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We explore the crystallization of charged colloidal particles in a nonpolar solvent mixture. We simultaneously
charge the particles and add counterions to the solution with aerosol-OT (AOT) reverse-micelles. At low AOT
concentrations, the charged particles crystallize into body-centered cubic (BCC) or face-centered cubic (FCC)
Wigner crystals; at high AOT concentrations, the increased screening drives a thus far unobserved re-entrant
melting transition. We observe an unexpected scaling of the data with particle size, and account for all behavior
with a model that quantitatively predicts both the re-entrant melting and the data collapse.

Colloidal particles can spontaneously form structures that
exhibit long-range ordered states, making them a fascinating
system for fundamental studies of crystal phase behavior [1–
4]. The majority of studies focus on colloids which model
the hard-sphere interaction, a strong repulsion that prevents
particles from overlapping, whose range is restricted to con-
tact [5]. Hard-sphere crystallization is driven through purely
entropic effects, and the phase behavior is well studied [5–9].
Typically, the colloids used for these studies are sterically-
stabilized polymeric particles in non-aqueous solvents, which
can match both the density ρ and refractive index n of the
particles, enabling confocal microscopy to be used for these
investigations. Even earlier studies focused on charged parti-
cles, where crystallization is driven by strong long-range re-
pulsive interactions arising from Coulombic charges on the
particles [1, 10–22]. These studies were performed on par-
ticles in aqueous solvents, which makes charge effects much
easier to induce, but precludes index matching, limiting the
use of optical techniques except at very low densities. Instead,
X-ray scattering studies [23] showed a fascinating phase be-
havior of Wigner crystals, including a body-centered cubic
(BCC) phase at low concentration, and a solid-solid transition
to a face-centered cubic (FCC) phase at higher densities [15–
18, 24, 25]. It is also possible to induce charge on particles
in non-aqeuous solvents through the addition of charge con-
trol agents [21, 26–28]. However, in this case, there is strong
coupling between the charge on the particle surface and the
ions in solution. Charge-induced crystallization should still
be expected, although new behavior may also occur as a con-
sequence of this coupling. Nevertheless, these systems have
never been investigated experimentally, and the range of po-
tential behavior has not yet been explored.

In this Letter, we investigate the crystallization behavior of
colloidal particles in nonpolar solvents. By adding aerosol-
OT (AOT) reverse-micelles, we both charge the particles and
add ions to the solution. As AOT concentration increases
from zero, the system undergoes a first transition from fluid
to a charge-stabilized BCC Wigner crystal, and then a sec-
ond solid-solid transition from BCC to FCC. Further increas-
ing reverse-micelle concentration leads to a surprising behav-
ior: highly-charged particles undergo a re-entrant transition

from FCC crystal back to a fluid; the reverse-micelles screen
the charge they induce, destroying the Wigner crystals. We
observe the same behavior for several different particle sizes
and over a wide range of particle volume fractions φ below
the hard-sphere crystallization boundary. Strikingly, we ob-
serve the phase boundaries to collapse onto a single master
curve only when the particle size is included explicitly, in con-
trast to findings in all other systems. To explain these obser-
vations, we present a model for the charging effects of the
reverse-micelles, and solve the Poisson-Boltzmann equation
in a spherical shell to determine the potential and background
charge density. Numerical solutions and a mapping onto the
one-component plasma model predict the full crystallization
phase boundaries, including the scaling behavior. In addition,
we present analytic approximations that capture the asymp-
totic behavior of the boundaries and provide insight into their
scaling.

Our experimental system consists of sterically-stabilized
polymethylmethacrylate (PMMA) colloidal spheres labeled
with nitro-2-1,3-benzoxadiazol-4-yl (NBD) dye and sus-
pended in a solvent mixture of decahydronapthalene (dielec-
tric constant ε = 2.1, ρ = 0.881 g/mL, n = 1.48) and
tetrachloroethylene (ε = 2.5, ρ = 1.623 g/mL, n = 1.51)
in a mass ratio of 1:1.1. We load suspensions into rect-
angular glass capillaries (Vitrocom) with inner dimensions
0.1× 2× 50 mm. The particles and solvent have sufficiently
similar ρ that we do not observe sedimentation for the dura-
tion of the experiment, and have sufficiently closely-matched
n that we can visualize all particles individually in 3D using a
laser-scanning confocal fluorescence microscope (Leica TCS
SP5) [29].

We solubilize charge using aerosol-OT (sodium di-2-
ethylhexylsulfosuccinate, or AOT), which, above its critical
micelle concentration (cmc), forms reverse micelles whose
size does not depend on AOT concentration CAOT [30–32].
Neutral reverse-micelles can interact reversibly via a symmet-
ric two-body mechanism to yield two reverse-micelles with
opposite charges [28, 33]; the fraction of ionized reverse-
micelles χ is about 10−5, independent of CAOT. To quantify
the effects of the reverse-micelles on screening of charges,
we formulate reverse-micelle suspensions with a range of
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FIG. 1. 1/κ0 as a function of CAOT, determined from conductivity
and viscosity measurements.
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FIG. 2. Confocal microscopy images of PMMA particles at φ=0.23
and (a) CAOT=1 mM, fluid; (b) CAOT=5 mM, BCC crystal; (c)
CAOT=50 mM, FCC crystal; (d) CAOT=200 mM, fluid. (e) g(r)
for fluid samples in (a) and (d) shown with dotted purple and solid
blue curves, respectively. (f) g(r) for BCC crystal in (b), with major
peaks (red lines) corresponding to indices (l. to r.) { 2
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CAOT; at each concentration, we measure the conductivity σ
with an immersion probe (Scientifica), and viscosity η with
a glass viscometer (Cannon). From these data, we deter-
mine the screening length, 1/κ0 ≡ 1/

√
4πλBnion, where

the Bjerrum length λB is 24 nm in a solvent with ε = 2.3;
the total number density of equally-sized monovalent ions is
nion ≡ 6πηahσ/e

2, where e is the elementary charge and ah
is the hydrodynamic radius. We find that the screening length
1/κ0 decreases monotonically with CAOT [30], as shown in
Fig. 1.

To explore the phases that form in these mixtures, we
formulate suspensions of the colloidal particles with radius
a = 0.70 µm at φ = 0.23, and vary CAOT over a wide range.
We collect 3D image stacks of these suspensions with a con-
focal microscope, use software to locate the 3D position of
each particle [34–36]. To ensure good statistics, we calcu-
late the 3D pair correlation function, g(r) from at least sev-
eral thousand particles in each sample. When CAOT = 0, the
particles are essentially uncharged, and their behavior is well-
described as that of a hard sphere fluid; as CAOT increases,
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FIG. 3. Phase diagrams for charged crystallization and re-entrance
as a function of φ and CAOT for particles with (a) a = 0.46 µm
(blue), (b) 0.70 µm (black), and (c) 0.96 µm (red). Experimentally-
determined phases marked with symbols: filled circles (fluid), open
squares (BCC), open diamonds (FCC), and semi-filled symbols
(fluid-BCC coexistence). Solid curves denote experimental fluid-
crystal boundary; solid-solid transition between BCC and FCC
marked with dashed curves. (d)-(f) Phase diagrams of the same sam-
ples as a function of φ and 1/κ0a, using the mapping from CAOT to
1/κ0 in Fig. 1. Solid curves indicate numerical predictions, which
closely follow the experimental data. Analytic predictions for the
phase boundaries at low- and high-CAOT marked with dotted and
dashed lines, respectively.

the particles become increasingly charged leading to correla-
tions between particle positions. For CAOT = 1 mM, we ob-
serve a strongly-correlated liquid, shown in the 2D confocal
image in Fig. 2(a), collected several particle layers from the
coverslip, and as with all collected images is representative of
the structure throughout the depth of the sample; g(r) for this
sample has broad, low peaks, as shown with the dotted purple
curve in Fig. 2(e). Upon further increasing CAOT, the par-
ticles undergo a crystallization transition; at CAOT = 5 mM,
we observe a disorder-order transition from the fluid to a BCC
Wigner crystal, as shown in Fig. 2(b); strikingly, while the par-
ticles remain well-separated due to their charge, the order and
quality of the BCC crystal lattice is sufficiently high that we
can locate and index many of the major peaks in g(r) from
the known structure, as shown in Fig. 2(f). Further increasing
CAOT, we observe a solid-solid crystal phase transition from
BCC to FCC structures, shown in Fig. 2(c), and again we can
index many of the main g(r) peaks, as shown in Fig. 2(g).
Remarkably, however, when CAOT exceeds 200 mM, we ob-
serve reentrant melting: the FCC crystal is fluidized, with no
crystalline peaks present in g(r), as shown with the blue curve
in Fig. 2(e).

To explore more fully the phase behavior of these parti-
cles, we repeat the above experiments at several φ. The gen-
eral phase behavior with increasing reverse-micelle concen-
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tration, changing from a fluid to BCC to FCC and ultimately
to a reentrant fluid, persists over a wide range of φ well be-
low the hard-sphere crystal boundary, and for several particle
sizes a = 0.46, 0.70, and 0.96 µm, as shown with symbols
in the phase diagrams in Figs. 3(a)-(c). For sufficiently low
φ ≤ 0.05, the system remains fluid and does not crystallize
anywhere, as shown in the figure. For samples that crystal-
lize at φ ≈ 0.1, only the BCC crystal phase is observed;
only above φ ≈ 0.2 do we observe a clear BCC-FCC phase
boundary, which occurs at lower CAOT for increasing φ. By
contrast, the re-entrant FCC-fluid boundary occurs at higher
CAOT as φ increases. The qualitative behavior, with the FCC
and BCC crystal phases and the re-entrant melting, remains
the same for all a, as shown with symbols in Figs. 3(b)-(c).

To explain this behavior, we construct a model that ac-
counts for the basic physical interactions among the micelles
and particles at a microscopic level. AOT reverse-micelles
affect the particle surface charge through two coupled equi-
libria. The first reaction is the self-ionization equilibrium of
reverse-micelle pairs, described by 2Mic ⇀↽ Mic− + Mic+,
where Mic refers to a neutral reverse-micelle [28]. We char-
acterize this reaction with the constant KM, which we use as
a fitting parameter. In the bulk, the total ion concentration is:
nion = [Mic+] + [Mic−] = 2

√
KM[Mic]. The second re-

action is the charging of the colloidal surface through charge
exchange of a neutral reverse-micelle Mic and a neutral sur-
face site S to form a cationic reverse-micelle Mic+ and neg-
ative surface site S−: S + Mic ⇀↽ S− + Mic+ [30], charac-
terized by the equilibrium constant KC. We assume that the
cationic reverse-micelle concentration in the vicinity of the
colloid surface, where r = a, follows the Boltzmann distri-
bution [Mic+]0 = 1

2nion exp[−βeψ(r = a)] where ψ(r) is
the unknown electrostatic potential. We represent the small
fraction of charged surface groups f as:

f ≡ [S−]

[S]
=
KC[Mic]

[Mic+]0
=
KC exp(βeψ(r = a))√

KM

(1)

The total colloidal charge is Ze = −4πa2mfe, where m is
the areal density of chargeable surface groups.

To compute Z and ψ(r = a) self-consistently, we calculate
the full electrostatic potential ψ(r) in a charge-neutral, spher-
ical Wigner-Seitz cell [37–39] with radius R = aφ−1/3, con-
taining a spherical colloidal particle centered at the origin. On
the colloid surface we impose Gauss’s law, βe∂ψ(r)∂r

∣∣∣
r=a

=

−ZλB/a2. For a < r < R the ionic reverse-micelle concen-
trations follow Boltzmann distributions 1

2nion exp[±βeψ(r)];
we therefore solve numerically the Poisson-Boltzmann (PB)
equation of the form:

βe
∂2ψ(r)

∂r2
+ βe

2

r

∂ψ(r)

∂r
= κ20 sinh[βeψ(r)] (2)

∂ψ(r)

∂r

∣∣∣∣
r=R

= 0

βe
∂ψ(r)

∂r

∣∣∣∣
r=a

= 4πλB

(
mKC√
KM

)
exp[βeψ(r = a)]

for given λB, a, φ and κ0, and for fixed combinations of
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FIG. 4. (a) Illustration of charged particles (blue), their double layers
(red), and the OCP background (yellow). (b) Typical ion concentra-
tion profiles ρ±(r) around a negatively charged colloidal sphere of
radius a in a cell of radiusR in the weak-screening regime κ0R <∼ 1,
such that the OCP-like ionic background charge ρ+(R)− ρ−(R) =
ρbg (see text) is nonvanishing. By charge neutrality the effective col-
loidal charge equals (4π/3)(R3 − a3)ρbg, and the corresponding
OCP point-charge is ZOCP = (4π/3)R3ρbg.

mKC/
√
KM, which we fit as a single parameter. The calcu-

lation yields not only Ze and ψ(r = a), but also the Donnan
potential ψ(r = R) and the far-field background ionic charge
ρbg = −nion sinh[βeψ(r = R)].

To determine where the system crystallizes, we map the
colloidal dispersions onto a one-component plasma (OCP) of
point particles of density n ≡ 3φ/4πa3 and charge ZOCP ≡
−ρbg/n, to satisfy global OCP neutrality, with a uniform
background charge ρbg, as illustrated in Fig. 4. The OCP
crystallizes if Γ > 106 [40, 41] (see appendix), where the
OCP coupling parameter is defined as Γ ≡ Z2

OCPλBn
1/3; this

threshold yields a simple new freezing criterion that takes the
standard PB cell-model calculations as input. Therefore, to
calculate the phase boundaries for comparison with the exper-
imental data, we solve numerically for Γ = 106 using ρbg, as
obtained from the numerical solution of Eq. (2), fitting only
the single parameter mKC/

√
KM = 5.0× 102µm−2.

To facilitate comparison between samples, and with the-
ory, we convert the micellar concentration to the dimension-
less product 1/κ0a, determined by mapping the experimen-
tal CAOT to 1/κ0 via the empirical data in Fig. 1; the ex-
perimental data are shown with the symbols in Figs. 3(d)-
(f). This representation allows direct comparison between
the experimentally-observed phase boundaries, and those pre-
dicted by our model. Strikingly, the theoretical predictions are
in excellent quantitative agreement with experimental phase
boundaries for all a, as shown by the solid curves in Figs. 3(d)-
(f). Our new crystallization criterion might be expected to
apply only in the low-AOT limit 1/κ0a > 1, where the dis-
persion is OCP-like; however, we observe similar accuracy
with the well-established empirical criteria [42–44] for point-
Yukawa fluids even for 1/κ0a < 0.1. Moreover, our pre-
dictions are accurate even at high φ; our criterion accounts
for the significant hard-core exclusion effects that the ions ex-
perience, even as Coulombic repulsion keeps particles well-
separated.

The quantitative success of our numerical model suggests
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FIG. 5. Phase diagram for all particle radii, with a = 0.46 µm (blue),
0.70 µm (black), and 0.96 µm (red), with experimental data and nu-
merical calculations as in Fig. 2, shown as functions of dimensional
parameters φa and 1/(κ0a

2). All experimental data collapse onto a
single behavior (symbols), which is closely modeled by theoretical
predictions (curves). Symbols are as in Fig. 3.

that a more analytic approach might also predict accurately
the onset of crystallization, in the weak- and strong-screening
regimes. For low CAOT, the concentration of co-ions is negli-
gible, while the counterions form a uniform background, such
that ρbg ≈ [Mic+]0. Following the described charging equi-
librium Z = −(κ0a)2mKC/(2

√
KMλB[Mic+]0) and substi-

tuting ZOCP = Z/(1−φ) in this limit, we obtain the analytic
expression

Γ ≈ (4π/3)2/3φ−2/3(1− φ)−1(κ0a
2)2mKC/2

√
KM (3)

We calculate the phase boundary by determining φ and κ0
where Γ = 106; remarkably, this yields a predicted phase
boundary which converges closely to the numerical calcula-
tion and experimental boundary at high-φ, as shown with the
dotted lines in Figs. 3(d)-(f).

In the concentrated AOT regime, where 1/κ0a � 1, we
assume a small ψ(r) throughout the cell, due to efficient ionic
screening. We therefore utilize linear screening theory to find
that the general solution to the potential profile is of the form
ψ(r) = A exp(κ0r)/r + B exp(−κ0r)/r. We calculate the
constants A and B by using cell neutrality and approximate
the surface potential to be moderate, βeψ(a) ≈ 1. The
background charge is ρbg = −nionβeψ(R). We substitute
these into the expression for ZOCP, and again use the crite-
rion Γ = 106 to yield analytical predictions for the re-entrant
boundaries. Strikingly, our simple model predicts re-entrance
in close quantitative agreement with both the numerical cal-
culations and the experimental data over the entire range φ, as
marked with the dashed lines in Figs. 3(d)-(f).

Interestingly, the phase boundaries for different a occur at
different φ and 1/κ0a; there is no universal behavior of the
data in this dimensionless representation, indicating that par-
ticle size plays a non-trivial role. From Eq. 3, at low CAOT, Γ
depends only on κ0a2 and φ; the φ-dependence is weak, fea-
turing a shallow minimum at φ = 0.4, but is roughly constant,
consistent with the nearly-constant CAOT observed for this
boundary in the experimental data. By contrast, at high CAOT

and close to the phase boundary, Γ shows very little remaining

dependence on a, when expressed as a function of κ0a2, φa,
and a. These mathematical properties suggest that the sys-
tems with different a may behave in the same way, when their
phases are plotted as functions of the dimensional parameters
1/(κ0a

2) and φa.
To test this, we re-plot all the experimental data, as func-

tions of 1/(κ0a
2) and φa; remarkably, all of the experimen-

tal data from all three a collapse onto a universal phase dia-
gram, with the same onset of crystallization and re-entrance
for all samples, shown with symbols in Fig. 5. Our theoreti-
cal model predicts this boundary, as shown by the overlapping
solid curves in Fig. 5. That the collapse occurs when the data
are plotted as a function of parameters that explicitly include
a length scale, as opposed to the dimensionless case, is par-
ticularly striking; moreover, our numerical calculations sug-
gest that this non-dimensionless scaling should apply over a
larger range of a, extending over half an order of magnitude
beyond the particle sizes used in these experiments. However,
the origin of this dimensional data collapse remains an open
question.

The excellent agreement between the assumptions of our
theoretical model and our experimental data suggests that the
same mechanism may drive electrostatically-induced phase
transitions in general. Although crystallization curves are fit-
ted accurately, the observed BCC-FCC transition curves can-
not be reproduced within our approach, as the OCP does not
show FCC ordering. Nevertheless, our model can now be used
to predict a wide range of behaviors in charged particle sys-
tems, and the flexibility and extended length scales possible
through the use of non-polar solvents make these an attractive
model system for the study of other phase behavior.
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APPENDIX

The Coulomb coupling parameter Γ plays a pivotal role in
characterisation of one-component plasmas (OCP), and is de-
fined as the Coulomb interaction energy expressed in units of
the thermal energy kT for two particles at a typical interparti-
cle distanceD: Γ ≡ Z2λB/D, where Z is the particle charge.
Here we define D ≡ n−1/3, where n the particle density,
consistent with recent studies [42]. However, other pioneer-
ing studies on OCP freezing [40, 41] use a slightly different
definition of the interparticle distance, D∗ ≡ (4πn/3)

−1/3;
this results in a small change to the coupling parameter defi-
nition: Γ∗ ≡ Z2λB/D

∗ ≈ 1.61Γ. These studies show that a



5

Coulomb lattice is the most favourable configuration when the
coupling parameter exceeds a critical value, Γ∗ ' 171 [41].

Consequently, in our study, the phase transition between the
fluid and crystal should occur very close to Γ = 106; we use
this criterion to construct our phase diagrams.
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