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Abstract — In the present work we test experimentally and compute numerically the stability and
dynamics of harmonically driven monoatomic granular chains composed of an increasing number of
particles N (N=1-50). In particular, we investigate the inherent effects of dissipation and finite size on the
evolution of bifurcation instabilities in the statically compressed case. The findings of the study suggest
that the nonlinear bifurcation phenomena, which arise due to finite size, can be useful for efficient
energy transfer away from the drive frequency in transmitted waves.

Introduction — Acoustic imaging, sensing, energy harvesting, and communication all rely on a firm
understanding of the physics of wave propagation and energy transport. To advance these and other
applications and to create new materials with enhanced acoustic properties, phononic crystals and
acoustic metamaterials have been extensively studied™. These are a class of engineered/structured
materials that allow control over wave propagation properties by exploiting geometry and periodicity of
sub-wavelength structures. One important consequence of periodicity in an infinite material is the
presence of frequency band gaps, which results in the complete reflection of excitations with
frequencies in the band gap. In reality, all materials are inherently finite, dissipative and not completely
periodic. In systems with finite size, nonlinear instabilities become increasingly more important, even for
relatively small dynamic excitations. In this work, we study the nonlinear dynamic phenomena that
result from finite size, while considering dissipation. The presence of these nonlinear effects in a finite
system could be very useful in the design of phononic crystals and metamaterials for practical
applications.

To further advance the development of acoustic materials, the complex behavior of nonlinear media
offers enhanced (i.e., amplitude and frequency dependent) control over the wave propagation. By
introducing nonlinear responses in the design of materials, it is possible to control acoustic propagation
properties, achieve greater tunability on the acoustic response of given systems, and observe new
physical phenomena. For example, nonlinear systems have a distinct advantage over linear systems in
their ability to transfer energy between frequencies. Common examples of energy transfer in the
frequency domain are subharmonic and superharmonic bifurcations®. While these bifurcations can be
destructive and are oftentimes avoided (as suggested by von Karman in the design of parts in an
airplane®), they are also frequently engineered into systems, e.g., sum-frequency and second harmonic
generation in nonlinear optics devices®. In acoustics, this nonlinear transfer of energy resulted in the



development of rectification devices®” and has been used in non-destructive evaluation and imaging
techniques.?

In this work, we study the propagation of energy in finite periodic systems that results from similar
nonlinear processes, in which energy is exchanged between different frequencies of the system. As
mentioned above, in linear periodic materials excitations in the band gap are completely reflected.
However, the presence of nonlinearity allows energy to propagate down the chain. This can occur
through nonlinear supratransmission in which the energy of a signal in the frequency band gap is

transmitted by means of nonlinear modes®**

. This is shown in a series of papers investigating nonlinear
supratransmission in sine-Gordon and Klein-Gordon™?, Josephson ladders®, and Fermi-Pasta-Ulam
chains™. Here, we explore similar nonlinear phenomena in systems of finite size. We accomplish this by
studying granular chains of particles as fundamental models for nonlinear periodic structures. We study
the bifurcations arising in these systems, and we explore the transition regime bridging the response of

finite systems with theoretical predictions based on infinite periodic assumptions.

Granular chains are a class of nonlinear periodic media governed by a highly tunable Hertzian contact
interaction between particles™: this allows the system to access near-linear, weakly nonlinear, and
strongly nonlinear dynamic behavior.™ In weakly nonlinear regime, the granular chains’ dynamics are
similar to Fermi-Pasta-Ulam systems, and they have demonstrated defect energy localization,” discrete
breathers,'®'” higher order harmonic wave generation,'® as well as chaotic dynamics.” In the highly
nonlinear regime, coherent travelling waves were predicted to exist such as highly localized solitary
waves'® and periodic traveling waves.”® Granular chains have been suggested for application in tunable
mechanical filtering” and acoustic rectification.® In the field of dense granular materials, frequency-
mixing processes have been reported for elastic waves?. Their experimental tractability makes granular
chains excellent platforms for studying lattice dynamics with highly dependent amplitude and frequency
behavior. In addition, the granular chain is an ideal model to study phenomena that occur across
different dynamical regimes. When the dynamics are weakly nonlinear and smooth the granular
interaction potential can be approximated by a polynomial expansion. This extends the applicability of
the results in this regime to similar lattice systems with weak nonlinearities. We demonstrate that the
bifurcations presented occur both in the smooth weakly nonlinear regime and also the strongly
nonlinear regime, in which gaps open between beads.

Experimental Setup — Figure 1a shows a schematic of the experimental setup. We assemble a one-
dimensional (1D) homogeneous granular chain made of N stainless steel spheres (316 type, grade 100,
provided by McMaster-Carr). The spheres have a measured radius R = 9.525 mm, measured mass

m = 28.84 g, Youngs Modulus E = 193 GPa, and Poisson ratiov = 0.3.2 We excite the system with a
harmonic displacement for approximately 400 ms, enough time to reach stationary dynamics, using a
low voltage piezoelectric actuator (blocking force 800 N, resonance frequency 40 kHz, PST 150/5/7 VS10
provided by Piezomechanik). The actuator is mounted on a steel block fixed to the table. N spheres
(with N ranging between 1 and 50) are then aligned with the head of the actuator and supported by
polycarbonate rods. We excite with a range of static and dynamic loading that allows access to both the
weakly and strongly nonlinear dynamical regime. We use a non-contact laser vibrometer to measure
the dynamic response of the short granular systems (i.e. N < 2) at the last bead, ensuring no effects of



the measurement system on the results. In longer systems, we use calibrated sensor particles, placed in

the third and last bead, similar to Job et al.** The applied static load is measured using a calibrated static

force sensor.
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FIG 1. (color online) (a) Schematic of the experimental setup where the chain’s length is varied between 1 and 50
beads. For 1 and 2 bead systems there was no embedded sensor. (b-d) The experimental bifurcation dynamics in a
15 bead chain statically compressed at 8 N and driven at 7.3 kHz. (b) The linear transfer function measured using a
white noise excitation. The dotted line at 6.8 kHz indicates the band cutoff frequency measured at the half power
point of the last peak. The drive frequency (7.3 kHz) for the force time series in (c) is therefore in the band gap. (c)
The force time series measured at the end of the chain shows how the bifurcation results in the amplitude growth
and stabilization. (d) The power spectral density (PSD) of the red portion of the force signal in c) shows that energy
is transferred from the drive frequency, fy = 7.3 kHz, to two new frequencies, fy. We study how this bifurcation
results from the finite size of a 1-d system.

In this paper, we explore the nonlinear bifurcations that result from a system’s finite size. We motivate
the research by showing a typical bifurcation in a chain of 15 beads in Fig. 1(b-d). Figure 1b shows the
linear transmission band and the frequency band cutoff as a dotted line at 6.8 kHz. When driving the
system at 7.3 kHz above a threshold amplitude, the oscillations grow and energy is transferred from the
drive frequency to new frequencies. A stable quasiperiodic state is reached. The new frequencies and
amplitudes depend sensitively on the drive frequency. Even though the system is driven in the stop
band, energy can still propagate through the lower frequency modes. Because the dynamics for systems
with many degrees of freedom are quite complex, we observe a slightly different result (i.e. the stable
amplitudes and frequencies) for each experimental run. This means that the amplitude of the
bifurcation and the newly generated frequencies depend sensitively on the initial compression. To



understand the bifurcation structure governing this energy transfer, we start by studying smaller
systems, i.e. a single bead oscillator and a two-bead system and then proceed to larger chains. The goal
of this study is to understand the energy transfer of signals above the band gap to lower frequency
modes that results from bifurcations. The systems of one and two beads illustrate the fundamental
physics of the bifurcations and explain the dynamics present in larger systems. Therefore we build up
from these two specific systems.

Numerical Setup —We model the dynamics of the granular chain using N coupled 2" order differential
equations representing the motion of the particles. Accordingly, the i-th sphere’s displacement u; from
its equilibrium position can be described as:

3

mily = Ager(8gqct + Bcos(2mft) — ul)i/z —A(Sp +uq — uz)?r —muy /Ty (1)
3
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where (s), takes the value of s if s > 0 and the value of 0 if s < 0 which signifies that adjacent particles
are not in contact (gaps open). Here, m is the mass of the bead, A = E\/ﬁ/(B(l —v?)) is the constant
in the Hertz interaction law®, with the geometric and material properties defined above . The initial
compression F, applied by the soft spring results in an initial static overlap &, defined by Hertz’s

law Fp = A 63/2 ¥ The first bead’s equation of motion is modified to reflect the harmonic drive and the

contact between sphere and actuator, A, = V24, modeled as a moving wall. The last bead’s equation
is modified to reflect the experimental boundary condition, a spring with force F,. The equations of
motion include a viscous on-site dissipation, t4. There is a slight variation around this value in the
dissipation constant between experimental runs. We attribute this to change in the effect of the contact
between the last bead and spring. To account for this, the dissipation coefficient is calculated by fitting
for each experiments’ linear resonance response. It is important to note that these equations can be
non-dimensionalized leaving three critical parameters, the drive frequency, the drive amplitude, and the
dissipation. All the numerical figures are plotted in non-dimensional units to enhance readability.

For the analysis, we use a single shooting continuation algorithm and a Newton method to find periodic
limit cycles in phase space.?® The method computationally integrates the equations of motions and
obtains a periodic solution with its associated Floquet multipliers (FMs), 4;. The FMs are complex valued,

and their magnitude can be used to study the linear stability of the solutions. In the case of dissipative

) 27

lattices, the FMs originally lie on a circle of radius e ~1/(27f@) ¥’ Bifurcation instabilities result when the

FMs collide and one leaves the unit circle, |4;] > 1. In this case, energy of the system is transferred from

the drive frequency to nonlinear modes of the system at new frequencies. The argument of the complex

Arg(1) fa

FM gives us the new frequencies, fy = o



Results and Discussion — At small drive amplitudes, B/8,.+ < 1, the system’s nonlinearity can be
ignored and the response is nearly harmonic. However, as the drive amplitude increases, the system
becomes nonlinear. The nonlinearity of a system can be described as either softening or stiffening
depending on whether the maximum frequency response moves down or up as the drive amplitude is
increased. Figure 2a shows the experimental nonlinear softening of the mode of a single bead. As the
amplitude of the drive is increased the response becomes asymmetric, bending to lower frequencies
(i.e. a softening nonlinear potential), deviating from the classic linear Lorentzian response. The
amplitude dependent mode profile that we observe here is a property of nonlinear oscillators
commonly studied in the driven damped Duffing oscillator®. Figure 2b shows experimental data
demonstrating a similar nonlinear softening response for each of the modes of a two-bead system. This
mode softening is important to the dynamics at higher amplitudes after the bifurcation occurs. It
illustrates the nonlinear behavior of the system and explains asymmetry seen later in Figure 5. The
numerical counterparts to Fig. 2a and 2b are shown in Fig. 2c and 2d. The nonlinear softening of the
system is qualitatively similar in these plots. We notice a significant difference in the quantitative
amplitudes observed for the nonlinear softening. We believe the quantitative difference in the
measured and computed values could be due to one or a combination of many effects. Some of these
could include the variation of the surface roughness of the sphere, frictional nonlinearities that become
important at low amplitudes, or inaccuracy in measurement and excitation techniques at these
extremely low amplitudes. A further investigation of this deviation from the Hertzian contact law at low
drive amplitudes would be an interesting future study. However, the key result for our study is the
observation that the dynamics are nonlinear, and that there is a softening of the resonance, i.e., the
maximum of the frequency moves to lower values as the drive amplitude is increased. We discuss later
how this softening could account for the asymmetry bifurcations in frequency.
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FIG 2. (color online) Color maps of the experimentally measured RMS velocity [mm/s] of single bead (a) and two
bead (b) systems as a function of the drive amplitude and frequency. The velocity is measured in the second bead
for the two bead system. The dotted line in (a), which starts at 4.05 kHz for low amplitudes and decreasing in
frequency at higher amplitudes, indicates the maximum of the resonance at each drive amplitude. This clearly
displays the mode softening to lower frequencies as the amplitude of the excitation increases. The insets show
cross sections at selected drive amplitudes. The horizontal axis of the insets is the same frequency axes as each
corresponding panel. The asymmetry and the mode softening is a result of the nonlinear Hertzian contact
interaction. The measurements are taking using a lock in amplifier to reduce noise. In addition, the low amplitude
response is used to estimate the dissipation coefficients used in the one and two bead computational results.
Panels (c) and (d) are the computational counterparts to (a) and (b). The system depends sensitively on the initial
compression, Fy, and the diagrams are fit to have the same linear (low amplitude) frequency as the experimental
plots. This corresponds to a 8.67 N static compression for the single bead and 4.36N for two beads.

We are interested in changes of the wave dynamics before and after the bifurcation. Figure 3 shows an
experimentally measured bifurcation in a single bead system when the particle is driven at
approximately twice the natural frequency. Initially, a stable harmonic solution develops (Fig. 3a), but as
the drive amplitude is increased, the velocity sharply increases and the dynamic response changes (Fig.
3b). The data in Fig. 3c shows a sudden jump in the dynamic response at a critical drive amplitude,

B.rit = 0.07 um. The power spectral density (PSD) (see Fig. 3d and 3g) shows that this solution went
from being composed of the single drive frequency to being dominated by a subharmonic, f; /2. Figure
3e shows the Poincaré section change from a single grouping of points to two distinct groups, indicative



of a subharmonic bifurcation®®. After the bifurcation, approximately 20 times more energy is
transferred to the bead, indicating much more efficient coupling between the particle chain and the
actuator. In addition, the increase in the oscillation amplitude of the bead, as a result of the bifurcation,
depends on the drive frequency. Figure 3f shows the computationally calculated hysteresis diagram that
corresponds to the experiment. The disagreement observed in the predicted and measured velocity
amplitudes can be explained by uncertainty in measurements of the static compression applied to the
chain, even though all qualitative features of the bifurcation are maintained.
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FIG. 3 — (color online) The experimental nonlinear resonance and bifurcation behavior of a single bead driven at
6.85kHz. (a,b) The velocity of the bead (a) before and (b) after the bifurcation. (c) The maximum velocity measured
at each drive amplitude. The two crosses indicate the drive amplitudes for the time series in (a), red lower left
cross, and (b) right lower left cross. (d) The corresponding PSD of two time series, showing the dominant
subharmonic frequency at f; /2 for the excitation above the bifurcation amplitude. The dotted lines indicate the
drive frequency (right) and new subharmonic (left) frequency. (e) the Poincaré section of the dynamics of the bead
before (red, central points) and after (blue, side points) the bifurcation. The splitting of the section from one point
to two points is characteristic of a period doubling subharmonic bifurcation. Panels (f) and (g) are the
computational plots that correspond to the experimental panels (c) and (d). (g) The PSD clearly shows that a sub-
harmonic bifurcation occurs after the critical amplitude is crossed.



In longer chains, there is more than one natural frequency, and therefore the system can undergo
bifurcations resulting in both subharmonic or quasiperiodic dynamics. When the drive frequency is a
multiple of a linear mode’s frequency, a subharmonic bifurcation emerges, and the dynamics are
qualitatively similar to the results shown for a single bead. However, when the drive frequency is near
the sum of the system’s two natural frequencies, quasiperiodic dynamics may arise. Fig. 4 shows the
response of a two-bead system that goes from a sinusoidal response (Fig. 4a) to a solution that is quasi-
periodic (Fig 4b). Quasiperiodic dynamics occur because the ratios between the drive frequency f; and
new frequencies fy1 and fy, are not necessarily rational. Figure 4c shows the PSDs of the signals, and
illustrates the transfer of energy to the two lower modes. Figure 4d shows the Poincaré section of the
second bead. It contains points forming a closed curve coming from the intersection of the torus flow in
phase space (characteristic of quasiperiodic dynamics) with a plane. In summary, the system goes
through a bifurcation in which the dynamics drastically change. There is an order of magnitude change
in the amplitude, the total energy transferred to the system, and fraction of energy localized around the
drive frequency. To confirm the quasiperiodic behavior, we also performed a computational integration
using the same parameters as in the experiment. Figure 4e shows the power spectral density before and
after the critical amplitude of the bifurcation. The values are shown in the hysteresis plot of Fig. 4f. The
dynamics agree quite well, and the qualitative disagreements can be attributed to uncertainty in the
static compression and reconfigurations of the system coming from misalignment of the spheres during
each experimental run.
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FIG. 4 — (color online) Experimental nonlinear resonance and quasiperiodic bifurcation behavior in a system of 2
beads driven at 6.94kHz. (a,b) The velocity of the second bead (a) before and (b) after the bifurcation. (c) The
corresponding PSD of two time series, showing the new frequencies fy, and fy, supported by the nonlinearity of
the system, where fy; + fy2 = f4. The PSD of the time series clearly show that energy is transferred from the
drive frequency, f; to the two new frequencies. (d) Poincaré sections of the dynamics of the second bead before
(red, central point) and after (blue, surrounding points) the bifurcation. This Poincaré shows the classic intersection
of a torus and a plane for quasiperiodic dynamics. The finite number of points is due to the finite length of the
signal. (e) The PSD of the computational time series taken at the drive amplitudes indicated in (f) and using the
same parameters as measured during the experimental runs. The lower left cross indicates the drive amplitude
chosen before the bifurcation, and the upper right cross is at a higher amplitude after the bifurcation.

The analysis for one and two bead systems illustrates the two fundamental types of bifurcations that
occur in granular chains. Figure 5 shows how the bifurcations depend on the different parameters of the
system, i.e. drive amplitude and drive frequency. We observed that these bifurcations occur in certain
areas of the parameter space and call these regions tongues, due to their similarity with parametric
tongues. This region indicates that, where a sharp transition in the dynamics occurs, the stable solution
goes from sinusoidal to either subharmonic or quasiperiodic. The tongues are centered around the
multiples and sums of the linear mode frequencies in each system. Numerically we can determine where



to sweep these frequencies by solving the eigenvalue problem associated with the equations of motion
(1), and experimentally we measure the linear mode frequencies using a broad range frequency sweep.
We start by showing the experimental and computational bifurcation tongues of a one and two bead
system and then proceed to larger systems. The edge of the tongue shows the edge of a stable harmonic
solution. Above the critical drive amplitude the system exhibits either subharmonic or quasiperiodic
dynamics.

Figure 5a shows the experimentally observed nonlinear tongue for a single bead oscillator. Here, the
entire tongue is characterized as subharmonic. The minimum of this region corresponds to twice the
frequency of the linear mode. The disagreement between the minimum of the tongue in Fig. 5a (7.4
kHz) and twice the linear frequency, 4.0 kHz shown in Fig. 23, is due to different static compressions
between runs. The linear frequency measurements were taken at approximately 8 N compression, while
the bifurcation is measured at approximately 4 N. On top of the experimental results, we also plot the
computationally computed tongue edge, as a black dotted line. The tongue is asymmetric due to the
modes softening to lower frequencies (Fig 2). As amplitudes of the oscillations increase, the natural
frequencies decrease. This causes the tongue in Fig. 5a to bend towards lower frequencies. In addition,
the color scale shows that the bifurcation becomes more drastic as the mode bends further from its
linear natural frequency. Figure 5¢ shows the computationally calculated bifurcation tongue for a single
bead (with the experimentally investigated region indicated with the dashed blue rectangle). The
quantity, fy, used to non-dimensionalize the frequency is the linear mode frequency. Here it is clear the
minimum is at 2, or twice this frequency. This is because the drive frequency determines the how far
apart the nonlinear modes must move in frequency. If the minimum is chosen the drive frequency is
already a multiple of the linear mode frequency. In the context of the Floquet multipliers, the multipliers
start on top of each other. If a frequency slightly lower or above the minimum is chosen, the nonlinear
modes decrease or increase in frequency to be a multiple of the drive frequency. The Floquet multipliers
must first move before colliding. Therefore the bifurcation occurs most easily at a multiple of the linear
mode frequency, leading to a minimum at this point. The solid points in Fig. 5(a-d) are computed using a
parameter continuation, and they correspond to the pairs of the driving frequency and amplitude at
which FMs leave the unit circle, an indicator of the existence of bifurcations. In these plots, the
asymmetry becomes clear. Points in red indicate that gaps are opening, which explains why the shape of
the tongue changes; the dynamics at this point go from weakly to strongly nonlinear. The units are
shown in nondimensional units to stress that the onset of this nonlinear bifurcation may occur at
seemingly small drive amplitudes, at a fraction of the static overlap of the chain.

For two beads (Fig. 5b and d) we see two tongues: one at the sum of the two mode frequencies, 7kHz,
and one at twice the higher mode’s frequency, 9.8kHz. The tongue associated with the sumis
characterized by quasiperiodic bifurcation dynamics, whereas the tongue at twice the modes frequency
is subharmonic. A single slice from the quasiperiodic tongue was previously shown in Fig. 4, where the
frequency is fixed and the drive amplitude is quasistatically increased. In addition, it is important to
note that our computations predict high amplitude subharmonic and quasiperiodic stable solutions exist
despite gaps opening, i.e. gaps openings do not directly lead to chaotic dynamics. In this case, the
dynamics are non-smooth yet still periodic. While this is somewhat surprising, the possibility of such



dynamics is supported by the non-smooth periodic solutions that have previously been observed in

granular chains at the uncompressed limit*>*

. Figures 5(e-g) show a representative of the FMs
calculated for each tongue. If the FMs leave the unit circle on the negative real axis, it indicates a
subharmonic bifurcation, and otherwise quasi-periodic dynamics. These simulations confirm the
subharmonic and quasiperiodic dynamics observed experimentally for each tongue in Figures 3 and 4 in
which we increase the amplitude entering the nonlinear tongue region. The critical driving amplitude for
bifurcation shows a good agreement in the experimental and computational results for one and two

beads.
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FIG. 5 (color online) The experimentally measured bifurcation tongues observed in (a) one bead and (b) two bead
systems. The color scale corresponds to maximum velocity amplitude (dB), and it demonstrates that as the mode
moves further from its linear frequency, the change in dynamics becomes more drastic. The numerically calculated
tongue edge is plotted directly on top of the experimental data as closely spaced solid black dots. c¢) and d) show
the computational results for 1 and 2 bead chains, respectively (the units are non-dimensional). The solid points
indicate where a bifurcation has occurred (i.e. a FM has left the unit circle). Red points (at the higher frequency
portions for each tongue) indicate gaps have opened between beads. The dashed rectangles indicate the
parameter range for which the experimental measurements in (a) and (b). The vertical dotted lines correspond to
the Floquet diagrams in (e-g). We show the unit circle to guide the eye.

The results from one and two beads help us understanding the dynamics that can take place in larger
systems. Any linear combination or multiple of the mode frequencies can result in a bifurcation tongue,
and for slightly larger systems the number of combinations quickly grows and so do the number of
tongues. In lattices of longer length, the attenuation band that forms prevents the propagation of
signals above a certain frequency. However, the previous study of a one and two bead system shows
that energy can be transferred through lower frequencies. When this happens in longer chains, the
attenuation band will no longer reflect all the incident signal, but instead energy will be transferred to
lower frequencies that can still propagate.

In Fig. 6, we study the effect of the size of the system and the losses of the system on the existence and
the structure of these bifurcation tongues. In particular, Fig. 6a shows the effect of increasing the size of
the system for a given amount of losses that correspond to the non-dimensional quality factor (Q = 27)
of the single bead system. For five beads there are already many more tongues, but they can still be
distinguished. For 15 beads the tongues can no longer be distinguished and the amplitude, at which the
bifurcations happen, is larger. This explains the sensitivity of the bifurcation that we observed for 15
beads shown and discussed in Fig. 1. Finally, for 25 beads we barely see the tongue structure while for
systems of 40 and 50 beads we observe no bifurcations even when driving up to 1.5 times the static
overlap. Fig. 6b shows the effect of the losses for a given chain length (N=15). As the dissipation is
decreased (increasing quality factor) the system can much more easily bifurcate. In both panels, we also
observe that as the driving frequency increases, the appearance of bifurcations happens at larger driving
amplitudes. In conclusion, as the system gets longer and/or more lossy, the bifurcations happens at
larger driving amplitude and at some point they are no longer present. Thus, there is an important
interplay between the losses and the length of the system that lead to the existence or not of
bifurcations and thus to the nonlinear energy transfer between phonon modes.

This could be explained from the perspective of FM as follows: The bifurcations are associated with
what is called oscillatory instability, which arises from the collision of two Floquet multipliers and the
associated spatially extended eigenvectors, a well-known finite-size effect. When this collision occurs, if
a FM leaves the unit circle, then the solution is unstable and grows. The magnitude of this multiplier is
also a measure of the strength of the instability and how quickly it grows. As discussed in Ref [17] the
strength of such instabilities depends on the system size. In particular, when the size of the system is
increased, the magnitude of such instabilities weakens uniformly. In other words, the unstable FMs
become smaller in magnitude as the system size grows. Simultaneously, the number of such instabilities



increases with system size due to the increasing density of colliding Floquet multipliers. Eventually,
these instabilities vanish in the limit of an infinitely large system. Since in Hamiltonian lattices, all the
FMs must lie on the unit circle, collisions result in their departure from the unit circle and are directly
associated with instabilities. However, this is not the case for the driven-damped lattices. As we
mentioned above, for a linearly stable periodic solution all the FMs lie on a circle of radius, e~/ @fa),
which is smaller than one. As the dissipation increases, the Floquet multipliers have a smaller magnitude
and the instability must be strong enough to allow the FM to completely leave the unit circle. Thus, it is
possible for FMs to collide but still not exit the unit circle. This is due to the weak strength of the
oscillatory instabilities, which becomes weaker as the size of the lattice become larger. Therefore, at
longer lengths there is no manifestation of bifurcations and thus no nonlinear energy transfer to the
lower frequency phonon modes. This means that in shorter “periodic” systems, even relatively weak
nonlinearities may become important. The bifurcations in our system occur at much lower drive
amplitudes than we had previously thought, and at amplitudes where the dynamics are still weakly
nonlinear and smooth. When the dynamics are weakly nonlinear the Hertzian potential can be
expressed as a polynomial expansion. Therefore, periodic materials with a coupling interaction that is
not strictly linear, but instead has an asymmetric or nonlinear content, may exhibit similar bifurcation
dynamics. This could lead to the failure of linear approximations in other finite length systems due to
weak nonlinearities.

Furthermore, we observe that at higher frequencies the bifurcations happen at higher amplitudes. This
could be explained in two ways. First, the linear on-site damping in a lattice results in an increased
effective damping of the higher frequency phonon modes (see for example Ch. 6 of Ref. [1]). This is
evident in our experiments for example by Fig 1.b, where one can see that close to the band edge, the
linear response flattens out into a low pass filter and there are no longer distinct resonances. As a result,
bifurcations at higher drive frequencies, which are due to the excitation of a pair of high frequency
phonon modes are more difficult to appear. Second, this can also be interpreted as a consequence of
the evanescent wave breaking down®®. The further the excitation frequency is above the band edge, the
more the evanescent wave corresponding to this frequency is localized. The evanescent wave does not
penetrate as deeply into the lattice at higher frequencies and the interaction between the evanescent
wave and the extended modes of the crystal become increasingly smaller. This interaction becomes
smaller as the chain length increases (longer extended modes) and as the dissipation increases (weaker
evanescent waves in amplitude). Correspondingly, the bifurcation instabilities occur at larger
amplitudes.



—_
Q
~—

1.5 1.5 -
=) ‘e ‘. eN=5 R S * *Q=20
(o p o .. (o b ) .
~ ~ I eN=15 - S .. eQ=27
~— -I p . L ) e . o: ' . .N:25 ~— -I : . o 0 .Q:’IS
o 2 .": ., * -.: ‘. :: O o M S o ., ¢ . o.
€ [Kruinig i S v. R A
= TR ENY\. v\ N BT R R P T
G 0-op/ ™ NV GOSKJM 2 L w e
£ ' e A s e e TSR T T
S, S, LS PR

2 2.5 3 3.5 4 2 2.5 3 3.5 4

Freq (2= f/fo) F.req Q= f/fo)

FIG. 6 (color online) The interplay between finite size and dissipation. The points indicate a critical bifurcation
amplitude, calculated using numeric. In (a) we hold the dissipation of the system constant (Q=27) and vary the size
of the system. The individual tongues begin to overlap and the bifurcations begin to occur at higher amplitudes. In
(b) the finite size (N=15) is held constant and the dissipation is varied. For lower dissipations the bifurcation
tongues start at lower amplitude. All units shown are non-dimensional.

Conclusion — We have experimentally and computationally investigated the nonlinear resonance
phenomena and the resulting bifurcation instabilities in finite, monodisperse harmonically driven 1D
granular chains, taking into account losses. The nonlinear bifurcation tongues arise from the finite size of
the discrete system, and the tongues’ shapes depend on the type of nonlinear coupling in the lattice.
This dynamic response demonstrates how energy can be transferred from a single excitation signal to
other frequencies fundamental to a material lattice. The nonlinear interactions in granular chains
provide a completely passive mechanical mechanism to control the transmitted frequency spectrum.
The structural stability and nonlinear bifurcation dynamics of homogenous granular chains may be used
in multifunctional material design where previous solutions were limited to actively controlled
mechanical systems. The findings of this paper should be considered in the design of new devices
consisting of nonlinear finite lattices, for example, for amplitude dependent filtering applications or for
mechanical structures aiming at an enhanced frequency control of propagating waves.
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