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We introduce a class of maximum-entropy states that naturally includes within it all of the
major continuous-time stochastic processes that have been applied to animal movement, including
Brownian motion, Ornstein–Uhlenbeck motion, integrated Ornstein–Uhlenbeck motion, a recently
discovered hybrid of the previous models, and a new model that describes central-place foraging.
We are also able to predict a further hierarchy of new models that will emerge as data quality
improves to better resolve the underlying continuity of animal movement. Finally, we also show
that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall
from this class of maximum-entropy distributions when the constraints are purely kinematic.

I. INTRODUCTION

Animal movement is a continuous-time process, ex-
hibiting continuous velocities and accelerations. Animal
locations are, however, measured coarsely in time, even
by modern GPS technology. The degree of continuity
that we can actually resolve is limited by our measure-
ment apparatus. To confront this scenario, we derive
a natural class of maximum-entropy states for stochastic
processes that are assumed to be very continuous, but are
only sampled at discrete time intervals. The constraints
with which we maximize entropy equate to understand-
ing that a finite sampling frequency can only resolve the
continuity of the sampled process to a finite degree. As
for all other behaviors of the process, we are guided by
the principle of maximum entropy.

The class of maximum-entropy states we derive is
found to include within it Brownian motion (BM) [1–
3], Ornstein–Uhlenbeck (OU) motion [4–7], integrated
OU motion [8–10], and a more general movement model
that includes all of the previous models as limiting cases
[11]. In contrast with Brownian motion, which diffuses
endlessly, the OU process is bound to a finite domain.
Therefore, OU motion was originally applied to animal-
tracking data to estimate the home-range areas of range-
resident species [5]. On the other hand, as neither Brow-
nian nor OU motion provide a differentiable process, in-
tegrated OU (IOU) motion was introduced to estimate
instantaneous velocities in noisy telemetry datasets [8].
Brownian motion has a long history of use in describing
animal movement and, despite its aforementioned limi-
tations, the Brownian-motion movement model has still
found use in estimating distributions of occurrence from
tracking data with large gaps between observations [2, 3].
Brownian motion is a special case of both OU motion, in
the limit of an infinite home-range area, and IOU motion,
in the limit of impersistent movement. Recently, animal
tracking datasets that are sampled finely enough to es-
timate velocity and long enough to estimate home-range
behavior have spurred the development of an OUF model
that generalizes OU and IOU motion [11, 12]. Here, we

provide a theoretical framework that explains this coin-
cident grouping of movement models in terms of continu-
ity and entropy, and predicts a missing model within the
same group that corresponds to central-place foraging.
We can also predict what models will become appropri-
ate as GPS and battery technology improve to the point
that more of the underlying continuity of animal move-
ment is revealed.
Finally, we find that the multidimensional general-

izations of these stochastic models obey a fluctuation-
dissipation theorem (FDT) when the maximum-entropy
constraints are purely kinematic, in that they do not im-
pose dynamical relationships between the process and its
derivatives. On the other hand, if dynamical constraints
are allowed, then the resulting class of maximum-entropy
states is larger than what can be generated by ordinary
Langevin equations without a FDT.
In thermodynamic systems, fluctuations and dissipa-

tion are engendered by the same microscopic degrees of
freedom, even though they are phenomenologically dis-
tinct. As a simple example, for a damped mechanical
system with position x(t) driven by thermal white noise
ξ(t), the Langevin equation is given by [13]

Mẍ(t) + 2Γ ẋ(t)
︸ ︷︷ ︸

dissipation

−F(x(t)) = ξ(t)
︸︷︷︸

fluctuations

, (I.1)

where M is the mass, F(x) is the net deterministic force
on the system, and Γ is the motion damping coefficient,
which drives relaxation to the rest state. In our anal-
ogous biological equations of motion, the average tra-
jectory follows a deterministic mean µ(t), which can be
thought of as being generated by deterministic “forces”,
while random movements about the mean manifest from
fluctuations, and relaxation back to the mean arises from
dissipation. In classical non-equilibrium thermodynam-
ics, the fluctuations and dissipation are related by [14]

〈ξ(t) ξ(t′)T〉 = σ̃ξξ δ(t−t′) , σ̃ξξ = 2kBT Γ , (I.2)

here for white noise, where σ̃ξξ is the spectral density
of the fluctuations, kB is Boltzmann’s constant and T is
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the temperature of the surrounding environment. More
generally, yet still in the classical regime, dissipation
can be nonlocal in time and fluctuations can be col-
ored, but a proportionality relation still holds between
the dissipation kernel and noise correlation [14]. In
quantum non-equilibrium thermodynamics, proportion-
ality between the dissipation kernel and noise correlation
still holds in the frequency domain, though the propor-
tionality constant is nonlinear in T [15, 16]. Finally, even
when the environment is not in equilibrium and cannot
be assigned a temperature, the dissipation kernel and
noise correlation must always satisfy an inequality due
to the Heisenberg uncertainty principle [17].
The thermodynamic FDT is necessary for microscopic

theories of stochastic processes to be consistent with
macroscopic thermodynamics. But we might imagine
that dissipation coefficients and fluctuation autocorrela-
tions are more generally unrelated—particularly in sys-
tems that have nothing to do with thermodynamics. For
the maximum-entropy distributions we explore here, we
find that the fluctuations and dissipation are not neces-
sarily proportional, but they must obey non-trivial com-
mutation relations.

II. MAXIMUM-ENTROPY STATES

In this multivariate treatment, we denote vectors and
matrices in bold, such as the position x(t) and auto-
correlation function σ(t, t′) (defined in Eq. (A.4)). To
constrain the degree of continuity in the underlying pro-
cess, we will use the relationship between the continuity
of the stochastic process and the continuity of its auto-
correlation function. As we lack information about the
higher-order cumulants of the process, we leave every-
thing beyond the second cumulant to ignorance, and so
upon constraining the autocorrelation function σ(t, t′),
the entropy per unit time functional is given by (App. A)

h[σ] =
1

2

∫

df tr log σ̃(f) + constant , (II.1)

in terms of the spectral-density function σ̃(f), defined by

σ(t, t′) =

∫

df e+2πıf(t−t′) σ̃(f) , (II.2)

for stationary autocorrelations, where σ(t, t′) = σ(t−t′).
We consider only stationary autocorrelations, because
their diagonalizing basis elements e+2πıft are universally
defined and stationary autocorrelations can be consid-
ered as the time average of non-stationary autocorre-
lations when estimating their parameters from a non-
stationary process [12]. Importantly, we do not assume
that the mean function (A.3) is stationary. Furthermore,
as we show in App. A, the entropy functional (II.1) still
holds for non-stationary autocorrelations, though under
a different transformation basis. Therefore our derived
maximum-entropy states also hold for non-stationary au-
tocorrelations, though under a different set of constraints.

A. Variance constraint

As a simple example, we first consider a process with
only its variance constrained to σ(0) and no further in-
formation:

σ(τ)|τ=0 = σ(0) ,

∫

df σ̃(f) = σ(0) , (II.3)

where the latter relation is conveniently expressed in the
frequency domain. The quantity to maximize, with La-
grange multiplier λ0/2, is given by

m[σ] = h[σ] +
1

2
trλ0

(

σ0 −
∫

df σ̃(f)

)

. (II.4)

Using matrix derivatives [18, App. B], the Euler-
Lagrange equations are then given by

1

2
σ̃(f)−T =

1

2
λT
0 , σ̃(f) = λ−1

0 , (II.5)

which implies that the spectral-density function is a con-
stant matrix. I.e., the maximum-entropy process with
variance σ(0) is a white-noise process with variance σ(0).
The maximum-entropy process is not correlated in time
without providing any further kinematic constraints.

B. Kinematic constraints and continuity

The kth derivative of x(t) has the autocorrelation func-
tion

dk

dtk
dk

dt′k

〈

[x(t)−µ(t)] [x(t′)−µ(t′)]
T
〉

=
dk

dtk
dk

dt′k
σ(t, t′) .

(II.6)

Placing a constraint upon the kth derivative of x(t) to
have variance σ(k)(0) takes the form

(−1)k
∂2k

∂τ2k
σ(τ)

∣
∣
∣
∣
τ=0

= σ(k)(0) , (II.7)

∫

df (2πf)2k σ̃(f) = σ(k)(0) . (II.8)

After maximizing entropy with these constraints, the
spectral-density function is then given by

σ̃(f) =

[
K∑

k=0

(2πf)2kλ2k

]−1

, (II.9)

when including kinematic constraints up to order K.
As any differentiable function is continuous, if a pro-

cess has derivatives that always take finite values, then
this process is always continuous. Therefore, by placing
kinematic constraints up to order K, we ensure that the
process is continuous with K − 1 continuous derivatives.
The Kth derivative of the process is not continuous, but
is a well defined white-noise process.
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An important property of the spectral-density func-
tion (II.9) is that it is an even function of the frequency
f , which implies that the autocorrelation function σ(τ)
is a symmetric function of the time lag τ . More generally,
cross correlations between different spatial dimensions or
different individual animals can be asymmetric in time,
which allows for leader-follower or time-lagged relation-
ships. This can occur when dynamical constraints are im-
posed in addition to the kinematic constraints (App. B).

1. K=1: OU & BM motion

As we have already shown, K = 0 corresponds to un-
correlated motion of a particular variance. K = 1 corre-
sponds to Ornstein–Uhlenbeck motion [5–7], which is a
continuous process with autocorrelation function

σ(τ) = σ(0) e−f |τ | , (II.10)

in one dimension. This model describes Brownian motion
bound to a finite area around the mean location [4], and
the timescale 1/f determines how long it takes the animal
to cross its home-range area.
The semi-variance function [11] is a standard measure

of diffusion [19] and for stationary processes it is given
by

γ(τ) ≡ 1

2

〈

|x(t+τ)− µ(t+τ)− x(t) + µ(t)|2
〉

, (II.11)

= σ(0)− σ(τ) , (II.12)

with the latter relation holding for processes with a finite
variance. Ordinary Brownian motion is a limiting case
of OU motion for small f , whereupon the semi-variance
function limits to

lim
f→0

γ(τ) = D |τ | , D = lim
f→0

σ(0) f , (II.13)

where D is the diffusion rate. This linear dependence
upon lag τ by γ(τ) is referred to as regular diffusion. For
the OU process, the diffusion is regular for small lags, as
can be seen from a Taylor-series expansion of γ(τ), while
for larger lags the diffusion is limited by the existence of
a finite variance σ(0).

2. K=2: OUF & IOU motion

K = 2 includes within it OUF motion, which extends
the OU model to continuous velocities, thought possibly
to explain the ballistic foraging behavior of Mongolian
gazelles [11]. The OUF autocorrelation function is given
by

σ(τ) = σ(0)
f+ e−f−|τ | − f− e−f+|τ |

f+ − f−
, f− < f+ ,

(II.14)

This model describes correlated velocity movement
within a home range of variance σ(0). At timescales finer
than 1/f+, motion appears ballistic as

γ(τ) =
1

2
σv(0) τ

2 +O(τ3) , σv(0) = f+f− σ(0) ,

(II.15)

while at timescales coarser than 1/f+, motion is OU-like
with a home-range crossing time of 1/f−.
In the limit of uncorrelated velocities, OUF motion

reduces to OU motion as

lim
f+→∞

σ(τ) = σ(0) e−f−|τ | . (II.16)

On the other hand, in the limit of unbounded motion,
OUF motion simplifies to integrated OU motion [8–10],
as the semi-variance function limits to

lim
f−→0

γ(τ) =
σv(0)

f2
+

(

f+|τ | − 1 + e−f+|τ |
)

, (II.17)

which can be differentiated twice to obtain the OU ve-
locity autocorrelation function

lim
f−→0

σv(τ) = σv(τ) e
−f+|τ | . (II.18)

Like Brownian motion, the integrated OU process ex-
hibits unbounded diffusion. However, IOU velocities only
vary by a finite amount σv(0) from the mean µ̇(t), and
relax back the mean with characteristic rate f+. IOU
motion is ballistic at timescales finer than 1/f+. Some
peculiarities of purely ballistic diffusion are discussed in
[20].

3. K=2: Central-place foraging

Considering the general structure of Eq. (II.9), there
is one remaining model included in K = 2 that has not
previously been considered in the movement-ecology lit-
erature:

σ(τ) = σ(0) e−f |τ |

(

cosωτ +
f

ω
sinω|τ |

)

. (II.19)

In this model there are periodic episodes of diffusion from
and relaxation back to the mean location µ. The phe-
nomenological behavior of this model is particularly rel-
evant for describing central-place foraging [21], where an
animal has a nest or den at its mean location µ and peri-
odically leaves to perform a random search for resources.
This periodic motion stands in contrast to periodicities
in the mean, such as migration, where the animal cy-
cles between its summering and wintering grounds. The
probability density of a central-place forager is unimodal,
whereas the probability density of a migratory species is
bi-modal.
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4. K=1: An excluded model

It is also interesting to note what models are not in-
cluded in this class. For instance, the autocorrelation
function

σ(τ) = σ(0) e−f |τ | cos(ωτ) , (II.20)

does not have a spectral-density function consistent with
Eq2. (II.9) or (B.1) with any finite number of constraints,
even though this model can be considered as an oscilla-
tory generalization of the OU process in other, physical
contexts [22–24].

C. Multi-variate Ornstein–Uhlenbeck motion

Constraining the process up to its velocity results in
the spectral-density function

σ̃(f) =
[
λ0 + (2πf)2λ2

]−1
, (II.21)

where both λ matrices must be positive definite for this
to be a valid spectral-density function. Factoring this
expression, we have

σ̃(f) = λ
− 1

2

2

[
F2 + (2πf)2

]−1
λ
− 1

2

2 , (II.22)

where F2 = λ
−1/2
2 λ0 λ

−1/2
2 must then be a positive-

definite matrix of square frequencies. Fourier transform-
ing back into the time domain, we have the autocorrela-
tion function

σ(τ) = λ
− 1

2

2

e−|τ |F

2F
λ
− 1

2

2 . (II.23)

This describes a multivariate Ornstein–Uhlenbeck pro-
cess of various dissipation rates and unit variance I that
is linearly transformed to have variance

σ(0) =
1

2
λ
− 1

2

2 F−1 λ
− 1

2

2 . (II.24)

III. FLUCTUATION-DISSIPATION THEOREM

A. Ornstein–Uhlenbeck theorem

To compare with Eq. (II.23) and without loss of gener-
ality, we will consider the Langevin equation of a multi-
variate, mean-zero OU process x(t), which represents the
difference between the animal’s location and its mean:

ẋ(t) = −Γx(t)
︸ ︷︷ ︸

dissipation

+ ξ(t)
︸︷︷︸

fluctuations

, 〈ξ(t) ξ(t′)T〉 = σ̃ξξ δ(t−t′) .

(III.1)

where ξ(t) is a zero-mean white-noise process. In terms
of animal movement, the “fluctuation” terms in Langevin

equation (III.8) represent the random aspect of move-
ment that gives rise to diffusion, while the “dissipation”
terms generate advection back towards the mean location
and keep the animal bound within a well defined home-
range area despite its tendency to move about randomly.
Note that the spectral density σ̃ξξ must be positive

definite and real, and therefore it is symmetric. Stan-
dardizing our Langevin equation so that the fluctuations
have unit spectral density, we have

ẏ(t) = −Gy(t) + u(t) , (III.2)

in terms of the transformed variables

y(t) = σ̃
− 1

2

ξξ x(t) , u(t) = σ̃
− 1

2

ξξ ξ(t) , (III.3)

G = σ̃
− 1

2

ξξ Γ σ̃
+ 1

2

ξξ . (III.4)

The dissipation matrices Γ and G are related by a simi-
larity transform and therefore they share the same eigen-
values, but in general they will not share the same sym-
metries. Transforming to the frequency domain, we have

2πıf ỹ(f) = −Gỹ(f) + ũ(f) , (III.5)

ỹ(f) = [2πıf +G]−1
ũ(f) , (III.6)

and with this the spectral-density function is given by

σ̃(f) = 〈x̃(f) x̃(f)†〉 = σ̃
+ 1

2

ξξ 〈ỹ(f) ỹ(f)†〉 σ̃+ 1
2

ξξ , (III.7)

= σ̃
+ 1

2

ξξ [G+ 2πıf ]
−1

[G+ 2πıf ]
−†

σ̃
+ 1

2

ξξ . (III.8)

From Eq. (II.22), if this is to represent a maximum-
entropy state, then we must have

σ̃ξξ = λ−1
2 , GGT = F2 , G = GT . (III.9)

This final symmetry, applied to Eq. (III.4), implies that
the dissipation matrix and autocorrelation matrix must
commute in the sense of

[Γ, σ̃ξξ]T = Γ σ̃ξξ − σ̃ξξ Γ
T = 0 , (III.10)

which reduces to ordinary commutation if Γ is symmet-
ric. We refer to this relation as comprising the Ornstein–
Uhlenbeck fluctuation-dissipation theorem. This FDT is
more general (and weaker) than the thermodynamic re-
lation, where the two matrices are strictly proportional.

B. General theorem

The analogous Langevin equation for a continuous pro-
cess x(t) with mean zero andK−1 continuous derivatives
is given by

[
d

dt

]K

x(t) +

K∑

k=1

Γk

[
d

dt

]K−k

x(t) = ξ(t) . (III.11)
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By a similar procedure we have the transformed solutions

ỹ(f) =

[

(2ıπf)K +

K∑

k=1

(2ıπf)K−kGk

]−1

ũ(f) ,

(III.12)

and for the spectral-density function to take the form
(II.9), we must have the transformed commutation rela-
tions

G1 = GT
1 , GT

k Gk+1 = GT
k+1 Gk , (III.13)

which then implies the commutation relations

Γ1 σ̃ξξ = σ̃ξξ Γ
T
1 , Γk σ̃

−1
ξξ ΓT

k+1 = Γk+1 σ̃
−1
ξξ ΓT

k .

(III.14)

IV. RANGE-RESIDENCE VERSUS

CENTRAL-PLACE FORAGING

In one dimension the mean-zero Langevin equation for
K = 2 is given by

ẍ(t) + 2 f ẋ(t) + F 2 x(t) = ξ(t) , (IV.1)

which is the equation of motion of a simple, damped
harmonic oscillator driven by white noise. Central-place
foraging corresponds to the under-damped regime with
relaxation rate f and foraging frequency ω parameters

f2 < F 2 , ω =
√

F 2 − f2 , (IV.2)

where ω determines the frequency with which foraging
bouts occur and f determines the rate at which correla-
tions decay between successive foraging bouts. In central-
location foraging, the animal periodically leaves its mean
location to search for resource patches and returns. Just
as a thermodynamic environment sets the Lagrange mul-
tiplier T to its temperature, an animal’s environment can
determine the animal’s foraging frequency ω, which is of-
ten fixed to 2π/day.
For the range-resident OUF model, which corresponds

to the over-damped regime, the two relaxation rates are
given by

f2 > F 2 , f± = f ±
√

f2 − F 2, (IV.3)

where the smaller f− roughly determines the amount
of correlation in successive positions and the larger f+
roughly determines the amount of correlation in suc-
cessive velocities. In range-resident motion, the animal
exhibits autocorrelated velocities within a finite home
range. Specifically for Mongolian gazelles, it has been ob-
served that f− is associated with the seasonal timescale
[25], and so this Lagrange multiplier is also likely set by
the environment.

V. DISCUSSION

This framework takes all of the major continuous-
time, animal-movement models that have been used
for empirical reasons—because they have appropriate
phenomenology—and puts them into a coherent theo-
retical framework. The principle of maximum entropy
provides a useful perspective as our constraints are very
natural for animal location data, in that, animal move-
ment is extremely continuous, yet location data are rela-
tively coarse. This leads to a hierarchy of models where-
upon an increasing degree of continuity can be modeled
and all finer scale behaviors are conceded to ignorance.
As GPS and battery technology improve, or possibly by
combining current relocation and accelerometery data,
our theory predicts that we can increase the number of
kinematic constraints K to derive more suitable models.
A fluctuation-dissipation theorem is derived, which

provides important criteria for model construction in
cases where there is significant spatial anisotropy in the
movement dynamics or interactions between individuals
that diffuse at different rates. There can be significant
variability in movement parameters among the individ-
uals of population [12], and so if individual animals co-
ordinate their movements then they can exhibit a mix-
ture of movement modes. Our FDT constrains these
interactions, which would arise from the off-diagonal
terms of Eq. (III.8), and reduces the number of mul-
tivariate models that would need to be considered for
model selection. Importantly, an information criteria can
be used to compare the constrained, parameter-sparse
and unconstrained, parameter-rich models and determine
if our FDT finds empirical support. Therefore, these
two findings—the maximum-entropy models and their
FDT—provide a concrete example of how ideas and tech-
niques from physics can contribute to other disciplines.
From a biological perspective, it is interesting that

range-residence and central-place foraging can be con-
sidered as two parameter regimes of the same model, be-
cause they correspond to different movement strategies
that are typically found in different taxonomic groups.
Central-place foragers, like many birds and canids, main-
tain a nest or den at their mean location, while range-
resident species, like moose and gazelle, are only found
in the vicinity of their mean location, which is more of a
statistical abstraction. Even though the major timescales
of this theory are likely set by the environment, it does
not seem reasonable to imagine that all parameters can
be adjusted, for a given species, such that a transition
between movement behaviors occurs. This fact suggests
the hypothesis that the remaining timescales might be
set by the evolutionary lineage that the species descends
from, which can still be considered as part of the “envi-
ronment” with respect to the system-environment parti-
tioning of the physics formalism.
There are some mathematical similarities between our

class of maximum-entropy states Burg’s for discrete-time
processes [26]. By constraining the autocorrelation func-
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tion up to a fixed number of lags, Burg derived the
entire class of discrete-time auto-regressive (AR) pro-
cesses. Our constraints are better suited to our system
of interest, and while we derive a class of continuous-
time auto-regressive processes, they are restricted to obey
a fluctuation-dissipation theorem when only kinematic
constraints are considered. On the other hand, if dy-
namical constraints are considered (App. B), states are
obtained that do not correspond to continuous-time auto-
regressive processes.

A natural question that arises from this perspective
regards how strong the analogy between our maximum-
entropy states and thermodynamics might be. In both
cases, the entropy is maximized with respect to natural
constraints that regard what we can reasonably measure;
in both cases there are Lagrange multipliers that are de-
termined by the environment; and finally, in both cases
there is a fluctuation-dissipation theorem, though in our
case it is comparatively weak. In Brownian motion de-
rived from Hamiltonian mechanics, there will always be
a relationship between the fluctuations and dissipation,
even outside of the context of thermodynamics [17], and
so we might ask if there is any unifying microscopic the-
ory that generates the FDT here and what sort of inter-

pretation it has.

Appendix A: Derivation of entropy functional

Here we will show a result that is well known for mul-
tivariate random variables—if we constrain ourselves to
the first two cumulants or moments of the stochastic pro-
cess, then the distribution that maximizes entropy is the
normal distribution. Alternatively, the mean function
can be left unconstrained and the same results can be
derived. The entropy of a distribution p is given by

H [p] = −
∫

Dx p[x] log p[x] , (A.1)

and we will maximize it under the constraints

1 =

∫

Dx p[x] , (A.2)

µ(t) =

∫

Dx p[x]x(t) , (A.3)

σ(t, t′) =

∫

Dx p[x] [x(t)−µ(t)] [x(t′)−µ(t′)]
T
, (A.4)

which is equivalent to maximizing

M [p] = H [p] + λ0

(

1−
∫

Dx p[x]

)

+

∫

dtλ1(t)
T

(

µ(t)−
∫

Dx p[x]x(t)

)

+

∫∫

dt dt′ trλ2(t, t
′)

(

σ(t, t′)−
∫

Dx p[x] [x(t)−µ(t)] [x(t′)−µ(t′)]
T
)

. (A.5)

where the λ are Lagrange multipliers. The Euler-
Lagrange equations are then given by

log p[x] + 1 = λ0 +

∫

dtλ1(t)
Tx(t) +

∫∫

dt dt′ trλ2(t, t
′) [x(t)−µ(t)] [x(t′)−µ(t′)]

T
, (A.6)

p[x] = exp

(

λ0 − 1 +

∫

dtλ1(t)
Tx(t) +

∫∫

dt dt′ trλ2(t, t
′) [x(t)−µ(t)] [x(t′)−µ(t′)]

T
)

. (A.7)

Choosing the Lagrange multipliers that satisfy our con-
straints, we finally have

p[x] =
1√

det 2πσ
e−

1
2

∫∫
dt dt′[x(t′)−µ(t′)]

T
σ

−1(t,t′)[x(t′)−µ(t′)] .

(A.8)

which is the distribution of a Gaussian stochastic pro-
cess. The entropy of a Gaussian stochastic process is
then given by
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H [µ,σ] =
1

2

∫

Dx p[x]

(

log det 2πσ +

∫∫

dt dt′ [x(t)−µ(t)]
T
σ−1(t, t′) [x(t′)−µ(t′)]

)

,

=
1

2

(∫

dt tr (logσ)(t, t) +

∫∫

dt dt′tr I δ(t−t′)

)

+ constant , (A.9)

=
1

2

∫

dt tr (logσ)(t, t) + constant , (A.10)

which only depends on the autocorrelation function and
not the mean. The mean is deterministic and does not
carry with it any entropy.
Viewing the autocorrelation function σ(t, t′) as a large,

positive-definite matrix, its eigen-decomposition is given
by

σ(t, t′) =

∫

df U(t, f) σ̃(f)U(t′, f)† , (A.11)

δ(t−t′) I =

∫

df U(t, f)U(t′, f)† , (A.12)

δ(f−f ′) I =

∫

dtU(t, f)† U(t, f ′) , (A.13)

where for stationary autocorrelations U(f, t) is a har-
monic function, σ̃(f) is the spectral-density function, and
f is their frequency. The entropy functional is then given
by

H [σ] =
1

2

∫

dt

∫

df tr
[
U(t, f) log σ̃(f)U(t, f)†

]
, (A.14)

=
1

2

∫

df tr log σ̃(f)

∫

dtU(t, f)†U(t, f) , (A.15)

=
δ(0)

2

∫

df tr log σ̃(f) , (A.16)

to within a constant. The entropy functional is, in gen-
eral, an infinite quantity. Equivalently, we may consider
the the average entropy per unit time

h[σ] =
1

2

∫

df tr log σ̃(f) + constant , (A.17)

which is a finite quantity. For stationary autocorrelation
functions, this functional is not only the average entropy
rate but also the instantaneous entropy rate.

Appendix B: Dynamical Constraints

Placing dynamical constraints on the system, such as
a cross correlation between x(t) and ẋ(t), allows for odd
powers of frequency in the spectral-density function. To

produce a valid autocorrelation function we must have an
Hermitian spectral-density function, which requires that
the more general form

σ̃(f) =





K∑

k=0

(2πf)2kλ2k +

K−1∑

j=0

(2πıf)2j+1Λ2j+1





−1

,

(B.1)

have anti-Hermitian Lagrange multipliers Λj = −Λ
†
j in

addition to the Hermitian Lagrange multipliers λk = λ
†
k.

With this structure of autocorrelation function, there are
maximum-entropy states that cannot be generated by an
ordinary Langevin equation, even without a FDT con-
straining its dynamics.
As an example, for the generalized multivariate

Ornstein–Uhlenbeck process, where the cross-correlation
between position and velocity 〈[x(t)−µ(t)] [ẋ(t′)−µ̇(t′)]T〉
is constrained in addition to the covariances of position
and velocity, the spectral-density function is given by

σ̃(f) =
[
λ0 + (2πıf)Λ1 + (2πf)2λ2

]−1
, (B.2)

= λ
− 1

2

2

[
F2

2 + (2πıf)F1 + (2πf)2
]−1

λ
− 1

2

2 , (B.3)

but if this spectral-density function is to be generated
by an ordinary Langevin equation with time-local dissi-
pation and white noise, then by Eq. (III.8) it must be
equivalent to

σ̃(f) = σ̃
+ 1

2

ξξ

[
GTG+ (2πıf)(GT−G) + (2πf)2

]−1
σ̃

+ 1
2

ξξ .

(B.4)

Furthermore, the Lagrange multipliers must relate to the
dynamical parameters via

λ−1
2 = σ̃ξξ , F2

2 = GGT , F1 = GT −G , (B.5)

which is not general enough to produce all valid
maximum-entropy states. To see this, one can start with
Eq. (B.4) and add a positive-definite matrix to GGT in
F2

2, which results in a positive-definite spectral-density
function that cannot be factored into a single Hermitian
square.
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