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Self-propulsion allows living systems to display self-organization and unusual phase behavior.
Unlike passive systems in thermal equilibrium, active matter systems are not constrained by con-
ventional thermodynamic laws. A question arises however as to what extent, if any, can concepts
from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we
use the new swim pressure perspective to develop a simple theory for predicting phase separation
in active matter. Using purely mechanical arguments we generate a phase diagram with a spin-
odal and critical point, and define a nonequilibrium chemical potential to interpret the “binodal.”
We provide a generalization of thermodynamic concepts like the free energy and temperature for
nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively
and quantitatively and may provide a framework for understanding and predicting the behavior of
nonequilibrium active systems.

PACS numbers: 05.65.+b, 47.63.Gd, 64.75.Xc, 87.18.Hf

Self-propulsion is a distinguishing feature of all “ac-
tive matter” systems. By controlling and directing their
own behavior self-propelled entities (usually, but not re-
stricted to, living systems) can exhibit distinct phases
with unusual dynamical properties[1]. These exotic be-
haviors are made possible because active matter is an in-
herently nonequilibrium system that is not bound by con-
ventional thermodynamic constraints. A key challenge is
to develop a framework for understanding the dynamic
behavior and bulk properties of active matter.
While computer simulations have produced phase dia-

grams of active matter[2–6], many regions of phase space
are difficult to explore because of the computational chal-
lenge of covering the parameter space. In this paper we
develop a new mechanical theory for predicting the phase
behavior of active systems. We also offer suggestions
on how conventional thermodynamic concepts, such as
chemical potential, free energy and temperature, can be
extended to provide a ‘thermodynamics’ of nonequilib-
rium active matter. There are quotation marks around
‘thermodynamics’ in the title because at this point we are
not certain whether conventional thermodynamic con-
cepts comprise a valid and rigorous framework for study-
ing nonequilibrium active systems. It remains uncertain
to what extent, or even if, any of the concepts from clas-
sical thermodynamics are applicable to active matter.
Our analysis suggests that active systems are entropically
driven by a lower critical solution temperature (LCST)
transition, where phase separation becomes possible with
increasing temperature.
Here we consider a simple active matter system—a sus-

pension of self-propelled spheres of radii a that translate
with an intrinsic swim velocityU0, tumble with a reorien-
tation time τR, and experience a hydrodynamic drag fac-
tor ζ from the surrounding continuous Newtonian fluid.
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The random tumbling results in a diffusive process for
t ≫ τR with Dswim = U2

0 τR/6 in 3D. We do not include
the effects of hydrodynamic interactions, and there is no
polar order of the swimmers, precluding any large-scale
collective motion (e.g., bioconvection). We seek to un-
derstand the phase behavior of a simple active system
in which there is no large-scale coherent motion before
moving on to study more complex collective behavior.

I. Mechanical Theory

The active pressure exerted by a system of self-
propelled particles can be written as Πact = Πswim+ΠP ,
the sum of the “swim pressure” Πswim and the interpar-
ticle (collisional) pressure ΠP [7]. It is permissible to add
the separate contributions of the pressure in what ap-
pears to be a superposition; this is true in general for
molecular, Brownian and active systems.
The swim pressure was recently introduced as a fun-

damental aspect of active systems and as an aid to un-
derstand their self-assembly and phase behavior[7–9].
For a dilute system the “ideal-gas” swim pressure is
Πswim = nζDswim = nζU2

0
τR/6,[7]. Physically, Πswim

is the unique pressure exerted by self-propelled entities
as they bump into the surrounding walls that confine
them, analogous to the osmotic pressure of colloidal so-
lutes. The swim pressure is an entropic quantity that
arises purely from confinement, and can be computed
from the first moment of the self-propulsive swim force
(see Appendix).
Dimensional analysis allows us to write the swim

pressure as Πswim(ksTs, φ, PeR) = nksTsΠ̂
swim(φ, PeR),

where ksTs ≡ ζU2

0
τR/6 defines the swimmers’ “en-

ergy scale” – force (ζU0) × distance (U0τR) – and

Π̂swim(φ, PeR) is the nondimensional swim pressure
that depends in general on the volume fraction φ =
4πa3n/3 and importantly the nondimensional reori-
entation “Péclet number” PeR = U0a/D

swim =
U0a/(U

2

0
τR) = a/(U0τR), which is the ratio of the swim-
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mer size a to its run length U0τR.[10]
For large PeR the swimmers reorient rapidly and take

small swim steps, behaving as Brownian walkers[7]. Thus

Π̂swim(φ, PeR) = 1 for all φ . φ0 where φ0 is the volume
fraction at close packing. This system is analogous to
passive Brownian particles, which exert the “ideal-gas”
Brownian osmotic pressure ΠB = nkBT regardless of the
concentration of particles.
For small PeR the swimmers have run lengths large

compared to their size and Π̂swim decreases with φ be-
cause the particles hinder each others’ movement. In
this limit experiments and computer simulations[6, 11–
15] have observed the self-assembly of active systems into
dense and dilute phases resembling an equilibrium liquid-
gas coexistence.
Extending the results of the nonlinear microrheology

analysis[7] the swim pressure at small PeR in 3D takes

the form Π̂swim = 1 − φ − φ2. The inclusion of a three-
body term (−φ2) is based upon an empirical fit which
agrees with our swim pressure data for all PeR ≤ 1. Un-
like Brownian systems where repulsive interactions (e.g.,
excluded volume) increase the pressure, for active mat-
ter interactions decrease the run length and therefore the
swim pressure. The decrease in Πswim is the principle
destabilizing term that facilitates a phase transition in
active systems.
At finite concentrations, interparticle interactions be-

tween the swimmers give rise to an interparticle (or colli-

sional) pressure ΠP (ksTs, φ, PeR) = nksTsΠ̂
P (φ, PeR),

where Π̂P (φ, PeR) is the nondimensional interparticle
pressure. For repulsive interactions ΠP increases mono-
tonically with φ and helps stabilize the system. The
phase behavior of active systems is determined by a com-
petition between a destabilizing Πswim versus a stabiliz-
ing ΠP , a balance controlled by the parameter PeR.
For large PeR the swimmers behave as Brownian par-

ticles and Π̂P (φ, PeR) = Π̂HS(φ), where Π̂HS(φ) =
4φg(2;φ) is the interparticle pressure of hard-sphere
Brownian particles and g(2;φ) is the pair-distribution
function at contact.[16, 17] The detailed interactions be-
tween the particles are not important[16–18]—a hard-
sphere molecular fluid’s interparticle pressure has the
same form – the same volume fraction dependence –
as that of a Brownian system despite differences in the
source of the collisions. A system of active swimmers also
exhibits the same form of the interparticle pressure. In-
deed, for large PeR the run length U0τR sets the scale of
the force moment and ΠP ∼ n2ζU0a

3(U0τR) ∼ nksTsφ,
analogous to the passive hard-sphere Brownian collisional
pressure ∼ nkBTφ.
For small PeR, ΠP ∼ n2ζU0a

4 ∼ nksTsPeRφ since
a swimmer is displaced by its size a upon collision, not
the run length U0τR. The interparticle pressure for small

PeR in 3D is thus Π̂P = 3φPeRg(2;φ).
For both small and large PeR, the pair-distribution

function at contact has the form[17] g(2;φ) =

(1− φ/φ0)
−β

, and φ0 and β are parameters obtained

φ = 4πa3n/3

P
e R

=
a
/
(U

0
τ
R
)
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FIG. 1: Phase diagram in the PeR − φ plane in (A) 3D
and (B) 2D. The colorbar shows the active pressure
scaled with the swim energy ksTs = ζU2

0
τR/6, and the

blue and red curves are the binodal and spinodal,
respectively. The critical point is shown with a red star.
The open and filled symbols are simulation data with a
homogeneous and phased-separated state, respectively.

from the interparticle pressure of hard-sphere molecu-
lar fluids and/or passive Brownian particles. Simulations
verify that the parameters φ0 = 0.65 and β = 1 agree in-
dependently with the collisional pressures for hard-sphere
active swimmers, passive Brownian particles, and molec-
ular fluids[17].

The active pressure is the sum of the swim and inter-
particle pressures[19], which for small PeR is

Πact = nksTs

(
1− φ− φ2 + 3φPeR(1− φ/φ0)

−1
)
, (1)

and which we can use to analyze phase separation in ac-
tive matter. We focus on non-Brownian swimmers since
the effect of translational Brownian diffusivity is small in
phase-separating systems. Figure 1 compares the phase
diagram in the PeR − φ plane obtained from this model
to the simulation data of other studies.

The spinodal defines the regions of stability and is de-
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termined by setting ∂Πact/∂φ = 0. This is given by the
red curve in Fig 1 that passes through the extrema of
each constant-pressure isocontour (“isobar”). No notion
of free energy is needed to obtain the spinodal—it is a
purely mechanical quantity.

At the critical point ∂Πact/∂φ = ∂2Πact/∂φ2 = 0. In
3D we find the critical volume fraction φc ≈ 0.44, ac-
tive pressure Πact,cφc/(nksTs) ≈ 0.21, and Péclet num-
ber PecR ≈ 0.028, values consistent with our BD simu-
lations. Like the spinodal, the critical point is identified
using only mechanical arguments.

The blue curve in Fig 1 delineates the “binodal”
or coexistence regions, which we define as the equal-
ity of the chemical potential in the dilute and dense
phases. Although the thermodynamic chemical poten-
tial is defined only for equilibrium systems, one can de-
fine a nonequilibrium chemical potential for active sys-
tems using standard macroscopic mechanical balances[7]:
n(∂µact/∂n) = (1− φ)∂Πact/∂n.

This definition agrees with the true thermodynamic
chemical potential for molecular or colloidal solutes in
solution[20] (see Appendix). There are no approxima-
tions other than incompressibility of the solvent. Stress-
induced diffusion, which this relationship implies, has
been used in the context of migration of non-Brownian
particles in pressure-driven flow[21]. For τR → 0 active
swimmers and passive Brownian particles not only be-
have similarly, but their dynamics are equivalent. If we
placed active swimmers that behave identically to passive
Brownian particles behind an osmotic barrier, we would
not be able to distinguish one from the other. The form
of the relationship between the chemical potential and
pressure are equivalent for the two systems. We thus in-
terpret µact as a natural definition and extension of the
chemical potential for nonequilibrium systems, and use
it to compute and define a “binodal.”

For small PeR we obtain

µact(ksTs, φ, PeR) = µθ(ksTs, P eR) + ksTs logφ +

ksTs log Γ(φ, PeR), (2)

where µθ(ksTs, P eR) is the reference state whose form
is not needed, and Γ(φ, PeR) is a nonlinear but ana-
lytic expression[22]. The second term on the right-hand
side represents the entropic, “ideal-gas” contribution to
the chemical potential. The third term is the nonideal
term that is the analog of enthalpic attraction between
the active swimmers, and is represented by the quan-
tity Γ(φ, PeR) that resembles the fugacity coefficient in
classical thermodynamics. Equation 2 is similar to that
proposed by Cates and coworkers[2, 23] who argued that
µ(n) = logn+log υ(n) where υ(n) is a density-dependent
swimmer velocity. Although an analytical expression for
υ(n) has been proposed for dilute concentrations[13, 14],
our theory gives the nonideal contribution Γ(φ, PeR) in
the entire range of φ and PeR.

The chemical potential from BD simulations and the
model is shown in Fig 2 for PeR = 0.02. It increases log-
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FIG. 2: Nonequilibrium chemical potential as a function
of Πact for PeR = a/(U0τR) = ζU0a/(6ksTs) = 0.02,
where ksTs = ζU2

0 τR/6 is the swimmers’ energy scale.
The symbols are BD simulations[7] and the curve is the
model, Eq 2.

arithmically at low Πact and the slope changes dramati-
cally at the coexistence point (Πactφ/(nksTs) ≈ 0.2). At
this value of Πact and PeR the chemical potentials are
equal in the dilute and dense phases. The data in the
flat van der Waals region of the Πact − φ phase diagram
(see φ ≈ 0.25−0.6 in Fig 2 of [7]) collapse onto the single
coexistence point.

We can now define a “binodal” in Fig 1 through the
equality of the chemical potential in both phases. Our
theory predicts that active systems prepared outside the
binodal (blue curve) are stable in the homogeneous con-
figuration and do not phase separate. The regions be-
tween the spinodal and binodal are metastable and a
homogeneous system does not spontaneously phase sepa-
rate via spinodal decomposition but can undergo a nucle-
ation process. Nucleation times can be large and difficult
to reach computationally, so artificial seeding may be re-
quired to induce phase separation[6].

As shown in Fig 1A in 3D the transition from the
homogeneous (open symbols) to phase-separated (filled
symbols) systems in the simulations of Wysocki et al[5]
agree well with the spinodal of our model.

In 2D, nucleation seeds form more easily compared to
3D because active swimmers self-assemble more easily
in 2D—the colliding swimmers have fewer dimensions to
“escape” the cluster (e.g., consider the extreme example
of a 1D system that readily clusters into a long string
of swimmers). We surmise that nucleation processes are
more likely to be observed in a 2D simulation prepared
near the binodal curve. These observations are corrobo-
rated by Fig 1B where we take the swim and interparticle
pressures in 2D as Πswim/(nζU2

0
τR/2) = 1− φA − 0.2φ2

A

and ΠP /(nζU2

0 τR/2) = (4/π)φAPeRg(2;φA), respec-
tively, where φA = nπa2 is the area fraction of active
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swimmers and g(2;φA) = (1− φA/φ0)
−β

with φ0 = 0.9
and β = 1. The 2D simulation of Speck et al[3] show
that the transition from the homogeneous (open symbols)
to phase-separated (filled symbols) states occur near the
binodal (blue curve).
Our active pressure model agrees qualitatively and

even quantitatively with the phase diagrams in Fig 1,
as well as with those of other studies[2, 4, 6].

II. ‘Thermodynamic’ Quantities

The results presented thus far come from purely mi-
cromechanical arguments with no appeal to thermody-
namics. We now turn our attention towards thermody-
namic properties like the free energy and temperature,
which, although well-defined for an equilibrium system,
have been elusive for nonequilibrium systems.
Upon carefully imposing incompressibility of the sol-

vent, one can relate the nonequilibrium Helmholtz FE
to the mechanical pressure as Πact(ksTs, φ, PeR) =
φ2 [∂/∂φ ((F act/V )/φ)], where V is the volume of the
system[20]. There are again no approximations; it can be
considered as the definition of the free energy for nonequi-
librium active systems. Substituting the active pressure
model for small PeR in 3D, we obtain

F act(PeR < 1)/(NksTs) = logφ− φ(φ + 2)/2 −

3PeRφ0 log (1− φ/φ0) + F θ(ksTs, P eR), (3)

where N is the number of active swimmers and
F θ(ksTs, P eR) is the reference Helmholtz FE. The first
term on the right can be interpreted as the ideal entropic
contribution, and the rest represent the nonideal “en-
thalpic” attractions between the active swimmers. For
large PeR, the Helmholtz FE has no dependence on

PeR: F
act(PeR > 1)/(NksTs) = logφ + 4

∫ φ

0
g(2; s)ds+

F θ(ksTs, P eR), and has the same form as for Brownian
hard-sphere systems. The Helmholtz FE Eq 3 has a form
in agreement with Cates and coworkers[2, 23] who ex-
pressed the FE density as f = n(logn−1)+

∫ n

0
log υ(s)ds.

Given a chemical potential we can further define the
Gibbs FE as µact = (∂Gact/∂N)Nf ,Πact,Ts,PeR

, where Nf

is the number of solvent molecules[20]. Alternatively we
can compute the Gibbs FE from the Helmholtz FE[20]:
Gact/(NksTs) = F act/(NksTs) + Πact/(nksTs). Figure
3 shows the Gibbs FE as a function of φ for different
values of PeR and fixed Πactφ/(nksTs) = 0.18. As
PeR decreases from a stable, dilute “ideal gas” phase
to PeR = 0.015 with a fixed Πactφ/(nksTs) = 0.18, Gact

has a local minimum at φ ≈ 0.6 corresponding to the
metastable dense phase (i.e., “superheated liquid”) and
a global minimum at φ ≈ 0.25 corresponding to the sta-
ble dilute phase. At PeR = 0.01 the two minima of Gact

are equal corresponding to the coexistence of the dilute
and dense phases.
By writing the “ideal-gas” swim pressure as Πswim =

nζU2

0 τR/6 = nksTs, we can identify a swimmer’s energy
scale as ksTs = ζU2

0
τR/6. The reorientation Péclet num-
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FIG. 3: Gibbs free energy (FE) as a function of φ for
fixed values of PeR and Πactφ/(nksTs) = 0.18, where
ksTs = ζU2

0
τR/6. The red and blue curves are the

spinodal and binodal, respectively. The black arrow
points towards decreasing PeR at fixed Πact. The filled
color circles denote the stable states.

ber can be written as PeR = a/(U0τR) = ζU0a/(6ksTs),
which is interpreted as a ratio of the interactive energy of
the swimmer – the energy required to displace the swim-
mer its size a – to the swim energy scale ksTs. Analogous
to the Stokes-Einstein-Sutherland relation, one can inter-
pret the swim diffusivity as Dswim = ksTs/ζ, which also
gives PeR = U0a/D

swim ∼ ζU0a/(ksTs).

From Fig 1 phase separation occurs for small PeR =
ζU0a/(6ksTs), or high Ts. This is opposite to what
is typically observed in a classical thermodynamic sys-
tem, where phase separation is driven by attractive en-
thalpic interactions and becomes possible at low tem-
peratures. Phase separation with increasing tempera-

ture is uncommon but has been observed for systems
driven by the lower critical solution temperature (LCST)
transition[24, 25] where phase transition is dominated by
entropy. As PeR decreases (Ts increases) and the run
length of the swimmer increases, the particle effectively
becomes larger in size and thus has less space available
for entropic mixing.

Many studies have discussed and proposed a possible
interpretation of the temperature in a nonequilibrium ac-
tive matter system[26–28]. Unlike a molecular fluid par-
ticle that is able to transmit its kinetic activity to another
particle upon a collision, a self-propelled swimmer can-
not impart its intrinsic activity to another swimmer. In
this sense the swim temperature Ts = ζU2

0
τR/(6ks) is

different from the temperature of an equilibrium thermal
fluid because each swimmer has its own unique intrin-
sic kinetic temperature Ts that does not get shared and
equilibrate. Suppose we have a dilute suspension of com-
pletely inactive bath particles (i.e., not active swimmers
nor Brownian particles). Into this we introduce a dilute
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concentration of active swimmers and monitor the mo-
tion of the passive bath particles. For small PeR the mo-
tion of the bath particles is not characterized by the swim
diffusivity Dswim ∼ U2

0
τR because the bath particles get

a displacement of ∼ O(a) upon colliding with a swimmer,
not the run length U0τR. Thus, the diffusivity of the bath
particles is Dbath ∼ φU0a, where φ is the volume fraction
of the swimmers. The ratio of the bath to swimmer diffu-
sivity is Dbath/Dswim ∼ φU0a/(U

2
0 τR) = φPeR, suggest-

ing that the reorientation Péclet number is the quantity
that gets shared between the swimmers and not the swim
energy ksTs.

The entropy of active matter can be defined as Sact =
− (∂Gact/∂Ts)ζU0a,Πact = − (∂F act/∂Ts)ζU0a,φ

. Ignor-
ing the reference states, for large PeR the entropy has
the same form as that for a passive Brownian system:

Sact(PeR > 1)/(Nks) = − logφ − 4
∫ φ

0
g(2; s)ds. For

small PeR the entropy comes solely from the swim pres-
sure: Sact(PeR < 1)/(Nks) = − logφ+ φ(φ+ 2)/2. The
entropy decreases with φ since the swimmers have less
space available for entropic mixing.

The heat capacity can be obtained from CV =
−Ts(∂

2F act/∂T 2

s )φ,ζU0a. Aside from the reference state,
substitution of the FE into this equation gives CV = 0 for
all φ at both small and large PeR. A possible explanation
is that active matter has no true notion of the internal
energy—since the swimmers cannot exchange their swim
energy ksTs, there is no heat exchange between “hot”
(high activity) and “cold” (low activity) active systems.
There is no “first law” of thermodynamics for active mat-
ter systems.[29]

In some experimental systems the swimmers may
achieve self-propulsion by consuming and converting
chemical fuel into mechanical motion. Swimmers may
thus decrease their intrinsic swim velocity U0 when they
are in a crowded region from the lack of fuel. This is a
separate and independent effect as the reduction in the
actual swimmer velocity U from collisions with other
swimmers, which is already reflected in Eq 4. Living
microorganisms may possess an internal mechanism to
detect changes in the local environment and alter their
swim velocity or reorientation time. Hydrodynamics may
also cause the drag factor to become density dependent.
Our model remains applicable to swimmers with a local
density-dependent intrinsic velocity U0(φ) and/or reori-
entation time τR(φ). This effectively makes the swim
temperature a function of the local volume fraction of
active swimmers, ksTs(φ)—decreasing the chemical fuel
concentration translates to decreasing the swim temper-
ature of the system.

As shown in the Appendix, if we allow for a density (or
position) dependent intrinsic swim velocity U0(x) and
reorientation time τR(x), our definition of the nonequi-
librium chemical potential becomes

n
∂µact

∂n
= (1− φ)

[
∂Πact

∂n
−Πswim

(
∂ log(U0τR)

∂n

)]
.

(4)

Since Πact was determined for a homogeneous system,
Eq 1 still applies, but now ksTs is also a function of φ.
In active systems the relevant length scale is the swim-

mers’ run length U0τR and this must to be small com-
pared to the apparatus size in an experiment for the con-
tinuum approach to hold. In practice experiments may
have non-continuum and non-local effects that may need
to be considered when comparing experimental results
with the thermodynamic model presented here.
In our model we neglected hydrodynamic interactions

between the swimmers, which may contribute additional
terms (like the “hydrodynamic stresslet”[30]) to the ac-
tive pressure, affect the reorientation time, and result in
additional effects like polar order of the swimmers. The
ratio of the magnitudes of the hydrodynamic/polar stress
to the swim stress is ∼ (nζU0a)/(nζU

2

0
τR) = a/(U0τR) ≡

PeR; the hydrodynamic contribution becomes negligible
when phase separation occurs for PeR ≪ 1 (see Fig 1).
Much work remains to explore the implications of our

‘thermodynamics’ of active matter and to see if it might
apply to other far from equilibrium systems.
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Appendix

A: Micromechanical equations of motion

The active particle dynamics are governed by the N -
particle Langevin equation

0 = −ζU + F swim + F P +
√
2ζ2D0ΛT (A1)

dq

dt
=

√
2

τR
ΛR × q (A2)

where U is the translational velocity, ζ is the hydrody-
namic drag factor, F swim ≡ ζU0 = ζU0q is the self-
propulsive swim force, U0 is the swim speed, q is the
unit vector specifying the swimmer’s orientation, F P is
the interparticle force between the swimmers to enforce
no overlap, ΛT and ΛR are unit random normal devi-
ates, τR is the orientation time of the swimmer, and D0

is the Stokes-Einstein-Sutherland translational diffusiv-
ity. The translational diffusivity and the reorientation
dynamics are modeled with the usual white noise statis-
tics, 〈Λi(t)〉 = 0 and 〈Λi(t)Λj(0)〉 = δ(t)δij . The left-
hand side of Eq A1 is zero since inertia is negligible for
colloidal suspensions. In this work we neglect the trans-
lational Brownian motion of active swimmers.
For τR → 0 active swimmers have small run lengths

compared to their size and their dynamics are equivalent
to that of passive Brownian particles. Indeed, an osmotic
barrier cannot distinguish between a system of passive
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Brownian particles and active swimmers with small τR.
In this limit the form of the relationship between the
pressure and other thermodynamic quantities (like the
chemical potential) are equivalent for the two systems.

B: Swim stress

In [7] the swim stress was defined to be the first mo-
ment of the swim force

σswim = −n〈xF swim〉, (B1)

where n is the number density of particles and the angle
brackets denote an average over all particles and time. It
is permissible for computing the stress to interpret the
self-propulsion of an active swimmer as arising from a
swim force, F swim ≡ ζU0[7]. This use of the swim force
to compute the stress does not imply that the intrinsic
swim mechanism generates a long-range (1/r) Stokes ve-
locity field as does an external force[8].
The particle position at time t is x(t) =

∫
U(t′)dt′,

and from Eq A1 in the absence of interparticle forces (i.e.,

dilute suspension), we obtain σswim = −n〈xF swim〉 =

−nζ
∫
〈U0(t

′)U0(t)〉 dt′ = −nζDswim, where the time
integral of the intrinsic velocity autocorrelation is the
swim diffusivity of the swimmer, Dswim. Using the swim
diffusivity Dswim = U2

0
τRI/6, we obtain the “ideal-gas”

swim stress: σswim = −nζU2
0 τRI/6[7]. A dilute suspen-

sion of active swimmers therefore exerts a swim pressure,
Πswim = −trσswim/3 = nζU2

0 τR/6, as given in the main
text.

C: Mechanical derivation of the chemical potential

The number density of active swimmers satisfies the
conservation equation

∂n

∂t
+∇ · j = 0, (C1)

where j = nup = n〈u〉 + jrel is the particle flux, jrel =
n(up−〈u〉) is the flux relative to the suspension average
velocity 〈u〉, which is defined as 〈u〉 = φup + (1− φ)uf ,
and up and uf are the number averaged velocity of the
swimmers and fluid at a continuum point, respectively.
Due to incompressibility the suspension average velocity
(particles plus the fluid) satisfies ∇ · 〈u〉 = 0.

To obtain an expression for jrel we have no thermody-
namic arguments to rely upon (such as the free energy)
so we apply an averaged macroscopic mechanical momen-
tum balance. Following the standard Irving-Kirkwood
approach for averaging over a representative volume ele-
ment as was done for non-Brownian suspensions[21], we
obtain

0 = −nζ(up − 〈u〉) +∇ · σact, (C2)

where σact = σswim + σP and the left-hand side is zero
since inertia is negligible for colloidal systems. Using the
relative flux jrel = n(up − 〈u〉) we arrive at an explicit
expression for the active particle flux in terms of gradi-

ents in the active stress:

jrel =
1

ζ
∇ · σact. (C3)

No notion of a thermodynamic chemical potential or the
free energy is needed to arrive at this expression. Sub-
stituting Eq C3 into the active particle conservation Eq
C1, we obtain

∂n

∂t
+ 〈u〉 · ∇n = −∇ ·

1

ζ
∇ · σact, (C4)

a convection-diffusion equation, where the diffusive na-
ture is captured by gradients in the active stress. For
a system that is macroscopically at rest, 〈u〉 = 0, and
the active stress is isotropic, σact = −ΠactI, so Eq C4
becomes a diffusion equation

∂n

∂t
= ∇ ·

1

ζ
∇Πact. (C5)

This derivation is not restricted to active systems and ap-
plies equally well to equilibrium Brownian systems, where
the Brownian osmotic pressure ΠB = nkBT gives

∂n

∂t
=

(
kBT

ζ

)
∇2n, (C6)

a familiar diffusion equation with the Stokes-Einstein-
Sutherland translational diffusivity D0 = kBT/ζ. To
continue the discussion of a passive Brownian system,
which can be rigorously related to thermodynamic quan-
tities, one can define a chemical potential precisely from
a proper thermodynamic treatment[20] to give

n
∂µB

∂n
= (1− φ)

∂ΠB

∂n
. (C7)

In a thermodynamic system slightly out of equilibrium,
the particle flux relative to the suspension average veloc-
ity is driven by the chemical potential gradient jrel =
−(n/((1 − φ)ζ))∇µB . Comparing this flux expression

with jrel = − (1/ζ)∇ΠB (i.e., Eq C3 with σact replaced
by σB = −ΠBI) we arrive precisely at Eq C7.

Therefore the mechanical derivations of the stress, mo-
mentum balance, and flux are in full agreement with ther-
modynamics. In fact, one can analyze an equilibrium
Brownian system purely from a mechanical perspective
without appealing to thermodynamics[18]. Returning to
active matter systems, we can rely upon the mechanical
derivation to define a nonequilibrium chemical potential
by analogy to the quantity whose gradient would drive
a flux. Repeating the connection of the relative particle
flux, jrel = − (1/ζ)∇Πact, to gradients in this newly de-

fined chemical potential, jrel = −(n/((1 − φ)ζ))∇µact,
we arrive at (∂µact/∂n) = (1 − φ)∂Πact/∂n, as used in
the main text.

As mentioned in the main text, this relationship be-
tween the chemical potential and pressure are equivalent
for a system of passive Brownian particles and active
swimmers with small τR. The dynamics of swimmers
with τR → 0 are equivalent to that of passive Brownian
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particles, and one cannot distinguish between the two
systems using confinement by an osmotic barrier. We
thus interpret µact as a natural definition and extension
of the chemical potential for nonequilibrium systems, and
use it to compute and define a “binodal.”

D: Density-dependent swimmer activity

Suppose we have a density (or position) dependent
intrinsic swim velocity U0(x) and reorientation time
τR(x). These may vary spatially due to a variation in
fuel concentration, for example. For a weak gradient we
have

U0(x) = U0(x0)q(x0) + (∇U0)x0
· (x− x0)q(x0)+

U0(x0)(∇q)x0
· (x− x0) + · · · (D1)

where q is the unit orientation vector of the swimmer
and the ellipsis contains all higher-order gradient terms.
This gives rise to a drift velocity of the swimmers due
to a nonzero average swim force 〈F swim〉 = 〈ζU0(x)q〉 =
ζ(∇U0)x0

· 〈(x−x0)q(x0)〉+ ζU0(x0)〈(∇q)x0
· (x−x0)〉,

where we retain only the leading order in gradients. Us-
ing the swim stress σswim = −n〈xF swim〉 = −n〈ζU0(x−
x0)q〉, we have

〈F swim〉 = −
1

n
σswim · ∇ log(U0τR). (D2)

A nonzero average swim force impacts the macroscopic
flux model by contributing an additional term to the ex-

pression for the relative particle flux (see Eq C3):

j
rel =

1

ζ

(
∇ · σact + n〈F swim〉

)
, (D3)

where σact = σswim + σP is the active particle stress.
Substituting for the mean swim force we obtain a consti-
tutive relation for active systems with a drift velocity:

jrel =
1

ζ

[
∇ · σact − σswim · ∇ log(U0τR)

]
. (D4)

For a dilute system of active swimmers, σact ≈ σswim =
−nζU2

0 τRI/6, and the relative flux becomes

jrel = −nDswim (∇ logn+∇ logU0) , (D5)

where Dswim = U2

0
τR/6. This result agrees with the

work of Cates and coworkers[14, 23] who derived Eq D5
for a dilute system from consideration of the flux in a
Smoluchowski analysis rather than from the swim stress
perspective. And like Cates and coworkers[14, 23] for
a system with zero relative particle flux, we obtain the
steady-state probability density n(x) ∼ 1/U0(x). No-
tice that the ∇ log(τR) term cancels and Eq D5 does not
change irrespective of τR(x) varying with position. For
the general expression (Eq D4) valid for all concentra-
tions this may no longer be the case.
Repeating the connection of the relative particle flux,

Eq D4, to gradients in the active chemical potential,
jrel = −(n/((1 − φ)ζ))∇µact, we arrive at Eq 4 of the
main text.
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Rev Lett 112, 218304 (2014).

[4] Y. Fily, S. Henkes, and M. C. Marchetti, Soft Matter
10, 2132 (2014).

[5] A. Wysocki, R. G. Winkler, and G. Gompper, Europhys
Lett 105, 48004 (2014).

[6] G. S. Redner, M. F. Hagan, and A. Baskaran, Phys Rev
Lett 110, 055701 (2013).

[7] S. C. Takatori, W. Yan, and J. F. Brady, Phys Rev Lett
113, 028103 (2014).

[8] S. C. Takatori and J. F. Brady, Soft Matter 10, 9433
(2014).

[9] X. Yang, M. L. Manning, and M. C. Marchetti, Soft
Matter 10, 6477 (2014).

[10] We use the conventional definition of the Péclet num-
ber as advection over diffusion, but others may use the
inverse of this quantity.

[11] I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert,
and L. Bocquet, Phys Rev Lett 108, 268303 (2012).

[12] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and
P. M. Chaikin, Science 339, 936 (2013).
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