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Abstract: The development of tractable non-equilibrium simulation methods represents a
bottleneck for efforts to describe the functional dynamics that occur within living cells. In
this Article, we employ a non-equilibrium approach called the λ-ensemble to characterize
the dissipative dynamics of a simple Markovian network driven by an external potential. In
the highly dissipative regime brought about by the λ-bias, we observe a dynamical structure
characteristic of cellular architectures: the entropy production drives a damped oscillator
over state populations in the network. We illustrate the properties of such oscillations in
weakly and strongly driven regimes, and we discuss how control structures associated with
the “dynamical phase transition” in the system can be related to switches and oscillators in
cellular dynamics.

INTRODUCTION

The processes that govern life share one common precept: living things are coupled to and driven

by an external input of energy, and therefore operate outside the constraints of equilibrium. In per-

forming the physical work required to grow and reproduce, organisms inevitably waste a portion

of the energy they consume. This “dissipative” work, which takes the form of heat evolved into

the surrounding bath, is intimately connected to the irreversibility of the system’s corresponding

functional trajectories and the production of entropy [1]. Theoretical results from Evans, Searles,

Gallavotti, Cohen, and their successors over the past two decades describe deep and powerful con-

nections between entropy production and time reversibility and dissipative work and equilibrium

free energies [2–9].

Despite such theoretical advances, methods for conducting rigorous non-equilibrium simula-

tions lag behind the scope and impact of potential applications. The ability to reliably modulate and

engineer cellular processes would revolutionize molecular and medical biology [10]. Proficiency

with non-equilibrium control systems would also prove highly useful in designing synthetic con-

structs of mechanical or self-assembly processes [11]. Before mastering the design and control of

1



cellular and other non-equilibrium pathways, however, one first needs to acquire an acute under-

standing of the nanoscale dissipative processes that drive molecular components involved in the

dynamics. Even simulating such functionally relevant non-equilibrium systems, however, presents

an enormous challenge. Biological machines are coupled to an exceptionally complicated field of

external energy (manifested in chemical potential and interactions with other cellular components);

in artificial systems, no such inscrutable blueprint for a driving potential even exists. Connecting

mechanical components to their full functional environments requires the continuous manipulation

of energy input and dissipation, a task for which standard simulation methods are poorly suited.

A promising means for facilitating such manipulations, however, has emerged from the theory of

large deviations: the so-called “λ-ensemble” provides a method by which non-equilibrium trajecto-

ries can be sampled according to their degree of entropy production [4–8, 12–15]. By constraining

entropy production like temperature constrains energy in canonical statistical mechanics, the λ-

parameter brings rare fluctuations that give rise to dissipative processes to the forefront. Coupled to

the theory of Markov chains, such an approach provides a means for interrogating driven processes

in a general framework. Given the advent of techniques like Markov state models (MSMs), which

provide network descriptions of biomolecular dynamics on a grand scale [16–19] the λ-ensemble

promises to become a powerful non-equilibrium simulation tool.

Recently, Vaikuntanathan, et al. analyzed entropy production in a selection of simple driven

networks using the λ-ensemble approach [14, 15]. Principally, the authors demonstrate a propensity

for so-called “entropy production phase transitions” to occur in such systems, and characterize

the steady states assumed at low and high entropy production rates. A “localization” to particular

dynamical bottlenecks is observed in the low entropy production regime.

In the realm of dynamical systems, the fluctuations and relaxation around steady states are also of

great interest. Small impulses to well-designed parameters can force a system to jump to a disparate

fixed point (thus flipping a “switch”); perturbations to basic rates can induce a system into cycles

around a once-stable fixed point (creating an “oscillator”) [20, 21]. Such rudimentary notions of

switches and oscillators are ubiquitous in biology, and the simple dynamical principles described

here govern the operation of switches and oscillators in gene transcription [22], neuronal dynamics

[23], the control of cycles like the cell cycle and circadian rhythm [24, 25], and a myriad of other

processes. In a sense, dynamical phase transitions (like that seen in entropy production) represent

switches in driven Markovian networks: an impulse in a control parameter (like λ) can be used to

flip the system between distinct fixed points [14, 26, 27]. Can conditions be set in driven networks

to give rise to oscillating behavior? By manipulating parameters in a simple driven system, we

provide a hint at the answer.

In this Article, we construct a triangle network nearly identical to that invoked by Vaikun-

tanathan, et. al, and we employ tilted transfer operator theory to study the dynamics of entropy
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production in the low and high production rate phases. We show that, under the correct conditions,

entropy is produced via a damped oscillation mechanism, and populations of states in the system

cycle back and forth at a regular period.

THEORY, MODELS, AND METHODS

Taken from large deviation theory, the λ-ensemble is treated like a standard thermodynamic en-

semble: relative probability weights for states are calculated and summed into a partition function,

and cumulant properties are derived from a free energy analogues. While traditional ensembles

place constraints on bulk properties like the energy and volume, the λ-ensemble constrains en-

tropy production rates in trajectories sampled from a system of interest. For an arbitrary trajectory,

x(tobs), observed for a given time tobs, the entropy production rate, Ω, is given by [2, 12, 13]

Ω(x(tobs)) =
1

tobs

[
pforward

preverse

]
(1)

where pforward and preverse are the forward and reverse probabilities for the microscopic trajectory

of interest. In the framework of Markov chains, one defines an N × N matrix of transition prob-

abilities, T, among a network of discrete states. With this matrix in hand, forward and reverse

trajectory probabilities are calculated trivially as products of microscopic transition probabilities.

In conducting a λ-ensemble analysis on a Markovian system, one can thus derive all needed in-

formation from a “tilted” transition matrix, Tλ that obeys the entropy-producing constraints of the

scalar field, λ [12, 13]. Exponentiating the λ-multiplied entropy production rate expression, one

finds that equilibrium transition probabilities need to be modified as [13, 14]

(Tλ)ij = (T)λij × (T)
(1−λ)
ji (2)

Trajectories sampled from the tilted matrix produce entropy (on average) according to the value to

which λ is tuned. The thermodynamic properties of the ensemble are computed from its so-called

dynamical partition function, Zλ: [28, 29]

Zλ(tobs) =
〈

e−λΩ
〉
tobs

= 〈π|Ttobsλ |o〉 (3)

where π is the stationary distribution for the equilibrium model and o is a vector containing all unit

entries. In principle, any discrete probability distribution can be inserted in place of π to simulate

arbitrary initial conditions for the transfer operator Tλ.

The corresponding dynamical free energy for entropy production can be calculated as

Fep(λ, tobs) = − 1

tobs
logZλ(tobs) (4)
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The mean entropy production rate as a function of λ is obtained by differentiating the free en-

ergy with respect to λ. In the long-time, ergodic limit, one can derive stationary probabilities over

Markov states by taking the inner product of left and right eigenvectors corresponding to the largest

eigenvalue of the tilted matrix [29]. To ascertain the dynamics of entropy-producing trajectories,

however, one must compute time-dependent state probabilities. One employs a transfer matrix the-

ory, detailed in the literature [28, 29], to do so. At a given time t in a trajectory of length tobs, the

probability of residing in a given Markov state X is given by

p(X,λ, t, tobs) =
1

Zλ(tobs)
〈π|Ttobs−tλ M(X)Ttλ|o〉 (5)

where M, called a projection matrix, contains only one non-zero entry: M(X,X) = 1. The evolu-

tion of probabilities in the driven system can thus be traced over time.

The driven network on which we focus this analysis is very similar to the “triangle network”

designed and coined by Vaikuntanathan, et al [14, 15]. Illustrated in Fig. 1, the triangle network

consists of an amalgam of three-state cycles connected periodically with a slow, symmetry-breaking

link. Trajectories are driven from left to right by an imbalance of rates (exemplified by the param-

eters x and y) for traversing the small triangular cycles. The presence of directed cycles in the

network, of course, gives rise to non-equilibrium dynamics: entropy cannot be produced at steady

state without the input of external energy, here transduced through an arbitrary external force that

circumvents detailed balance. The symmetry-breaking link is thought to break time translational

invariance in the system, giving rise to a dynamical phase transition in entropy production as a

function of λ.

To augment the methodology of Vaikuntanathan, et al., we first construct the triangle network

from the perspective of transition probabilities, rather than transition rates. To build a transition

probability matrix, we assign transition counts between states according to the connectivity and

rough edge weights shown in Fig. 1, and we normalize the rows of the resulting count matrix

to unity. In particular, we study the dynamics within low and high entropy producing phases for

weakly driven and strongly driven networks defined by different parameter sets. Common between

the weakly and strongly driven networks, the parameters h, x, and b are set as follows: h = 0.02,

x = 1, and b = 0.1. The parameter y is switched between 2 to 20 to define the two distinct driven

regimes. To promote numerical stability, unit values were added to the all diagonal entries in the

count matrices, and probabilities are computed at a time t = tobs/2 within ensembles of increasingly

long trajectories. The reasoning behind this mode of time evolution is founded on considerations

related to fluctuation theorems and time non-locality within trajectory ensembles, as is explicated

in the Results and Discussion.

In general, it is also possible to define an auxiliary propagator that provides a stochastic model

for the dynamics that occur at arbitrary values of the λ-bias. To do so, it is often useful to first

4



transform the unbiased transition matrix, T, into its rate matrix analogue, W, using simple ma-

trix diagonalization (the eigenvalues of the rate matrix can be computed via the logarithm of the

transition matrix eigenvalues). Elements of the tilted rate matrix, Wλ, of the λ-ensemble are then

computed as [29]

(Wλ)ij = (1− δij)
[
(W)λij × (W)

(1−λ)
ji

]
+ δij(W)ij (6)

The aforementioned auxiliary stochastic model, Waux
λ , is generated from the dominant eigenvalue

of Wλ, ωl,λ ≡ ω, and its respective right (transfer operator) and left (propagator) eigenvectors,

ul,λ ≡ u and vl,λ ≡ v. Applying normalization constraints such that 〈v|u〉 = 1 = 〈v|o〉, the

auxiliary rate matrix for dynamics at a given value of λ, Waux
λ , is calculated using the diagonal

operator Uii = ui: [29]

Waux
λ = UWλU−1 − ω (7)

The off-diagonal elements of Waux
λ are thus given by

(Waux
λ )ij = u(j)(Wλ)iju(i) (8)

and the complementary diagonal elements of the auxiliary matrix are subject to the constraint of

stochasticity:

(Waux
λ )ii = −

∑
j 6=i

(Waux
λ )ij (9)

It can be formally shown that Waux
λ reproduces the dynamics of the λ-ensemble exactly in the

steady state regime [29]. In practice, it is also informative to study the slow dynamical processes

(embedded in eigenvectors with negative rate matrix eigenvalues) that are generated by the auxiliary

stochastic model. The eigenproperties of the auxiliary propagator for the simple networks studied

here can be obtained through direct diagonalization of the matrix Waux
λ .

In summary, the above methodology allows one to characterize the time evolution of state prob-

abilities within a stochastic network – in particular when dynamics are subjected to a constraint

of enhanced (or suppressed) entropy production. The application of such constraints yields rich

behavior in the dynamics of driven triangle networks, as demonstrated below.

RESULTS AND DISCUSSION

The driven network illustrated in Fig. 1 can, of course, be extended to an arbitrary length along

its horizontal axis. In the following analysis, we choose to highlight the properties of a relatively

short network (containing 50 triangular cycles and 101 discrete states) because the probability struc-

ture induced by the triangular cycles is readily evident at small scales. However, for completeness,
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aspects of the finite-size scaling of network properties are also noted in the subsequent text and

illustrated in supplementary figures.

Fig. 2 illustrates the mean entropy production rate observed in a strongly driven, 50-cycle net-

work, as a function of the control parameter λ. As the abrupt jump in entropy production indicates,

we observe a dynamical phase transition as λ is tuned in the neighborhood of its unbiased (unit)

value, in a manner consistent with Vaikuntanathan, et. al [14]. Unsurprisingly (and also in agree-

ment with [14]), the phase transition becomes sharper as the number of cycles in the network is

increased; the qualitative features of the crossover do not change, though, in networks containing a

greater number of states. Fig. 3 shows the scaling of the phase transition over a range of network

sizes. Notably, a well known symmetry in the dynamical free energy about λ = 0.5 implies that the

properties of entropy production need only be calculated above or below this λ-value [12–14].

Fig. 4 shows steady state probabilities in an unbiased (λ = 1), strongly driven model containing

50 cycles. Population is delocalized across states in the middle of the network (in a sawtooth pattern

generated by the triangular structure), and a peak of probability density appears as flow is impeded

by the symmetry-breaking link. As illustrated in Fig. 5, the absolute magnitude of this peak decays

as more and more cycles are added to the network; when scaled by the number of states in the

system, however, the relative peak height tends toward a plateau in larger and larger networks.

As λ is modulated away from a unit value, dynamics induced by the entropy production con-

straints become immediately apparent. The steady state distributions corresponding to the high and

low entropy production phases are presented for both the strongly and weakly driven networks in

Fig. 6; the rightward peak discussed above is greatly enhanced at low values of dissipation and

largely decimated at high levels of dissipation.

In parallel to previous findings, we thus indeed find that probability density becomes highly lo-

calized in the ergodic limit of low entropy production phase [14]. Fig. 7 demonstrates the dynamics

involved in reaching this steady state on the low side of the dynamical phase transition. Under both

weak and strong driving conditions, density in the middle portion of the network quickly evaporates,

and populations spike to the left (and to a minute extent, to the right) of the symmetry-breaking

connection. With the system localized on both sides of the slow link, little entropy is produced in

traversing the triangular cycles from the left to right in the network.

This picture of gentle relaxation to a dynamical steady state, however, changes radically within

the high entropy production phase. Fig. 8 catalogues the high entropy-producing population dy-

namics in the strongly driven network as a function of time. Immediately, such dynamics diverge

from the localization paradigm: the plateau in the middle of the network pulls density away from the

slow link, resulting in a central peak in the probability distribution after about 75 time steps. This

peak, however, is quickly annihilated, and a probability deficit takes its place, leading to population

enhancement on both sides of the slow link boundary. The central peak is reestablished after about
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250 time steps with a somewhat damped maximum amplitude. This oscillating behavior continues

at a regular period of approximately 200 time steps, with substantial peaks appearing the middle

of the network for many cycles. Fig. 9 illustrates that, in the weakly driven system, more highly

damped oscillatory behavior (with a longer period of approximately 500 time steps) is observed. A

longer period is perhaps expected in the weakly driven network, given that left-to-right traversal of

the system is, in the absence of bias, slower under weak driving conditions. The dynamics in both

cases reach reasonable approximations of a steady state (shown in Fig. 6) before 5000 time steps

have been evaluated. The absolute magnitude of the first central peak in the oscillations decays as

more cycles are added to the network, as one might expect (see Fig. 10 for an exhibition of finite

size effects); when scaled by the state space cardinality, however, the magnitude of the peak again

plateaus in larger and larger systems.

On a side note, the reasoning behind our mechanism of time evolution (i.e., varying tobs and

fixing t = tobs/2) is worthy of some exposition. The specific choice of the value t = tobs/2 is

related to the aforementioned symmetry of observables about λ = 0.5, a property rooted in the

Crooks fluctuation theorem [12]. Based on the structures of Equations 2 and 5, one should observe

that extending the time parameter t beyond tobs/2 is equivalent to evaluating the transposition of

the transfer operator Tλ at short times. This transposed operator simply represents a momentum-

reversed analogue to the original propagator, implying that a time- and state index-reversal of dy-

namics after tobs/2 will reproduce dynamics seen at t < tobs/2. Accordingly, unique information

within the λ-ensemble can only be obtained up to a time of t = tobs/2 within a given trajectory

ensemble.

One should next note that, rather than measuring various time points up to t = tobs/2 in an en-

semble of very long trajectories, we evaluate different ensembles comprised of successively longer

trajectories. To justify this choice, one needs to call upon simple physical arguments and examine

their consequences within space-time statistical mechanics. While the physics of entropy produc-

tion are not time reversible, the processes that result in energy dissipation in real systems are cer-

tainly time local. However, the physics of large deviation trajectory ensembles are decidedly not

time local: from the perspective of any single, non-boundary point in time, trajectories are sam-

pled based on their past and future states. This dependence on future events, of course, violates

our traditional sense of causality. Causality violations in the context of large deviations have been

comprehensively discussed in the past [29]; in general, it’s agreed that considerations of causality

can be safely ignored in the long-time, time-translationally invariant (TTI) regime of dynamics. The

limited success, to date, of large deviation fields in biasing physical simulations on the fly can likely

be attributed to issues of time non-locality.

In the present work, we do analyze the time evolution of trajectories in the sub-TTI regime,

meaning that preservation of causality must be taken into account. From a physical viewpoint, one
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would expect short-time dynamics to be agnostic to events in the near and distant future. To satisfy

this expectation in large deviation theory, one must analyze ensembles of trajectories of minimal

length relative to a given time point of interest. Based on our above discussion of symmetries in the

λ-ensemble, that minimal length is tobs = 2t, where t is the desired time for probability evaluation.

Under the paradigm of scanning various time points within a single, long-trajectory ensemble,

one still in practice observes oscillations at high levels of dissipation; these alternative dynamics

(for the strongly driven network) are now illustrated in the Fig. 11. The observed oscillator has a

similar period to that presented in Fig. 8 but exhibits a somewhat different waveform. Since these

long-trajectory probability distributions are based on future information about entropy-producing

trajectories, however, one should consider them to be less physical than those collected under the

tobs = 2t lens.

The genesis of the observed dissipative oscillations can be manifested in the striking, near-

harmonic eigenvectors that appear in the auxiliary model above the dynamical phase transition. Fig.

12 shows the real and imaginary components of the four most dominant conjugate sets of such

eigenvectors derived from the strongly-driven form of Waux
λ . Each set of eigenvectors is coupled

to a complex eigenvalue, which flips in sign as the matrix is propagated to yield cyclic positive

and negative contributions to the evolving density. As one might expect, the eigenvectors with the

slowest associated time scales (indicated, roughly, by the real component of the related eigenvalue)

exhibit the longest spatial wavelengths. The high frequency modes contribute most to the dynamics

at short times, when the probability density waveform is flat and broad; the slowest, single-peaked

mode comes to dominate the oscillations as time progresses, yielding the smooth probability peaks

seen in later panels of Fig. 8. Below the dynamical phase transition, these hallmarks of oscilla-

tory behavior disappear: as demonstrated by Fig. 13, the slowest eigenvectors in the low entropy

production regime simply serve to transfer density toward the network’s rightward bottleneck.

Throughout the course of oscillations that occur above the phase transition, a nearly constant

mean entropy production rate is maintained. In order for this production to be sustained, trajectories

must be driven more prominently rightward (on average) in the network over the total duration of

an observation window. Trajectories which cause density to shift from right to left, of course, are

counterproductive to a high level of dissipation in the dynamics. At large values of the λ-parameter,

such motions must be counteracted by more dramatic shifts to the right. An additional, asymmetric

probability enhancement (correlated with an eigenvector asymmetry) indeed appears on the left

side of the slow link boundary, accounting for the high level of continuous entropy production in

the network.

Fig. 14 provides further comparison of the oscillators that emerge under strong and weak driving

conditions. One clearly sees the asymmetry that emerges on the far right side of the network: the

maximum amplitudes for the extreme rightward states are larger than those in the middle. Oscil-
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lations are effectively damped out under weak conditions after about five cycles, while analogous

oscillations are far more persistent in the strongly driven case. Both systems evolve at very regu-

lar periods, and the shapes of the resulting waveforms are highly correlated with the characteristic

periodic time scales.

We thus observe that, upon addition of a symmetry-breaking link to a simple driven network,

high entropy production drives an oscillator that transfers population back and forth between ex-

treme regions of the state space. The slow link introduces a separation of time scales in the network

dynamics, and coupling this adiabaticity to a strong driving potential (manifested by large values

of λ) yields oscillating behavior centered around the boundary. The scheme of adding an adiabatic

element to induce oscillations in a driven system is not uncommon [20]; it is intriguing and en-

couraging, however, that this behavior emerges naturally from the λ-ensemble approach. One could

imagine coupling this oscillator among states to a particular operation: if the states in the center

of the network and its extremities were connected separate but dependent tasks, the system could

(during the course of oscillations) complete these undertakings in sequence and at regular intervals.

In biology, oscillators related to processes like the gene regulation [22], neuronal dynamics [23],

the cell cycle [24], and circadian rhythms [25] are perhaps the most prominent. To be successful,

however, these types of oscillators need to be “relaxation” oscillators. The period in a relaxation

oscillator is largely independent of the waveform’s morphology; in the absence of this constraint, a

system’s residence in certain states (like the arrested state of cell division or the wakeful state of an

organism) can thus be long and stable without sacrificing the expediency of transitions between dif-

ferent regimes [20]. The oscillators observed here decidedly do not share this characteristic, as the

populations are deformed nearly continuously throughout the course of a cycle. The construction of

a reliable relaxation oscillator using the λ-ensemble framework presents an interesting exercise. As

a rough comparison, the oscillators observed in the triangle network are closer in character to some

seen in developmental biology (perhaps first, and most elegantly, described by Turing [21, 30, 31]),

which are responsible for cyclic morphogenesis in organisms. The central and extreme populations

in the high entropy production regime of the triangle network are phase locked and decay with time

[21]. Though grossly oversimplified for the purposes of this comparison, a similar phase-locked and

decaying motif is needed to generate repeating and terminating patterns like stripes and vertebrae in

developing creatures [30, 31]. The triangular structure of the network also evokes simple two/three-

state models of molecular motors, wherein the driven link in each miniature cycle could serve to

represent the power stroke of the machine, while the passive links might describe fluctuations be-

tween inactive and active states. Under this interpretation, the network’s symmetry-breaking link

could simulate an interaction with a spatially localized inhibitory complex, from which the motor

might disengage and operate in reverse. At this juncture, such connections to biological systems are

admittedly hypothetical; dissipative analyses of more physically rigorous biomolecular models will
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certainly be of interest in the future.

CONCLUSION

Above, we have provided evidence that the λ-ensemble approach can capture the dissipative

dynamics related to important non-equilibrium control structures like switches and oscillators. By

employing simple dynamical principles in the construction of driven networks, we can thus use a

λ-bias simulate two of the most archetypical constructions biology has evolved to help living things

function and propagate. A converse analysis awaits: given a detailed network model (for example,

a Markov state model) of a biological system of interest, can the λ-ensemble be used to characterize

the control structures present in the dissipative regime? Though one would need to start small

(perhaps on the level of single protein molecules), the results presented here provide a blueprint for

accessing the non-equilibrium physics of arbitrary cellular architectures.
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FIG. 1. Schematic illustration of the non-equilibrium triangle network. Trajectories are driven around the total
cycle according to an imbalance between rates x and y, which govern the traversal of N miniature, triangular
cycles. The symmetry-breaking link (parameterized by a relatively slow rate, σ) between the right and gives
rise to interesting behavior in the observed entropy production. Rates are translated into transition counts
for the transition probability framework; several self-transition counts are added to each node to improve
numerical stability.

FIG. 2. (Color online) Mean entropy production rate, Ω, as a function of the biasing parameter λ in a 50-cycle
triangle network. A dynamical phase transition (characterized by the sharp jump in the entropy production
rate near λ = 1) separates two distinct regimes of dissipative behavior.
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FIG. 3. (Color online) Finite size scaling of the mean entropy production rate as a function of λ in triangle
networks. As the number of cycles in the network, N , is increased, the dynamical phase transition grows
uniformly sharper but maintains its qualitative characteristics. Since mean entropy production rates vary
slightly as tobs is modulated, 〈Ω〉 is calculated at tobs = 2N for purposes of comparison.
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FIG. 4. Steady state probability distribution for the unbiased, strongly-driven triangle network. The peak in
probability at the extreme right (near the symmetry-breaking link) is truncated to preserve scale. States are
indexed according to a left-to-right orientation of Figure 1, where the slow link connects states 1 and 101. No
dynamics as a function of trajectory length are observed in this unbiased case.
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FIG. 5. Finite size scaling of the steady-state, “bottleneck” probability peak height (defined as the probability
of the right-most state) in unbiased triangle networks. In the lower plot, probabilities are scaled by the number
of states in each respective network; all values shown correspond to strong driving conditions.
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FIG. 6. Steady state probability distributions for the four λ-biased networks analyzed in the main text. As
always, the driving direction from left-to-right in each of the subplots. The curves shown here describe
probabilities in the long-time, ergodic limit; the dynamical processes illustrated in Figs. 4 - 6 converge to
these steady states at respective low and high levels of entropy production.
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FIG. 7. (Color online) Dynamics within the low entropy production phases (at λ = 0.7) observed for the
(a) weakly and (b) strongly driven networks. In both cases, the dynamics describe a “localization transition”
onto states near the slow-link boundary. Probabilities are calculated for times t according to t = tobs/2, and
the probability spike at the right side of the network is truncated to preserve scale. Probabilities in the central
states decay monotonically as time advances.
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FIG. 8. Dissipative dynamics in the high entropy production phase (λ = 1.4) for the strongly driven triangle
network. Once more, probabilities are calculated for times t = tobs/2. Oscillations persist over the course of
the twelve frames; significant central peaks in probability still appear after seven cycles, as illustrated in the
final frame.

FIG. 9. Dissipative dynamics in the high entropy production phase (λ = 1.4) for the weakly driven triangle
network. Once more, probabilities are calculated for times t = tobs/2. Oscillations are damped more quickly
and occur over a longer period than in the strongly driven case.
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FIG. 10. Finite size scaling of the first central probability peak height in oscillations observed under the
constraint of high entropy production (λ = 1.4) and under strong driving conditiions. In the lower plot,
probabilities are once more scaled by state cardinalities.
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FIG. 11. Probability oscillations measured explicitly as a function of time within a single ensemble of long
(tobs = 10000) trajectories at λ = 1.4 and under strong driving conditions. Deviating from the t = tobs/2

convention in the λ-ensemble yields results biased by future outcomes; in this case, oscillation waveforms are
rightward-leaning compared to the curves presented in the main text. The period and peak amplitude of this
oscillator (approximately 200 time steps and 0.03, respectively), however, are very similar to values extracted
from time points at tobs/2.
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FIG. 12. (Color online) Dominant eigenvectors corresponding to the auxiliary operator, Waux
λ , in the high

entropy production phase. Real eigenvector components are illustrated at left, and imaginary eigenvector
components are shown at right; each couple of vectors coincides with a complement of complex eigenvalues,
appearing in complex conjugate pairs. The eigenvectors presented here exhibit the four largest real eigenvalue
components that contribute to the auxiliary dynamics. These eigenvectors collectively form a set of near-
harmonic modes that describe the oscillatory behavior seen at high levels of mean entropy production. In
particular, the slowest mode (top) can be seen in the evolution of dynamics in Figure 4.

21



FIG. 13. Real components of dominant eigenvectors corresponding to the auxiliary operator, Waux
λ , in the low

entropy production phase. While some fine structure appears near the right side of the cycle, most oscillatory
character observed above the phase transition disappears in the low entropy production phase. Below the
phase transition, the dominant eigenvectors serve to transfer density toward the network’s bottleneck in a
nearly uniform fashion. Imaginary eigenvector components are also localized to the left side of the bottleneck.
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FIG. 14. (Color online) Illustration of probability oscillations over time in the middle and extreme right por-
tions of the network. In both the (a) weakly driven and (b) strongly driven cases, oscillations follow a regular
period, with peak probability amplitudes for extreme rightward states (red, higher amplitude) exceeding the
peak amplitudes for central state (blue, lower amplitude) probabilities. In both cases, the two probabilities
are phase-locked in opposition and evolve over time according to a smooth waveform.
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