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Abstract 

In this paper we demonstrate the presence of anisotropic stress correlations in the simulated 2D 

liquids.  Whereas the temporal correlation of macroscopic shear stress is known to contribute to 

viscosity via the Green-Kubo formula, the general question regarding angular dependence of the 

spatial correlation among atomic level stresses in liquids without external shear has not been 

explored.  We observed the apparent anisotropicity with well-defined symmetry which can be 

explained in terms of the elastic continuum theory by Eshelby.  In addition, we found that the 

shear stress correlation is screened compared to the prediction by the elastic continuum theory, 

and the screening length depends on temperature and follows the power law, suggesting 

divergence around the glass transition temperature.  The success of the Eshelby theory to explain 

the anisotropy of the stress correlations justifies the idea that the mismatch between the atom and 

its nearest neighbor cage produces the atomic level stress as well as the long-range stress fields.   
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1. Introduction 

A liquid shows time-dependent response to external shear stress, with the characteristic 

timescale of the Maxwell relaxation time, M Gτ η ∞= , where η is viscosity and G∞ is the high-

frequency shear modulus [1].  If the timescale of experiment is longer than τM the liquid offers 

no resistance, but if it is shorter the liquid behaves like a solid with the elastic modulus similar to 

that of the crystalline solid made of the same chemical composition.  Therefore a liquid can 

sustain an internal stress field for a timescale of τM.  Indeed the viscosity is related to the 

temporal correlation of macroscopic shear stress through the Green-Kubo equation, 

ߟ   ൌ ௏௞் ׬ ஶ଴ݐ݀ۄሻݐ௫௬ሺߪ௫௬ሺ0ሻߪۃ ,       (1) 

where V is the sample volume, σxy(t) is the shear stress in the x-y plane at time t, k is Boltzmann 

constant, and T is temperature  [1].  The total shear stress in Eq. (1) can be broken into 

contributions from individual atoms thereby leading to the following expression [2, 3]: 

ߟ  ൌ ଵ௞்௏ ׬ ∑ۃ ௜ܸߪ௜௫௬ሺ0ሻ ௝ܸߪ௝௫௬ሺݐሻ௜,௝ ஶ଴ݐ݀ۄ ,      (2) 

where Vi and σi
xy are the atomic volume and the atomic-level stress of the i-th atom.  Hence the 

viscosity implicitly integrates spatiotemporal correlations of atomic level stresses.  Levashov et 

al. [3] investigated the role of correlation length in the viscosity calculation and concluded that 

the viscosity is a nonlocal parameter.  However the angular dependence of stress correlations 

was not explored in their study, where the correlation function was averaged spherically over 

relative distance between two particles, i.e. หݎపሬሬԦ െ   .ఫሬሬԦหݎ
In this article we study the anisotropy of spatial stress correlations in high temperature 

liquids.  A simple two-dimensional (2D) colloidal liquid interacting with the screened Coulomb 
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potential is simulated using classical molecular dynamics (MD) [4] for this purpose because the 

physics is the same for colloidal liquids as well as atomic liquids, and the anisotropy is more 

readily demonstrated in 2D.  It is found that the computed correlation functions are distinctively 

anisotropic and characterized by well-defined two-fold or four-fold symmetries depending on the 

elements of the stress tensor.  In order to identify the underlying mechanism of the observed 

anisotropy, we explain the simulation results in terms of Eshelby’s theory of inclusion [5].  This 

theory was originally developed within the framework of continuum elasticity and solves the 

problem where a region (“inclusion”) undergoes deformation constrained by its surroundings 

(“matrix”).  For instance, when an elliptical subject is squeezed into a spherical hole, Eshelby’s 

theory predicts a long-ranged and anisotropic elastic field outside the hole, i.e. in the matrix.  

Recently more studies have been reported on the applicability of Eshelby’s theory in amorphous 

materials concerning their plasticity [6-25].  Different from previous reports that focused on 

supercooled liquids [6], glasses [7, 9-20, 22, 23] or colloids [24, 25] under external perturbation, 

e.g. shear, the present work extends the idea to high temperature liquids in equilibrium without 

an applied stress by using the concept of the atomic-level stresses.   

The rest of this paper is organized as follows.  In Sec. II, we describe our MD simulation 

setup and data analysis methods used to identify the boundary of liquid phase and to calculate 

stress correlation functions.  In Sec. III, we first demonstrate that the spatial stress correlation 

functions in two-dimensional (2D) liquids are distinctively anisotropic.  Then we investigate the 

nature of their oscillations and temperature dependent amplitudes.  In Sec. IV, we present the 

stress fields calculated using Eshelby’s theory and compare their symmetries with those of the 

simulation results.  We summarize conclusions in Sec. V.     
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2. Molecular dynamics simulation 

A.  Simulation setup 

We used the LAMMPS [26] to carry out two-dimensional molecular dynamics 

simulations.  The setup is similar to the one reported in Refs. [27, 28].  We consider a 

monoatomic system interacting through pairwise Yukawa potential [29]. The choice of this 

potential owes to its success in describing interaction between charged colloids, e.g. dendrimers 

[30].  Its mathematical expression is presented below: 

ܸሺݎሻ ൌ ܷ଴ ఙ௥ exp ሺെߣ ௥ିఙఙ ሻ,                     (3) 

where ܷ଴ defines the strength of the interaction, ߣ is the screening parameter, ߪ is the size of a 

particle, and r represents the inter-particle distance.  With employment of reduced unit 

formalism, we kept ܷ଴ = 1, 1 = ߪ, Boltzmann constant k = 1, and the mass of a particle m = 1 

throughout the simulations.  Moreover, we set 8 = ߣ and the cutoff distance for force evaluation 

as 4.1. We used a rectangular simulation box and applied periodic boundary condition on both 

directions. The ratio of the lengths of two sides is 2:√3 for the sake of minimizing box size effect 

[27, 28, 31]. All simulation runs were performed under canonical ensemble while the 

temperature control was achieved by Nose-Hoover thermostat.  The number of particles N = 

2500, the area of simulation box A = 2173.91, and therefore the number density 1.15N
A

ρ = = .  

The time step for integrating equations of motion via Verlet algorithm is 0.005 in reduced unit.  

We used the triangular crystalline lattice as the initial structure and gradually heated the system 

to each of the interested temperatures.    We waited 107 time steps after the targeted temperature 

was reached and then collected 104 frames of trajectories, which were 103 time steps apart.  The 

Maxwell relaxation time deduced from temporal correlation of macroscopic shear stress ranges 
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from 0.2985 to 0.0512 (approximately 60 and 10 MD steps respectively) at the studied 

temperatures of 1 to 7 in liquid phase.  Hence one can realize that the system is truly in 

equilibrium before the data collection.  

B. Phase behavior 

We use the potential energy per atom, Ea, to qualitatively monitor the phase behavior of 

the system under study.  This quantity can be computed via the following equation: 

௔ܧ ൌ ۃ ଵଶே ∑ ∑ ܸሺݎ௜௝ሻ௝ஷ௜௜  (4)        .ۄ

The results are presented in Fig. 1 as a function of the reduced temperature T*. At low 

temperatures the system is expected to be stable in the crystalline phase where Ea increases 

linearly with T*.  As temperature approaches approximately 0.9, the system starts to melt, 

signified by the emergence of the steep slope.  The system ultimately enters the liquid phase at 

temperature around 1.0, where Ea resumes linear dependence on T*. 

There has been an ongoing debate over the melting mechanism in two dimensions.  On 

one hand, the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory [32-35] predicts 

that the system can experience a hexatic phase in its path of transformation from a crystal to a 

liquid.  The signature of this hexatic phase is the quasi-long range orientational order.  On the 

other hand, 2D melting is believed to be a simple first-order phase transition [36].  There have 

been extensive studies to support both sides.  Since deciphering the melting process is not the 

primary interest of present study, we focus on identifying the boundary of liquid phase using the 

bond orientational order parameter. 
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Taking the ݔ axis as the reference axis, the bond angle between the particle ݇ and each of 

its nearest neighbors ݆ can be defined.  The angle ߠ௞௝ should satisfy cos൫6ߠ௞௝൯ ൌ 1 condition in 

the perfect crystalline phase and gradually diverge from it statistically as temperature increases. 

Hence the local bond angular order is quantified by  

 Ψ଺ሺݎԦሻ ൌ ଵேೖ ∑ ݁௜଺ఏೖೕேೖ௝ୀଵ ,        (5) 

where ௞ܰ represents number of nearest neighbors of the particle ݇. Its autocorrelation function, 

which is defined by Eq. (6), provides a measure of the range of the orientational order. 

݃଺ሺݎሻ ൌ  (6)        .ۄԦሻΨ଺ሺ0ሻݎሺכΨ଺ۃ

Fig. 2 illustrates ݃଺ሺݎሻ  at temperatures in the vicinity of the melting point.  In the 

crystalline phase, ݃଺ሺݎሻ converges to a finite asymptotic value which indicates the presence of 

long range orientational order.  A possible hexatic phase is found at ܶכ ൌ 0.95, where ݃଺ሺݎሻ 

decays algebraically suggesting a quasi-long range order of bond orientation exists in the system.  

As soon as the particles form liquids, the asymptotic form of ݃଺ሺݎሻ changes to an exponential 

decay over ݎ.  Therefore, the system is indeed in the liquid phase at ܶכ ൒ 1. 

C. Atomic level stress tensor 

We assess the stresses at each particle via the atomic level stress [2], which can be 

computed from, 

௜ఈఉߪ ൌ ଵଶ஺೔ ∑ ଵ௥೔ೕ ௗ௏ሺ௥೔ೕሻௗ௥௝   ௜௝ఉ,        (7)ݎ௜௝ఈݎ

where ߙ and ߚ indicate the corresponding Cartesian component while the summation runs over 

all particles residing inside the circle centered at the particle ݅ with the radius being the cutoff 
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distance set for MD simulation.  ܣ௜ is the atomic area that can be evaluated using the Voronoi 

polyhedra.  However, for the sake of simplicity, this work replaces it with the average atomic 

area defined by ܣ௔௩௘ ൌ ஺ே, where ܣ is the total area of the simulation box.    

D. Spatial stress correlation functions 

The spatial stress correlation functions are the most important quantities in the present 

study.  The functions correlate one component or some combinations of the elements in the stress 

tensor of one particle with that/those of other’s. We present the spatial x-y shear stress correlation 

function as one example, which takes the following expression: 

Ԧሻݎ௦ଵ,௦ଵሺܥ ൌ ∑ۃ ∑ ఙ೔ೞభఙೕೞభఋሺ௥Ԧି௥ഢሬሬሬԦା௥ണሬሬሬԦሻೕಯ೔೔ට∑ ൫ఙ೔ೞభ൯మ೔ ට∑ ቀఙೕೞభቁమೕ  (8)       ,ۄ

where 1s xyσ σ= . It is important to note that the angular dependence of this correlation function 

is preserved in contrast to ݃଺ሺݎሻ.  We will show below the elastic fields are characterized by 4ߠ 

or 2ߠ  symmetries, where ߠ  is the polar angle.  In addition to the x-y shear stress, we also 

consider the hydrostatic pressure, ( ) 2xx yyp σ σ= + , as well as the other shear stress, 

( )2 2s xx yyσ σ σ= − , for auto- and cross correlations. We note that the hydrostatic pressure of 

each particle is subtracted by its ensemble average value, which accounts for the external 

pressure applied to keep the volume of the system constant, in the correlation analysis. 

 

3.  Stress correlations in liquids 

In this section, we illustrate the existence of anisotropic correlations among the atomic 

level stresses in the 2D Yukawa liquids.  The correlation functions are characterized by well-
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defined 4ߠ  or 2ߠ  symmetry which resembles the stress pattern in the matrix induced by a 

circular inclusion to be introduced later.  We then examine the nature of their oscillations and 

temperature dependent amplitudes. 

A. Symmetry  

In Fig. 3, we present the spatial autocorrelation of the x-y shear stress computed at 

temperature ܶכ ൌ 1.  In Fig. 3 (a) the scale of color scheme matches the maximum intensity of 

the correlation function.  One clearly sees four bright spots near the center due to the nearest 

neighbors overshadowing the rest, each of which takes one corner of the diagonals.  The four 

fold symmetry is evident.  For clear visualization of the far field we rescaled the color scheme in 

Fig. 3 (b).  The innermost set of four spots, which are well separated in panel (a), almost merge 

to form a circle except for the gaps along the x- and y-axis directions under the new scale. 

Immediately following the first set, one sees two sets of four segments with one bearing positive 

intensity following the diagonal direction and the other carrying negative magnitude following 

the cos(4θ) = 1 directions.  Outside these two sets of four spots, the spots merge into a rounded 

square.  As the distance from the center further increases the correlation function shows 

successive positive and negative oscillations in intensity, resulting in a pattern similar to the 

propagating waves.  Moreover, the correlation in the diagonal directions is considerably stronger 

than that in the cos(4θ) = 1 directions. 

To demonstrate that the unique pattern of spatial shear stress correlation function in the 

liquid phase is not an artifact resulting from anisotropic packing of particles, we present the 2D 

pair distribution function (PDF) before and after the melting in Fig. 4.  Fig. 4 (a) serves as the 

benchmark, where the system obviously maintains a crystalline order.  Each particle has exactly 

six nearest neighbors.  In contrast, as shown in Fig. 4 (b) the 2D PDF is clearly isotropic in the 
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liquid phase for which the previous stress correlation analysis is performed.  This confirms that 

the spatial shear stress correlation function in the Yukawa liquids is characterized by the 4ߠ 

symmetry.   

 We also calculated the spatial correlation function between 1sσ  of particle i and other 

stress components of particle j.  In Fig. 5, we present the results for 1s
jσ  (panel (a)), jp  (panel 

(b)), and 2s
jσ  (panel (c)) in the position of 1s

jσ  in Eq. (8).  The color scheme is chosen in the 

same manner that highlights the far field.  The oscillatory nature of the correlation function is 

obvious.  In addition, each of them is characterized by well-defined symmetry which agrees with 

the symmetry of the corresponding stress field of Eshelby’s inclusion model as we discuss 

below.  We also show in Fig. 6 the spatial correlations between the hydrostatic pressure of one 

particle and the x-y shear stress (panel (a)), hydrostatic pressure (panel (b)), and 2sσ  (panel (c)) 

of others in the simulated Yukawa liquids.  Their symmetrical patterns are again comparable to 

those of the Eshelby fields.   

B.  Oscillations in the stress correlation function 

Whereas the spatial stress correlations in the 2D liquids agree with the Eshelby fields in 

terms of symmetry as shown above, the oscillatory nature is absent in the Eshelby fields.  It is 

obvious that this oscillatory nature originates from the particular discreteness of the liquid, while 

Eshelby’s theory, on the other hand, is built within the framework of continuum mechanics.  In 

order to elucidate this point, we compare the oscillations with the structural parameters of 

liquids.     

 Firstly we examine the spatial x-y shear stress autocorrelation function.  Its oscillations 

are compared with the derivate of PDF.  In the panel (a) of Fig. 7 we present the comparison 
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along the ݔ axis.  Considering the weak correlation in this direction, ܥ௦ଵ,௦ଵሺݎԦሻ is integrated over a 

wide solid angle to obtain better statistics, i.e. ׬ ଶ଴oିଶ଴oߠ݀ݎԦሻݎ௦ଵ,௦ଵሺܥ . In panel (b), we illustrate the 

counterpart in the ݕ ൌ ׬ direction, namely ݔ ସ଼oସଶoߠ݀ݎԦሻݎ௦ଵ,௦ଵሺܥ .  For simplicity, the amplitudes of 

the highest peaks are normalized to unity and the sign is flipped accordingly to make 

comparisons straightforward. In general, two curves show minor quantitative discrepancy at 

small ݎ region but agree better as ݎ increases.  In panel (a), two curves differ on the heights of 

peaks up to the third positive peak and become almost identical beyond the distance of 4.  In 

panel (b), the agreement at short ݎ distance is worse, but gradually improves with increasing ݎ. 

The interpretations of the origin of the oscillations in the rest of the presented stress 

correlation functions are more straightforward. They are found to synchronize with the pair 

correlation function [1], ݄ሺݎሻ ൌ ݃ሺݎሻ െ 1, which describes the correlation of density fluctuations 

in the liquids. We show the comparisons in Fig. 8, where the respective correlation function is 

presented along the direction showing maximum intensity. Specifically the panel (a) illustrates ܥ௣,௣ሺrሻ, the panel (b) ܥ௣,௦ଵሺrሻ, the panel (c) ܥ௣,௦ଶሺrሻ, and the panel (d) ܥ௦ଵ,௦ଶሺrሻ. It is worthy of 

mentioning that ܥ௣,௦ଵሺrሻ is identical to ܥ௦ଵ,௣ሺrሻ owing to the equivalency of two components in 

the correlation analysis. Hence only the former is included in Fig. 8 to avoid redundancy. The 

correlation functions are rescaled so that they carry the same magnitude as that of the pair 

correlation function at the third peak position of the latter. The agreements are again generally 

excellent at distance beyond the second minimum in panels (a), (b), and (c). Whereas two curves 

in the panel (d) exhibit great similarity in terms of peaks’ shape, they show minor misalignment.  

C.  Screening length 
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We now examine the amplitude of the anisotropic component of the x-y shear stress 

correlation and its temperature dependence.  Because ܥ௦ଵ,௦ଵሺݎԦሻ  is characterized by a strong cos ሺ4ߠሻ component, we define the four-fold correlation function,  ܣସ௖ሺݎሻ ൌ ׬ ஼ೞభ,ೞభሺ௥Ԧሻୡ୭ୱ ሺସఏሻௗఏ௚ሺ௥ሻ .        (9) 

This function, shown in Fig. 9 (a), is characterized by oscillations.  To examine the amplitude we 

plot the absolute value of ܣସ௖ሺݎሻ in logarithmic scale in Fig. 9 (b).  The linearity in the range of 4 ൏ ݎ ൏ 8 suggests the presence of an exponential component.  However, Eshelby’s theory [5, 

37] predicts the stress field follows the law of ଵ௥మ in 2D.  We interpret this difference between 

simulation and theory as the evidence of the screening effect on Eshelby’s long range field in 

liquids, similar to the screening effect on Coulomb interaction that leads to an exponential 

component.  We chose a fitting function: |ܣସ௖ሺݎሻ| ൌ ஺೎௥మ exp ሺെ ௥కሻ,        (10) 

to define the screening length ߦ.  The fitting result is shown in Fig. 9 (b) by a solid blue line.  

We applied the same analysis to the data at other temperatures to determine the 

temperature dependence of the screening length shown in Fig. 10.  It follows a power law with 

the form of, 

 ( ) ( )* *
0 0T T T

α
ξ ξ

−
= −          (11) 

with T0 = 0.48 and α = 0.72.  It is interesting that the screening length extrapolates to diverge 

near the glass transition temperature of T* ~ 0.4, suggesting the role of the stress correlation to 

play in the glass transition.  Unfortunately, the system quickly crystallizes below T* = 0.9 and 

this divergence could not be confirmed.   
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4.  Eshelby Field       

In this section we discuss the Eshelby theory of elastic inclusion [5] to elucidate the stress 

correlations we observed.  When an elastic substance (the ‘inclusion’) is embedded inside an 

elastic medium (the ‘matrix’), if the shape of the inclusion is different from the hole in the matrix 

an elastic stress field is generated in and around the inclusion.  The resultant elastic fields inside 

the inclusion and in the matrix can be quantitatively solved through the elegant method devised 

by Eshelby [5].  It is found that the elastic perturbation to the matrix is long-ranged and 

anisotropic. 

Although the Eshelby’s pioneering study on inclusion problems was conducted within the 

framework of continuum elasticity, it can be applied even to the stresses at the atomic level [38-

41].  Moreover, the concept of inclusion effect further extends to disordered materials 

concerning their plasticity covering from elementary plastic events [6-18] to shear banding [19-

21].  In the phenomenological model initiated by Argon and co-workers [15], the local plastic 

transformations, or equivalently the shear transformation zones noted by Falk and Langer [16, 

22], are considered analogous to the Eshelby-type inclusions.  From the explicit account of the 

resultant elastic field accompanying a single plastic event investigated by Picard et al. [8], a 

pattern of ~ ୡ୭ୱ ሺସఏሻ௥మ  is revealed, presuming the plastic activity occurs at origin in two dimensions. 

This predicted four-fold symmetry is clearly seen by Nicolas et al. [23] in athermal amorphous 

solids under shear and by Charttoraj and Lemaître [6] in supercooled liquids under shear via 

spatiotemporal correlation of selected quantities respectively.  Whereas these applications 

successfully elucidated the stress fields in the solid and supercooled states, it has not been 

applied to the high temperature liquids, although the presence of the stress field in the 
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equilibrium liquid state has been known [39-42].  Even though the Eshelby theory is well-

known, we summarize for the sake of clarity the mathematical solutions in 2D in Appendix. 

A.  Stress distribution 

We first illustrate the anisotropic nature of the stress fields induced by a circular inclusion 

in 2D.  In the examples we assume the radius of the inclusion, ܽ ൌ 0.5, shear modulus ߤ ൌ 1, 

Possion’s ratio ߥ ൌ 0.3, and that the center of the inclusion is placed at origin of the coordinates. 

For the case of pure shear transformation strain, i.e. ߝଵଶ் ൌ െ0.1  and ߝଵଵ் ൌ ଶଶ்ߝ ൌ 0 , the 

calculated stress fields are shown in Fig. 11 in the form of two dimensional contour plots.  The 

color scheme is again set to highlight far field.  Fig. 11 (a) demonstrates the x-y shear stress ߪ௦ଵ, 

(b) hydrostatic pressure ݌, and (c) ߪ௦ଶ. The figures clearly show the symmetry of the fields.  The 

shear stress field has eight lobes that amount to two 4ߠ components, where cosሺ4ߠሻ ൏ 0 parts 

carry positive values while cosሺ4ߠሻ ൐ 0 parts assume negative values. It is obvious that the sign 

of the two components would switch if ߝଵଶ் turns positive. Moreover, the x-y shear stress inside 

the inclusion is uniform and positive in this specific example.  Panels (b) and (c) also manifest 

evident anisotropicity while the hydrostatic pressure field is rather partitioned into four divisions 

and ߪ௦ଶ is essentially rotating shear stress field anti-clockwise to the moduli of గ଼. 

The Eshelby fields for the case of hydrostatic transformation strains, i.e. ߝଵଶ் ൌ 0  and ߝଵଵ் ൌ ଶଶ்ߝ ൌ െ0.1, are presented in Fig. 12.  It is readily recognizable that the panel (a) in Fig. 12 

is identical to the panel (b) in Fig. 11.  Panels (b) and (c) suggest ߪ௫௫ and ߪ௬௬ in the matrix carry 

the same magnitude yet opposite in sign, and both exhibit the cos ሺ2ߠሻ pattern.  Moreover,  ߪ௦ଶ 
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field can be again obtained by rotating ߪ௦ଵ anti-clockwise but to the degree of గସ.  The red disk in 

the center of panel (b) indicates uniform and positive hydrostatic pressure inside the inclusion. 

B. Stress correlation in liquids 

The similarity of the patterns in Fig. 3 (Fig. 5 (a)) and in Fig. 11 (a) is obvious, except for the 

oscillation with r.  Also Fig. 5 (b) and Fig. 11 (b), Fig. 5 (c) and Fig. 11 (c) share the same 

symmetry.  The same applies to Fig. 6 and Fig. 12.  Thus clearly the angular dependence of the 

stress correlations in the liquid state is explained in terms of the Eshelby’s inclusion model.  The 

oscillation with r is related to the PDF and the discrete nature of the atomic structure.  In the case 

of the x-y shear stress autocorrelation it is related the derivative of the PDF as shown in Figs. 7.  

For the cases of others the oscillation is directly related to the pair correlation function as shown 

in Fig. 8.   

 

5.  Conclusions 

A liquid behaves like a solid at a short timescale.  Therefore it can support the elastic 

stress field for a short time.  This results in the stress correlations in the liquids, which contribute 

to the viscosity.  So far, however, only the isotropic stress correlations have been studied.  In this 

article we extended our research into the anisotropic stress correlations.  We found that the 

spatial correlations of the atomic level stresses share the same symmetry with the stress fields in 

the matrix in the Eshelby’s inclusion model.  Specifically, the x-y shear stress autocorrelation 

function exhibits the familiar four-fold symmetry, the correlation of hydrostatic pressure of one 

particle and x-y shear stress of the others characterizes a cos ሺ2ߠሻ symmetry, and so forth.  In our 

view, these long-range anisotropic correlation functions indicate the existence of the Eshelby-
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type inclusion effect in the simulated 2D Yukawa liquids. In the Eshelby model the stress field is 

generated by the mismatch in shape between the inclusion and the hole in the matrix.  In the 

present case the atomic-level stress is caused by the mismatch between the shape of the atom 

(spherical) and the hole in the nearest neighbor shell.  The shear stress is generated when the 

nearest neighbor shell has an elliptic distortion, and the pressure occurs when the size of the 

atom and that of the nearest neighbor hole are not the same [39-41, 43, 44].   

However, we found that the amplitude of anisotropic component of x-y shear stress 

autocorrelation function does not follow Eshelby’s prediction of 2

1
r

 but has additional 

exponential decay with distance.  This difference can be perceived as screening effect that has 

temperature dependence.  The relevant screening length appears to follow a power law, 

diverging at a temperature close to the glass transition temperature, suggesting a possible role for 

the stress correlation to play in the glass transition phenomenon.  This issue, however, requires 

further study in the supercooled temperature range. 

It is also of interest to see if the strong stress correlations seen here in 2D are also present 

in 3D.  We have collected some preliminary results on 2D and 3D liquids interacting via 

modified Johnson potential [45], and similar results are obtained.  However, more detailed 

studies are required to answer this question more definitively.      
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Appendix: Mathematical solutions of the Eshelby problem in 2D 

Here we discuss two distinct methods of solving the two-dimensional circular inclusion 

problems.  The simplest cases of homogeneous, isotropic and infinite matrix embedding an 

inclusion that shares the same elastic moduli are considered here.  Furthermore, there is neither 

external loading nor body force.  Hence the elastic field inside the inclusion and matrix is 

exclusively determined by the transformation strain of the inclusion ்ߝ and consequent elastic 

responses.  

The first method can be deemed as the special cases of Eshelby’s [5] original approach in 

three dimensions under plane strain condition.  In this condition, the inclusion has a cylindrical 

shape with its axis of symmetry lying along the ݖ axis and being infinitely long.  In addition, if 

the components of transformation strains that are related to the ݖ direction, i.e. ߝ௫௭், ߝ௬௭், and ߝ௭௭், 

are zero, then the elastic condition on the cross sectional plane is equivalent to the desired two 

dimensional counterpart.  In practice, a prolate spheroidal inclusion with its polar axis extending 

over several orders of magnitude larger than the equatorial diameter is already a reasonable 

approximation of plane strain condition. Therefore, the strain field on the short semi-axis plane 

can be acquired from derivatives of displacements through numerical integration either using Eq. 

(A1) or Eq. (A2). With the advent of powerful computational resources and sophisticated 

numerical calculations recipes, such as finite element method, these integrations are no longer 

formidable tasks. 
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Eq. (A1) integrates over the surface of the inclusion, which is assembly of ݎԢሬሬԦ . Indices in 

subscripts denote any one of three Cartesian components, ߜ Kronecker delta function, ߤ shear 

modulus, ߭ Poisson’s ratio, ்ߪ stress calculated from transformation strain elastically via Hook’s 

law, and ሬ݊Ԧ  unit normal vector of surface element ݀ܵሺݎԢሬሬԦሻ . With employment of Einstein’s 

notation, the repeated indices suggest summation, e.g. ݔ௜ݔ௜ ൌ ଵݔଵݔ ൅ ଶݔଶݔ ൅  ଷ, and an indexݔଷݔ

preceded by a comma requires derivative operation on the specified direction, e.g. ݑ௜,௠ ൌ డ௨೔డ௫೘.  

Applying Gauss’s theorem to Eq. (A1) gives rise to Eq. (A2) that integrates over volume of the 

inclusion. ݈  represents the unit vector starting from volume element ܸ݀ሺݎᇱሬሬሬԦሻ  to the point of 

interest ݎԦ.  

Comparing to degenerating solutions derived in three dimensions into 2D version, 

complex variable formalism is generally more favorable for the plane theory of elasticity. Details 

concerning this method can be found from Refs. [46] and [47]. In this formalism, each point on 

the plane is represented by ݔ ൌ ଵݔ ൅ ଶ, where ݅ଶݔ݅ ൌ െ1, and the corresponding elastic field can 
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be completely mapped out via two bi-harmonic functions of ݔ, e.g. ߶ሺݔሻ and ߰ሺݔሻ, through the 

following relationships: 

ሻݔଵଵሺߪ ൅ ሻݔଶଶሺߪ ൌ 4ܴ݁ሼ߶ᇱሺݔሻሽ,         (A3) 

ሻݔଶଶሺߪ െ ሻݔଵଵሺߪ ൅ ሻݔଵଶሺߪ2݅ ൌ 2ሼݔҧ߶ᇱᇱሺݔሻ ൅ ߰ᇱᇱሺݔሻሽ,      (A4) 

ଵݑሺߤ2 ൅ ଶሻݑ݅ ൌ ሻݔሺ߶ߢ െ ሻതതതതതതതݔᇱሺ߶ݔ െ ߰ᇱሺݔሻതതതതതതതത,        (A5) 

where a prime corresponds to differential operation with respect to ݔ while double primes mean 

two times of such procedures. Moreover, a bar implies complex conjugate operation, ܴ݁ 

indicates taking real part of the object, and ߢ equals either 3 െ 4߭ under plane strain condition or 

ଷିజଵାజ in the condition of plane stress. 

Within this framework, Jaswon and Bhargava [37] unraveled Eshelby’s inclusion 

problems in two dimensions. The solutions were given separately for an elliptic inclusion 

suffering from either pure principal or shear transformation strains. In the event of a circular 

inclusion, the refined ߶ሺݔሻ and ߰Ԣሺݔሻ valid for matrix are presented below. 

For principal pressure condition, i.e. ߝଵଶ் ൌ 0,:  

߶ሺݔሻ ൌ ఓ௔మሺ఑ାଵሻ௫ ሺߝଵଵ் െ  ଶଶ்ሻ,          (A6)ߝ

߰ᇱሺݔሻ ൌ െ ଶఓ௔మሺ఑ାଵሻ௫ ሺߝଵଵ் ൅ ଶଶ்ሻߝ ൅ ఓ௔రሺ఑ାଵሻ௫య ሺߝଵଵ் െ  ଶଶ்ሻ.       (A7)ߝ

For shear stress condition, i.e. ߝଵଵ் ൌ ଶଶ்ߝ ൌ 0,:  

߶ሺݔሻ ൌ ݅ ଶఓ௔మሺ఑ାଵሻ௫  ଵଶ்,          (A8)ߝ
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߰ᇱሺݔሻ ൌ ݅ ଶఓ௔రሺ఑ାଵሻ௫య  ଵଶ்,          (A9)ߝ

where ܽ is the radius of the inclusion. 
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Figure captions: 

 

Figure 1. Potential energy per atom as a function of reduced temperature. The divergence 

from linearity at temperature around 0.9 suggests onset of melting process while its recurrence 

around 1.0 indicates entrance to liquid phase. 

 

Figure 2. (Color online) Spatial correlation function of bond orientational order parameter 

at T* = 0.9 (top black line), T* = 0.95 (upper middle green line), T* = 1.0 (lower middle pink line) 

and T* = 1.1 (bottom dark red line). g6(r) converges to a finite value only at crystalline phase 

while it decays algebraically at hexatic phase and exponentially at liquid phase. Hence the phase 

behavior at each presented temperature is readily identified. 

 

Figure 3. (Color) The spatial shear stress correlation function computed at T* = 1. In panel 

(a), the scale of color scheme matches the intensity of correlation function while in panel (b) the 

scale is set to highlight remote area. 

 

Figure 4. (Color) Pair distribution function with angular dependence for crystalline phase (a) 

and liquid phase (b). In crystalline phase, each particle has exactly six nearest neighbors and long 

range positional order is readily recognized while liquid phase has isotropic packing of particles. 

 

Figure 5. (Color) The spatial correlation of x-y shear stress and x-y shear stress (a), 

hydrostatic pressure (b) and σs2 (c) calculated for liquid phase at T* = 1. 
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Figure 6. (Color) The spatial correlation of hydrostatic pressure and x-y shear stress (a), 

hydrostatic pressure (b), and σs2 (c) computed at T* = 1.  

 

Figure 7. (Color online) The comparison of spatial x-y shear stress autocorrelation in the 0o 

direction (a) and 45o direction (b) against the derivative of pair distribution function. The 

amplitudes of the highest peaks are rescaled to unities. 

 

Figure 8. (Color online) The comparison between oscillations of Cp,p(ݎԦ) (panel (a)), Cp,s1(ݎԦ) 

(panel (b)), Cp,s2(ݎԦ) (panel (c)), and Cs1,s2(ݎԦ) (panel (d)) along respective maximum intensity 

directions and that of pair correlation function, h(r). The correlation functions are rescaled to 

share the same amplitude with pair correlation function at the third peak position of the latter, i.e. 

r = 2.68. 

 

Figure 9. (Color online) The cos(4θ) component of spatial x-y shear stress autocorrelation 

function computed at T* = 1. Panel (a) presents result in linear scale and panel (b) shows its 

absolute value in logarithmic scale along with a fitting curve. 

 

Figure 10. (Color online) Temperature dependence of screening length extracted from cos(4θ) 

component of x-y shear stress autocorrelation function (black solid circle) and a power law fitting 

curve (blue solid line). 

 

Figure 11. (Color) 2D contour plot of x-y shear stress σs1 (a), hydrostatic pressure p (b), and 

σs2 (c) created by a circular inclusion undergoing shear transformation strain. 
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Figure 12. (Color) The stress fields induced by a circular inclusion suffering from principal 

transformation strain. The arrangement of panels is identical to that of Fig. 11. 
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