three droplet radii @ = 1.1pum with
a polydispersity PD=0.105, a =1.07pum with a polydis-
persity PD=0.12 and a =1.05pm with a polydispersity
PD=0.147 respectively. By lowering the temperature to
4°C a slight density mismatch is induced and the sam-
ple can be spun down to densities at and above jam-
ming. Several hundred microliters of the jammed sam-
ple are placed in a cylindrical cell tightly connected with
UV-curable glue to a microscope cover slip which allows
imaging from below in an inverted microscope. High res-
olution images of the individual droplet positions are
obtained using 3D laser scanning confocal microscopy
(A1R, Nikon, Japan). The dye is excited with a 488nm
laser line and two emission channels (525 + 50nm and
595 4 50nm) are recorded simultaneously to improve the
quality of the analysis. 3D-images of size 512 x 512 x 201
pixels are recorded with a resolution of 100nm/pixel in
all spatial directions. For every stack of images, the
acquisition time is 100s. To track the position of the
polydisperse droplets we implement the sphere match-
ing methods (SMM) algorithm [34]. A Voronoi radical
tessellation is applied and particles with adjacent cell
walls are identified as neighbors (Figure 2 b). We find
the lateral position accuracy to be approximately 15nm
and axial accuracy 30nm. In order to identify the point
of marginal jamming the sample is diluted in steps of
~ 0.5% in volume fraction. From a time series of 2D-
images we can easily identify the liquid to solid transi-
tion, that in our case sets the jamming volume fraction
¢.. From the droplet positions in 3D we calculate the ra-
dial distribution function g(r) and take an average over
20 image stacks in order to improve the statistical accu-
racy.

IV. RESULTS AND DISCUSSION

We first compare the eGCM-predictions (squares) to
simulations (circles) of disordered packings of spheres as
shown in Figure 3. Details of the simulations are dis-
cussed elsewhere [30]. Briefly, spheres are placed at ran-
dom in a three-dimensional periodic cell and the size of
the spheres is drawn from the distribution p(a). The
sphere sizes are then increased in unison until the de-
sired packing fraction ¢, is reached. Spheres are assumed
to interact through purely repulsive body-centered forces
and the overlap between two particles in contact leads to
a harmonic interaction potential. A conjugate gradient
method is used to minimize the overlap between spheres
and hence the total energy of the packing [35].

Figure 3 shows the average values N, Ny and ¢ as
a function of polydispersity. We note immediately that
Ng rapidly decreases with polydispersity. This can be
explained by the fact that with increasing polydispersity
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FIG. 3. (Color online) (a) Average number of first-shell neigh-
bors N of jammed particles (full symbols) and rattlers (open
symbols) versus polydispersity (PD). Squares denote the re-
sults from the extended granocentric model (eGCM) and cir-
cles shows the data from numerical simulations. The dashed
line indicates a constant value of Ny = 14.3. (b) Fraction of
rattlers ¢ predicted by the eGCM (open squares) and from
simulations (open circles). Inset: Predicted jamming volume
fraction ¢. for all particles as a function of polydispersity.
Dashed line: parabolic fit ¢. = 0.634 4+ 0.0278 - PD + 0.196 -
PD?. Solid line: jamming volume fraction for particles in
contact ¢ = 0.62.

more rattling configurations are created by placing large
particles next to a central particle. Since large particles
occupy more solid angle, fewer neighbors can be placed
around a rattler and thus Ny decreases. Equally good
agreement is obtained for the average number of neigh-
bors N, Ny, the fraction of rattlers and the jamming vol-
ume fraction, Figure 3 and inset. In Figure 4 we show
the results obtained for the probability distribution of
the number of neighbors N and contacts Z for a typical
polydispersity of PD=0.15. The experimental results are
in excellent agreement with both the packing simulations
and the eGCM model.

In Figure 5(a) the model predictions for the radial dis-
tribution function are compared to the g(r) derived from
the experimental droplet positions. While for perfectly
monodisperse packings the peak value g; should diverge
at the jamming transition this divergence is avoided for
a size distribution of finite width. We find nearly quan-
titative agreement between all three data sets. Small
deviations between the experimental g(r) and the numer-
ical predictions can be attributed to the limited accuracy
in the experiment when determining the exact location
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FIG. 4. (Color online) Probability distribution functions as a
function of: (a) number of nearest neighbors N and (b) num-
ber of contacts Z for a polydispersity PD=0.15. Solid line:
eGCM; squares: simulations; bars: experiments on emulsion
droplets with an average droplet radius @ =1.05p¢m. The
eGCM and the simulations assume a log-normal size distri-
bution. The size distribution of the emulsion is also close to
log-normal with PD ~ 0.15 4 0.01.

of the particles [36]. Also the prediction by Eq.(2) be-
comes less accurate as the cutoff distance scuiof is be-
ing approached r/a < 3. Extracting the peak value ¢4
shows excellent agreement over a broad range of PD val-
ues as shown in Figure 5(a). Moreover we include a data
point obtained for 3D assemblies of microgel particles
with a mean size @ ~ 0.5um and a PD<0.1 taken from
[29] and find again excellent agreement. Equally good
agreement is obtained for the width of the first peak as
shown in Figure 5(b). We note that in practice, for a
known polydispersity, g(r) can be plotted directly using
Eq.(2,3) with input parameters Ng, ¢ taken from Figure
3 and Scutofr/a ~ 0.8.

Finally we illustrate briefly that the application of the
eGCM is not restricted to log-normal particle size distri-
butions. Other distributions such as Gaussian, linear or
biomodal can also be considered. A simple way to dif-
ferentiate between these distributions is to introduce the
skewness S = (da®) / <6a2>3 ®as an additional charac-

teristic parameter. Recently published simulations have
shown that the critical packing fraction ¢. depends both
on the skewness and the polydispersity but is almost
independent of other details of the shape of p(a) [37].
In Figure 6 we show a comparison between the eGCM-
predictions and these packing simulations reported in
[37]. For clarity we restrict the discussion here to binary
distributions. We find that for weak and moderate poly-
dispersities both data sets agree well while for extreme
values of S and PD some deviations are observable. For
linear distributions we obtain similar results (data not
shown). The results for log-normal distribution are al-
ready shown in Figure 3 and in this case polydispersity
and skewness are coupled. For truncated Gaussian distri-
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FIG. 5. (Color online) (a) Polydispersity dependence of the
first peak value g1 of the radial distribution function. The
dashed line show the prediction for g; obtained from packings
numerically derived using the original GCM (neglecting rat-
tlers) [26]. The solid line shows the prediction by the Eq.(2).
Diamonds: experimental results for polydisperse emulsions.
Full circles: packing simulations. Star: experimental results
for microgel particles, ref. [29]. Inset: The first maximum
of the radial distribution function g(r) for a polydispersity
PD=0.05 (left) and PD=0.15 (right). Prediction by Eq.(2)
(solid line), the eGCM (open black squares), simulations (full
red circles) and the emulsion experiments (open blue dia-
monds), PD ~ 0.15+0.01 . (b) Normalized full-width half at
maximum (FWHM).

butions S ~ 0 for the weak to moderate polydispersities
considered here.

V. SUMMARY AND CONCLUSIONS

In the present work, we have derived an extended gra-
nocentric model (eGCM) with the aim of providing a
quantitative framework for modelling a bulk ensemble of
polydisperse jammed spheres. Compared to the original
approach [26, 27] our improved model makes predictions
for a number of key quantities that could not be treated
within the original framework. The latter includes the
radial distribution function g(r) of all particles and the
polydispersity dependent critical jamming volume frac-
tion ¢.. Many physical properties, such as the elastic
modulus, can change very rapidly in the vicinity of ¢., so
even small changes in the ¢. predicted by various models
can have an important impact on such observed physical
properties.

The main new features of our approach can be summa-
rized as follows. First, we have included non-contact
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FIG. 6. (Color online) Critical volume fraction ¢. for binary
particle size distributions with different polydispersity (PD)
da/a, and skewness S. The lines denote predictions by the
eGCM and the full symbols represent the results from packing
simulations taken from reference [37].

neighbours, or rattlers, in our model, which we distribute
uniformly as the simplest generalization. Second, we take
into account size correlations between a chosen central
particle and the particles in the shell, Eq. 1. This as-
sumption is motivated by recent packing simulations [30].
Third, we allow the contact probability for added parti-
cles to depend on the residual available solid angle, Eq.
(5). The latter is physically sound and it is also required
in order to obtain meaningful predictions for the jam-
ming volume fraction ¢, for different polydisperse distri-

butions.

From an extensive comparison with experimental data
and packing simulations, we demonstrate that our ex-
tended granocentric approach can deliver accurate pre-
dictions for a bulk ensemble of marginally jammed parti-
cles covering the full range of polydispersities of practical
interest. Further we have tested the model for different
skewed particle distributions and find good agreement
with packing simulations [37]. The obtained quantita-
tive modelling of g(r) in turn provides a direct link be-
tween static structure factor S(q) and the structure of the
packing. From a more general perspective the model can
provide a framework for the interpretation of confocal
microscopy, static and dynamic light scattering experi-
ments that can all be sensitive to the heterogeneities of
the packing close to the jamming transition. A future
extension of the model towards higher densities, taking
into account finite particle compression, would open the
path towards a full structural characterization of the bulk
ensemble of polydisperse jammed particle systems.
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