
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Detecting radiation reaction at moderate laser intensities
Thomas Heinzl, Chris Harvey, Anton Ilderton, Mattias Marklund, Stepan S. Bulanov,

Sergey Rykovanov, Carl B. Schroeder, Eric Esarey, and Wim P. Leemans
Phys. Rev. E 91, 023207 — Published 18 February 2015

DOI: 10.1103/PhysRevE.91.023207

http://dx.doi.org/10.1103/PhysRevE.91.023207


Detecting radiation reaction at moderate laser intensities

Thomas Heinzl,1, ∗ Chris Harvey,2 Anton Ilderton,3 Mattias Marklund,3, 4 Stepan S.
Bulanov,5 Sergey Rykovanov,6 Carl B. Schroeder,6 Eric Esarey,6 and Wim P. Leemans6

1School of Computing and Mathematics, Plymouth University, Plymouth PL4 8AA, UK
2Centre for Plasma Physics, Queen’s University Belfast, BT7 1NN, UK

3Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
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We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser
pulses of moderate intensity and long duration. The effect becomes sizeable for particles that gain almost
no energy through the interaction with the laser pulse. Hence, there are regions of parameter space in which
radiation reaction is actually the dominant influence on charged particle motion.

I. INTRODUCTION

In a conceptually simple experiment [1] it was shown that
electron motion in a sufficiently intense laser becomes rela-
tivistic. In that experiment, a laser pulse was used to ionise
a target gas, liberating electrons. After the electrons left the
pulse, their energies and ejection angle were measured. Dif-
ferent values for these variables are predicted by relativistic
and non-relativistic equations of motion; the experiment sup-
ported the relativistic prediction. (The phrase ‘mass shift’
in [1] refers to the ‘relativistic mass’ mγ; the experiment was
not concerned with, and did not observe, the intensity depen-
dent mass shift, for which see [2].)

In this paper we propose a similar experiment to measure
classical radiation reaction (RR). The problem of RR on the
dynamics of charged particles in electromagnetic (EM) fields
is long standing, and has attracted a great deal of attention
for more than a century (see [3, 4] for recent overviews). It
is relevant for charged particle acceleration in terrestrial lab-
oratories and in ultra-high energy cosmic rays. The interac-
tion of charged particles with laser radiation provides spe-
cial conditions for studying not only the interaction itself, but
also RR effects. Present day PW-class laser facilities, such
as BELLA [5], are at the threshold of the interaction regime
dominated by RR effects, which are potentially able to com-
pletely change the nature of charged particle interactions with
EM fields [6, 7].

The idea of this paper is simple: an experiment very similar
to that in [1] is performed, and the properties of the emitted
electrons measured. These are then used to test the predic-
tions of the classical equations of motion with and without
RR. There is no need to measure the properties of the pro-
duced radiation. This is good news in view of the recent find-
ing (for a different interaction set-up) that RR effects are al-
most invisible in the radiation spectrum while they are more
than obvious in the electron distribution [8]. This difference in
size is consistent with the fact that RR effects are suppressed
in the photon spectrum (by a factor of the classical RR param-
eter, see below) relative to those in the electron spectrum [9].
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We argue that there exists, in the parameter space of interac-
tions between a particle and a moderately intense laser pulse, a
region in which the final state of the particle is determined al-
most entirely by RR effects. Moreover, in some special cases,
the difference between the results which account for RR and
those that neglect it, can serve as an unambiguous observable
of the presence of RR effects.
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FIG. 1. Sketch of the ejection geometry with the laser propagat-
ing in z direction. θ and ϕ are polar and azimuthal ejection angles,
respectively. u denotes the spatial part of the electron four-velocity.

II. REVIEW

Let the laser propagate along the z-axis (see Fig. 1). The
polar and azimuthal electron ejection angles, relative to this
axis, are θ ∈ [0, π], ϕ ∈ [0, 2π] respectively. They are deter-
mined by the following electron velocity ratios at large times,
i.e. after the pulse has passed (⊥= {x, y}),

tanϕ =
uy
ux

, tan θ =
|u⊥|
uz

. (1)

As usual (see e.g. the text [10]) the ui denote four-velocity
components and u⊥ = (u2x + u2y)1/2. In the original exper-
iment [1], the polar angle measurement was accompanied by
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a determination of the electron energy, i.e. its gamma factor,
γ = Ep/m, the ratio of electron energy, Ep, and mass, m
(in relativistic units, c = 1). The laser had a pulse duration
of 1 ps and a peak intensity of approximately 1018 W/cm2.
The experimental results were compared against the theoret-
ical analysis of [1] which assumed the laser to be a pulsed
plane wave. For propagation along the z-axis, the plane wave
depends solely on the invariant phase φ := k ·x, with light-
like laser four-momentum kµ = ω(1, 0, 0, 1) ≡ ωnµ, and ω
a typical value in the frequency spectrum of the pulse. For a
charge e, moving in a plane EM wave with four-velocity uµ =
(γ, ux, uy, uz), the light-front component n·u = γ − uz ≡ u−
is conserved [11–13], as is the transverse canonical momen-
tum [14]. This allows the remaining component u+ to be de-
termined by the mass-shell condition. In other words, the ex-
istence of three momentum conservation laws, together with
the mass-shell condition, means the dynamics is integrable.

Let the pulse extend over the phase interval φ1 ≤ φ ≤ φ2,
and let a free electron ‘appear’ in the pulse at phase φi, with
velocity ui, following ionisation (the mechanism for which
will be discussed below). The subsequent velocity of the
charge then assumes the compact form

uµ = uµi − a
µ + (ui ·a− a2/2)

nµ

n·u
, (2)

in which dimensionless aµ is the phase integral of the (tran-
verse) electric field Eµ ≡ (0,E⊥, 0),

aµ(φi;φ) =

∫ φ

φi

dϕ
eEµ(ϕ)

mω
. (3)

We refer to this as the potential [15]. Note that the integral
is taken from the phase value φi at ionisation onwards. We
will henceforth assume, as in [1], that the electron is at rest
immediately post-ionisation. This is a natural approximation
for ionisation by a linearly polarised EM wave [16]. Adopting
relativistic units (c = 1) we have uµi = (1, 0, 0, 0), whence
ui ·a = 0 and n ·u = 1. Plugging this into (2) yields the
velocity components appearing in (1),

u⊥ = −a⊥ , (4)

uz = −a2⊥/2 . (5)

The first identity states the conservation of canonical momen-
tum, rewritten in our condensed notation. It says that the trans-
verse motion is harmonic, following the field oscillations in
linear response at frequency ω, with a maximum excursion
per cycle given by a⊥λ, where λ = 2π/ω. The longitudi-
nal velocity, uz , however, is quadratic in the potential, hence
includes the first harmonic at frequency 2ω. This results in
the well known Lissajous figure-8 motion (in the average rest
frame, assuming linear polarisation).

Plugging (4) and (5 into (1) one finds that the polar emission
angle θ(φi;φ2), evaluated at the final phase φ = φ2 marking
the end of the pulse, obeys

tan θ (φi;φ2) =
2

|a⊥(φi;φ2)|
, (6)
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FIG. 2. Sketch of the field of a laser pulse. The horizontal dashed
line represents the ionisation threshold. Only the shaded region con-
tributes to the integral (3) determining the electron ejection angle.

provided that a(φi;φ2) 6= 0 and that this is correlated with the
final gamma factor by

tan2 θ (φi;φ2) =
2

γ(φi;φ2)− 1
, (7)

provided that final γ > 1, see below. This parametric rela-
tion was tested and confirmed in [1], for a variety of noble
gas targets with different ionisation thresholds giving differ-
ent ionisation times φi.

From (7), the ejection angle measures the energy transfer
to the electron in a plane wave. That this is non-zero does
not contradict the Lawson-Woodward theorem [17–19]. The
loophole is that the electrons do not see the whole pulse; they
are bound in atoms until the pulse amplitude exceeds the ion-
isation threshold, at which point, φi, they are injected into the
pulse, see Fig. 2. The energy transfer predicted in (7) and
confirmed in [1] is therefore an example of ionisation induced
sub-cycle acceleration [20, 21]. Note that an electron, expe-
riencing the passing of the whole pulse, would in total have
gained zero energy and momentum because a(φ1;φ2) = 0,
assuming the background has no DC-component [22]. As
a consequence, the tangent in (6) and (7) becomes infinite,
seemingly implying that free electrons experiencing the full
duration (φi → φ1) of a pulsed plane wave should be ejected
orthogonally to the beam. This is misleading though; in deriv-
ing (6) (and already in (1)) we have assumed the particle has
a nonzero velocity. While particles which come to rest after
leaving the pulse will be displaced from their original posi-
tions, they would not be detected by a distant detector, and so
will not be considered further here.

III. RADIATION REACTION

The Lorentz-Abraham-Dirac (LAD) equation [23–25] may
be compactly written as

mu̇µ =
e

c
Fµνuν + τ0mPµν üν , (8)

with the projection Pµν = gµν − uµuν guaranteeing u2 = 1.
Hence, the Lorentz force term containing the field strength
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Fµν is augmented by RR terms that are multiplied by the
purely classical time parameter (temporarily reinstating the
speed of light, c)

τ0 :=
2

3

re
c

=
2

3
α
λe
c

=
e2

6πmc3
' 2 fm/c , (9)

re denoting the classical electron radius, α = e2/4π~c '
1/137 the fine structure constant and λe the Compton wave-
length of the electron. A dimensionless parameter εrad char-
acterising RR may be obtained by taking the ratio of τ0 to the
typical time scale of the laser, 1/ω:

εrad := ωτ0 =
2

3

re
λ

=
2

3
α

~ω
mc2

, (10)

with λ the (reduced) laser wavelength. A precursor of this
parameter was already introduced by Lorentz [23] (see again
the useful overview article [3]), and Koga et al. emphasised
its importance in a discussion of RR corrections to nonlinear
Thomson scattering [27]. When εrad approaches unity one
reaches a regime where the RR force is of the same magnitude
as the Lorentz force, but as ~ω ' 200mc2 in this case, one
has simultaneously entered the quantum regime [28].

In this paper we will treat RR as a correction to the Lorentz
force effects, i.e. we will work to first order in εrad. With
this restriction one can replace the mü term in (9) by the time
derivative of the Lorentz force, an iteration that results in the
Landau-Lifshitz (LL) equation [10]. (See [29, 30] for recent
comparisons of LAD and LL equations, and [31] for higher
order corrections.) We can therefore appeal to the known
analytic solution of the Landau-Lifshitz equation in a plane
wave [32], and then truncate to order εrad. The O(εrad) ex-
pressions are not illuminating, so for simplicity we recall here
the exact solution, which may be written akin to the Lorentz
solution (2). Following [32], and abbreviating the derivative
with respect to phase φ by a′ ≡ eE/mω, cf. (3), we introduce
the auxiliary function

h(φi;φ) = 1− εrad

φ∫
φi

dϕa′2 . (11)

This parameterises the main dynamical effect of RR on a
particle in a plane wave, namely that u− ceases to be con-
served [12, 13]. Instead, one has

u−(φi;φ) = u−i /h(φi;φ) , (12)

which is monotonically decreasing. For a particle initially at
rest the solution of the Landau-Lifshitz equation assumes the
compact form

vµ := huµ = uµi −A
µ +

[
− 1

2A
2 + 1

2 (h2 − 1)
] nµ
n·u

, (13)

which replaces (2) by utilising the modified potential

Aµ :=

φ∫
φi

dϕ (ha′µ + εrada
′′µ) , (14)

where, again, primes denote derivatives with respect to
elapsed phase, φ. As required by consistency, A → a in the
absence of RR, i.e. when εrad → 0. The essential point of
this paper is simply that the predictions of (11)-(14) are quan-
titatively different from those of (2). For example, a particle
initially at rest which is struck by a plane wave can gain en-
ergy and momentum from the wave, as discussed in [13, 33].
It follows that an experiment like that in [1] can, in principle,
be used to detect RR effects.

It is convenient here to factorise the electric field into am-
plitude, shape and polarisation. We therefore define the di-
mensionless laser amplitude, a0, in terms of the peak value,
Epeak, of the laser electric field, as

a0 = eEpeak/mω , (15)

shape functions fi(φ) and transverse polarisation vectors εµi
obeying εi · εj = −δij . The field strength is then

eEµ/mω = a0 fi(φ) εµi = a′µ . (16)

With this, the RR correction function h defined in (11) can be
written in the form

h = 1 + εrad a
2
0 Fii , (17)

where we have defined the dimensionless integral

Fjj(φ) :=

φ∫
φi

dϕfj(ϕ)fj(ϕ) , (18)

(sum over j on the RHS) which is of order at most the pulse
duration in φ, i.e.

0 ≤ Fjj ≤ (φ2 − φ1) =: 2πN . (19)

Here, N denotes the number of cycles in the pulse, so we can
approximate Fjj ∼ O(N). The important parameter inferred
from (17) is therefore [34]

εrada
2
0N , (20)

which suggests that one can compensate for the smallness
of α and ω/m in (10) by using high intensity and/or long
pulses [35]. The regime dominated by purely classical RR
without quantum ‘contamination’ is defined by the inequality
εrad � εrada

2
0 ' 1.

To be explicit we again consider the ratio of transverse and
longitudinal velocities, cf. (1),

tan θRR :=
u⊥
uz

=
v⊥
vz

, v⊥ = (vjvj)
1/2 . (21)

The RR modifications of the velocity components (4) and (5)
are straightforwardly obtained from (13),

vj = −Aj , (22)

vz = −1

2
(A2 − h2 + 1) . (23)
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It is quite clear that these can be written as a sum of two con-
tributions, the solution of the pure Lorentz force equation plus
an RR correction,

v = vL + εradδv , vL ≡ uL . (24)

Inserting this decomposition into (21) one obtains

tan θRR =
vL,⊥ + εradδv⊥
vL,z + εradδvz

. (25)

Typically, one would expect the RR terms to represent a small
correction to the leading Lorentz contribution,

εradδv � vL = uL , (26)

and expand (25) in εrad,

tan θRR = tan θL

{
1 + εrad

(
δv⊥
vL,⊥

− δvz
vL,z

)}
, (27)

with tan θL := uL,⊥/uL,z . However, if one were able to iden-
tify a parameter regime where the leading contributions van-
ish, such that the RR terms would dominate, εradδv � vL, the
result for the ejection angle would be quite different,

tan θRR =
δv⊥
δvz

. (28)

Note in particular that this observable characterises the
strength of RR effects, but is independent of εrad.

To see whether the scenario with RR dominance can be re-
alised we have to evaluate the velocity v in terms of laser pa-
rameters and pulse shapes. It will be convenient to define a
pulse integral “seen” by the ionised electrons after ionisation
time, φi,

〈. . .〉i2 :=

∫ φ2

φi

dφ . . . . (29)

and the auxiliary integral functions generalising (18)

Fi1i2...in(φi, φ) :=

∫ φ

φi

dϕ fi1fi2 . . . fin . (30)

For linear polarisation, we just count the power of f in the
integrand,

Fn(φ) :=

∫ φ

φi

dϕ fn(ϕ) . (31)

Hence, F ′i1i2... = fi1fi2 . . . and F ′n = fn.
Plugging the parameterisation (16) into (13) and employ-

ing the new notation the velocity components (22) and (23)
decompose into the Lorentz contributions

vj = uj = −a0〈fj〉i2 , (32)

vz = uz = 1
2a

2
0〈f〉2i2 , (33)

and the RR terms

δvj = −a0{〈F ′j〉i2 + a20〈fjFii〉i2} , (34)

δvz = a20

{
〈fi〉i2〈F ′i 〉i2 + 〈f2〉i2 + a20〈fj〉i2〈fjFii〉i2

}
,

(35)

where we have abbreviated 〈f〉2i2 := 〈fi〉i2〈fi〉i2, summing
over repeated indices.

As expected, the right-hand sides in (34) and (35) involve
the laser amplitude a0, the RR parameter εrad and integrals
over up to three pulse shape functions fj . Of course, the δv’s
are parametrically small: if we send εrad → 0 (no RR at all)
we recover (6), which takes the form

tan θL(φi, φ2) =
2

a0〈f〉i2
. (36)

Assuming that the inequality (26) holds, so that (34) and (35)
are indeed small corrections to the Lorentz terms, we find that
(27) turns into

tan θRR

tan θL
− 1 = − εrad

〈f〉2i2

(
〈fi〉i2〈F ′i 〉i2 + 2〈f2〉i2

+a20〈fi〉i2〈fiFjj〉i2
)
, (37)

correct to order εrad. For large a0 � 1 the last term dominates
and we have the simple result

tan θRR

tan θL
− 1 = −εrada20〈fi〉i2〈fiFjj〉i2/〈f〉2i2 . (38)

The crucial question now is whether there is a regime with RR
dominance where the inequality (26) is violated. The simplest
realisation of this scenario is provided if the Lorentz terms
(32) and (33) were zero (or very nearly so). As these are en-
tirely determined by the pulse integral, 〈f〉i2, we need the lat-
ter to be zero:

〈f〉i2 = 0 . (39)

Due to the oscillatory nature of the EM field the solutions to
this equation are a set of φi distributed over the duration of the
laser pulse. In most cases, however, the initial phase interval
for which the inequality εradδv � uL is satisfied is negligi-
bly small. Only in the limit φi → φ1, i.e. when the pulse
integral extends over the total pulse duration, φ1 ≤ φ ≤ φ2,
does the interval become large. In the strict limit, the electrons
will need to be present just before the pulse arrives, hence will
need to be ionised by means different from the pulse itself (see
below). As a consequence, these electrons will ‘see’ the whole
pulse which integrates to zero. In the absence of RR they will
gain no energy from the interaction with the pulse, as dictated
by the Lawson-Woodward theorem. On the other hand, when
RR is taken into account, it will provide the leading contribu-
tion to the final energy of the electrons. This will remain true
even for φi > 0 as long as RR dominance holds, εradδv ≥ uL.
To analyse what is happening we note that the late-time inte-
gral from φi to φ2 is minus the early-time integral from φ1 to
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φi. This latter integral may be Taylor expanded,∫ φi

φ1

dφ f(φ) =:

∞∑
l=l0

φl+1
i f (l)(φ1) , (40)

which tells us that the short-time asymptotics of the Lorentz
terms (32) and (33) is basically determined by the first non-
vanishing derivative, f (l0), at the beginning φ1 of the pulse.
This suggest using pulses with a rather steep rise. The limiting
values (φi → φ1) for the velocity components from (34) and
(35) are obtained by setting 〈fj〉12 = 〈F ′j〉12 = 0,

δvj(φ1, φ2) = −εrada30〈fjFii〉12 , (41)

δvz(φ1, φ2) = εrada
2
0〈f2〉12 . (42)

Taking their ratio according to (28) results in the limit

tan θas(φ1, φ2) = a0
(〈fjFii〉12〈fjFkk〉12)

1/2

〈f2〉12
, (43)

where we have defined θas := θRR(φ1, φ2). For φi > φ1
there will be corrections to (43), which, in principle, can be
determined via the expansion (40). It is simpler, though, to
discuss a few examples numerically. This is the topic of the
next section.

IV. EXAMPLES

A. Pulses with compact support

We choose linear polarisation (f1 = f, f2 = 0) and a si-
nusoidal envelope of compact support [36, 37] and duration
2πN ,

f(φ) = sinK(φ/2N) sin(φ) , 0 ≤ φ ≤ 2πN . (44)

The integer N counts the number of cycles in the pulse, while
the integerK determines the shape of the envelope. Typically,
one chooses K to be even and not too large (K = 2 or K =
4). Note that the pulse rises like φK+1 at its front (φ� 1), so
the first nonvanishing derivative will be f (K+1)(0), cf. (40),
so that

〈f〉i2 ∼ φK+2
i . (45)

Before we enter a detailed numerical discussion let us try to
get an idea of what is going on by considering the asymptotic
ejection angle θ(φ1, φ2). For linear polarisation, (43) imme-
diately simplifies to

tan θas = a0
〈fF2〉12
〈f2〉12

= −a0
〈f2F1〉12
〈f2〉12

. (46)

We are interested in the dependence of this angle on pulse du-
ration, N keeping K fixed. The result for K = 2 is shown
in Fig. 3, from which one can identify two regimes, small N
and large N , i.e. short and long pulse duration, respectively.
The behaviour of the graph is basically determined from the

FIG. 3. tan θas from (46) as a function of pulse duration N for
K = 2 and a0 = 2. [Note that in the absence of RR this tangent
would be infinite for any N as the asymptotic emission angle is π/2
in this case, cf. Fig. 11 below.]

numerator 〈fF2〉12 in (46) via Fourier analysis. Defining a
rescaled phase α := φ/2N , the Fourier spectrum of the pulse
(44), viewed as a function of α, contains two distinct types of
modes: there are modes of order n ∼ K from the envelope,
and modes of order N corresponding to the laser carrier fre-
quency, φ = 2Nα. For small N ∼ K, the modes of envelope
and carrier wave interact, resulting in the oscillations at small
N in Fig. 3. For long pulses, N � K, this cannot happen (N
and K modes are orthogonal), which yields the tail behaviour
of the graph. The latter can be determined analytically by
evaluating (46) for the envelope (44), which results in

tan θas =
a0

2(N2 − 1)
, (N > 3) . (47)

For K = 4 the situation is quite similar, with the tail be-
haviour given by

tan θas = − 3a0
2(N2 − 4)(N2 − 1)

, (N > 6) . (48)

Thus, for largeN (long pulses), the asymptotic emission angle
goes to zero like a negative integer power of N as can be seen
from Fig. 4, for a0 = 5 and a0 = 50, roughly corresponding
to laser powers of 100 TW and 1 PW, respectively. In what
follows we will focus on long pulses first.

To be specific, we choose the parameters of [38]: a0 = 10,
N = 1600 and K = 2, respectively corresponding to an in-
tensity of ∼ 1020 W/cm2, a total pulse duration of ∼ 4 ps at
optical frequency ω ∼ 1 eV, and a sin2 envelope. The results
are shown in Fig. 5; for linear polarisation, the problem is pla-
nar and therefore we plot the angle θxz = arctan (ux/uz)
from the positive (θxz = π/2) to negative (−π/2) x-axis. In
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FIG. 4. Emission angle θRR as a function of pulse duration N for
K = 2 and a0 = 5 (red/solid) and a0 = 50 (blue/dashed).

the Lorentz case, for small φi, the emission direction is al-
most transverse to the laser, with a small uz component, so
θxz ∼ ±π/2, with the jumps corresponding to the transverse
velocity ux changing sign while uz stays small and positive.
(This is the reason for plotting θxz instead of θ; it allows us to
keep track of these sign changes.) For injection times within
the first few cycles of the pulse, RR can give a change in angle
as large as 90◦. The difference between the Lorentz and RR
prediction increases with decreasing injection time, so that
RR effects are most significant for electrons released in the
earliest part of the pulse.

0 2 Π 4 Π 6 Π 8 Π 10 Π 12 Π 14 Π
-

Π

2

-
Π

4

0

Π

4

Π

2

0

3
105

Φi

Θ
xz

Γ
L

or
en

tz
-

1

FIG. 5. Left scale: planar angle θxz for N = 1600, a0 = 10,
sin2 envelope, as a function of ionisation time φi, for Lorentz
(blue/dotted) and RR (red/solid). Right: final Lorentz force gamma
for the emitted particles (black/dashed).

Fig. 5 shows that the difference in emission angle is most
significant for those particles which exit the pulse with the
least energy; for the φi in Fig. 5, we find that the final gamma
factor with RR differs from unity by one part in O(105), and
differs from the Lorentz force gamma by one part in O(107).
Therefore, a clean environment would be desirable in order to
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FIG. 6. Left: Planar angle θxz , for N = 4 cycles of an a0 = 50
pulse with sin4 envelope. Right: final transverse velocity, as a func-
tion of φi. The sign flip in the transverse component, for φi . π/4,
is responsible for the large change in emission angle. Blue/dashed:
Lorentz case; Red/solid: RR.

avoid the deflection of these electrons before being detected.
The larger the difference in emission angle, the more eas-

ily observed would be the effect of RR. The extreme case is
naturally that in which the angle is rotated by 180◦, i.e. the
emission direction is reversed. For long pulses, though, such
a drastic reversal is absent: In Fig. 5, for a pulse of N = 1600
cycles, the transverse Lorentz and RR velocities change sign
(hence reversal of emission) at the same phases.

For short pulses, however, RR effects can indeed cause
emission reversal with respect to the pure Lorentz case. In
this case the angle θxz ' π/2 of the Lorentz case changes to
θxz ' −π/2 in the RR case; in other words, a particle which
would emerge travelling slowly in the positive x-direction ac-
cording to Lorentz, should emerge travelling slowly in the
negative x-direction according to RR, a 180◦ change in di-
rection. To provide a concrete example, we take a short pulse
with laser parameters N = 4, K = 4 and a0 = 50. Given
the discussion above, this example should not be expected to
match a realistic short, focussed pulse, but it is nevertheless
interesting to look at the physics involved.

The emission angle θxz is plotted in the left panel of Fig. 6.
For electrons released early in the first cycle, we see the al-
most 180◦ change in emission direction due to RR. This is
because, for φi . π/4, RR causes a sign flip in the transverse
velocity ux (while uz has the same sign with or without RR)
see the second panel of Fig. 6. Note in particular that the RR
contribution to the velocity components clearly dominates the
Lorentz force contribution, which is very small compared to
its RR counterpart: expanding the ratio of transverse compo-
nents (with and without RR) for small initial angle φi, we find
for the pulse (44)

|ux(Lorentz)/ux(RR)| ∼ φ6i , φi � 1 . (49)

Thus, for an initial phase of, say, φi = 0.1, the RR value for
ux will exceed the Lorentz value by six orders of magnitude.
A qualitative sketch of the situation, showing the reversal of
emission direction, is provided in Fig. 7.
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FIG. 7. Qualitative sketch (not to scale) of the reversal in ejection
direction due to RR (red, subscript RR) as compared to the Lorentz
case (blue, subscript L).

The behaviour of RR dominance displayed in Fig. 6 and
Fig. 7 represents a dramatic deviation from the Lorentz force.
It occurs for electrons created very early in the pulse, i.e. when
ionisation takes place at φi near zero. (The realisation of such
an early ionisation will be discussed further below.)

B. Pulses with exponential envelope

In order to study the influence of the pulse shape we want
to consider another example of an analytically tractable pulse
[39], namely

f(φ) = exp(−|φ|/N) sinφ , −∞ < φ <∞ . (50)

The exponential envelope is not differentiable at φ = 0, but as
the sine is vanishing there, the pulse remains smooth. Again,
we first consider the asymptotic RR emission angle, θas, i.e.
θRR evaluated for φi → −∞. The analytic result for the pulse
(50) is

tan θas =
16a0

3

N2

(N2 + 9)(N2 + 1)
, (51)

which goes like 1/N2 for large N .
In Fig. 8 we plot (51) as a function of pulse duration, N ,

for moderate and large intensity (a0 = 5 and a0 = 50, respec-
tively). Comparing with Fig. 4, one again finds a maximum
for small N ' 3, though no oscillations, and a power-law tail
for large N . So, as with the pulse (44), one might expect the
small-N and large-N behaviour to be qualitatively different.
Numerically, this expectation turns out not to be true. The
shape of θ as a function of ionisation phase seems to be rather
independent of bothN and a0. For larger intensities, however,
the maximum at small N increases towards π/2.

We next discuss the dependence of the emission angle on
ionisation phase, φi, beginning with a short pulse (N = 4) of
moderate intensity (a0 = 5). In Fig. 9 we display the associ-
ated emission angles θL and θRR. While the former oscillates
between −π/2 and π/2 as in Fig. 5, RR forces the emission

0 5 10 15 20 25 30
N

Π

8

Π

4

3 Π

8

Π

2

Θ

FIG. 8. θas from (51) as a function of pulse durationN for the pulse
(50). Upper curve: a0 = 50, lower curve: a0 = 5.

angle to approach these oscillations smoothly with increasing
φi, starting from a nonvanishing asymptotic value θas given
by (46). For N = 4 the asymptotic emission angle becomes

θas = arctan(256/255) ' π/4 , (52)

as can be checked against Fig. 9, top panel. A rather similar
behaviour is found for a long intense pulse with N = 40 and
a0 = 50. In this case, however, it takes many cycles for the
oscillatory RR behaviour to approach the curve with RR ab-
sent, see Fig. 9, bottom panel. The asymptotic emission angle
for N = 40 is θas = 0.164, which agrees with the value in the
figure.

V. DISCUSSION

In the above we have identified observables where the to-
tal effects due to the Lorentz force cancel and only RR effects
remain, an effect one may call RR dominance. This is not in
contradiction to the assumption that RR effects are small: for
the parameters in this paper one has R . 10−3, and it is eas-
ily verified that RR contributions to the velocity components
are subleading at each instant in time (‘local’ effects). How-
ever, RR dominance arises as an accumulative (‘nonlocal’)
phenomenon: when integrating over only a part of the pulse,
it is still possible for energy gains/losses due to the Lorentz
force to vanish, while energy gains/losses due to RR do not.

It remains to discuss the question of ionisation early into the
pulse. For the pulse (44) with the given parameters, the prob-
ability of optical ionisation at small φi is well into the multi-
photon regime and therefore negligibly small. Thus the injec-
tion of electrons must be achieved by some external source.
We choose here to introduce a short, co-propagating X-ray
pulse, that will ionise hydrogen at a specific φi. For multipho-
ton ionisation by an X-ray pulse it is plausible to expect that
the momentum distribution will be extremely narrow with the
maximum at zero momentum, so we can neglect this distribu-
tion and consider electrons born at rest. Moreover the effects
of the X-ray pulse field on the ejection angle are negligible.
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FIG. 9. θL (blue/dashed) and θRR (red/solid) as functions of ionisa-
tion phase φi for the pulse (50) with (top panel) N = 4, a0 = 5 and
(bottom panel) N = 40 and a0 = 50.

We took a 30 fs X-ray pulse with ω ∼ 50 eV and intensity
1.2 × 1015 W/cm2. Such parameters were chosen to ensure
total ionisation of hydrogen gas and its subsequent injection
during the phase interval φi ∈ [5π, 15π]. For these phase val-
ues one is well in the region of RR dominance so that there
are significant differences between Lorentz and RR predic-
tions. To illustrate the situation we define an ionisation rate
dn := n′(φi)/n0 = w exp(−wφi) where the prime denotes
a derivative with respect to the argument, n0 the initial gas
density and w = Γ/ω the one-photon ionisation rate Γ [40] in
units of the laser frequency, ω. (Note thatw is dimensionless.)

The associated ionisation rate dn and the ejection angle θxz
are shown in Fig. 10 as a function of initial phase, φi.

Inspired by the successful experiment [1], and using the
same plane wave model, we have identified a parameter
regime in which RR effects are leading rather than sublead-
ing. We are aware, though, that numerical methods will be
essential for extending the above to more refined models [41–

FIG. 10. Horizontal plane: Planar ejection angle θxz for N =
1600, a0 = 10, sin2 envelope, as a function of ionisation time φi,
for Lorentz (blue/rectangular) and RR (magenta/rounded). Note the
difference in ejection angle between pure Lorentz and RR scenarios.
Vertical direction: Ionisation rate dn as defined in the main text.

FIG. 11. Numerical result for the correlation between final emis-
sion angle and gamma, for a0 = 200, sin4 envelope. Blue/top curve:
Lorentz force, see [1]. Red: RR result. The black/dashed line corre-
sponds to (7).

45]. As a preparation for this, we have performed numerical
simulations using the code PATRA [46]. For a given charged
particle, the code solves the Landau-Lifshitz equation using a
fourth order Runge-Kutta method. To mimic ionisation, each
particle is assigned a certain unique value of the electric field
amplitude, below which the particle is immobile. When the
field exceeds this amplitude, the particle is ‘injected’ into the
simulations (with zero velocity) and begins to move under the
influence of the EM field. The code reproduces the first panel
plot of Fig. 6 extremely well; the respective curves are on top
of each other. In Fig. 11 we plot, using the code, the paramet-
ric relations between final gamma and emission angle. The
blue (top) curve is the Lorentz result, as in (7) and [1]. The
red curve shows the RR result, with the difference being great-
est for smallest final gamma.

Since the RR signals studied here are most pronounced for
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electrons leaving the pulse with low energies, the impact of
residual Coulomb interactions between electrons should also
be included in future, more comprehensive, simulations.

As for experimental realisation of the proposed scheme,
external guiding structures and high-order modes for laser
pulses [5, 44] can be used to counter diffraction of laser radia-
tion and prevent ponderomotive scattering, ensuring the inter-
action of electrons with only the high intensity part of the laser
pulse. Quite generally, the plane wave model should work as
long as the maximal transverse excursion of the electron re-
mains significantly smaller than the beam waist, λa0 � w0.
This could be realised by ensuring on-axis injection to suffi-
cient accuracy and by using wide flat-top beams. In this way,
the injected electrons would not “see” large field gradients.

VI. CONCLUSIONS

We have described a simple experiment which can be used
to observe the effects of classical radiation reaction, without
going to ultra-high intensities. The proposed experiment fol-
lows that in [1]. A target is ionised by a laser pulse, and
the momentum components of the released electrons are mea-
sured, after they leave the laser pulse. (It is not necessary to
measure the radiation emitted by these electrons.) The data
collected can be used to distinguish between equations of mo-
tion which include or neglect radiation reaction, as they pre-

dict different final electron momenta in the experiment. One
experimental signal of radiation reaction is the appearance
of low energy electrons scattered at angles forbidden by the
Lorentz force equation.

Importantly, we have shown that it is possible for the final
state of the scattered electrons to be dominated by recoil ef-
fects, which results in particularly clear signatures of radiation
reaction. One such signal would be the reversal of emission
direction discussed above, but arranging for this to be visible
in a realistic experiment will require considerable fine tuning.
The ‘generic’ signal, namely that the electron emission an-
gle changes due to radiation reaction, is however robust. For
long pulses at moderate intensity, for which the transverse fo-
cussing is not too tight, the plane wave model should give a
reasonably accurate first approximation.

ACKNOWLEDGMENTS

The authors are supported by EPSRC, grant EP/I029206/1-
YOTTA (C. H.), the European Research Council, contract
204059-QPQV (A.I. and M.M.), the Swedish Research Coun-
cil contract 2011-4221 (A.I.), the National Science Founda-
tion under grant PHY-0935197, and the Office of Science of
the U.S. Department of Energy under contracts DE-AC02-
05CH11231 and DE-FG02-12ER41798.

[1] D. D. Meyerhofer et al., J. Opt. Soc. Am. B 13 (1996) 113;
C. I. Moore, J. P. Knauer and D. D. Meyerhofer, Phys. Rev.
Lett. 74 (1995) 2439.

[2] C. Harvey, T. Heinzl, A. Ilderton and M. Marklund, Phys. Rev.
Lett. 109 (2012) 100402.

[3] K.T. McDonald, arXiv:physics/0003062 [physics.class-ph].
[4] A. Di Piazza, C. Muller, K. Z. Hatsagortsyan and C. H. Keitel,

Rev. Mod. Phys. 84 (2012) 1177.
[5] W. P. Leemans, R. Duarte, E. Esarey, S. Fournier, C. G. R. Ged-

des, D. Lockhart, C. B. Schroeder, C. Toth, J. L. Vay, and S.
Zimmermann, AIP Conf. Proc. 1299, 3 (2010).

[6] M. Tamburini, C. H. Keitel, A. Di Piazza, arXiv:1306.3328
[physics.plasma-ph].

[7] A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton,
A. Kim, M. Marklund and G. Mourou et al., Phys. Rev. Lett.
113 (2014) 014801 [arXiv:1306.5734 [physics.plasm-ph]].

[8] A. G. R. Thomas, C. P. Ridgers, S. S. Bulanov, B. J. Griffin, and
S. P. D. Mangles, Phys. Rev. X 2, 041004 (2012).

[9] A. Ilderton and G. Torgrimsson, Phys. Lett. B 725 (2013) 481.
[10] L. D. Landau and E. M. Lifshitz, The Classical Theory of

Fields (Course of Theoretical Physics, Vol. 2), Butterworth-
Heinemann, Oxford, 1987.

[11] E.M. McMillan, Phys. Rev. 79, 498 (1950).
[12] A. L. Troha, J. R. Van Meter, E. C. Landahl, R. M. Alvis,

Z. A. Unterberg, K. Li, N. C. Luhmann Jr., A. K. Kerman,
F. V. Hartemann, Phys. Rev. E 60, 926 (1999).

[13] C. Harvey, T. Heinzl and M. Marklund, Phys. Rev. D 84,
116005 (2011).

[14] H.M. Lai, Phys. Fluids 23, 2373 (1980).

[15] This is a natural notation since we are looking at the integral of
the electric field, but no gauge potential is needed or used.

[16] V. S. Popov, Physics Uspekhi, 47, 855 (2004).
[17] P. Woodward, J. IEE 93, 1554 (1946), part IIIA.
[18] P. Woodward and J. Lawson, J. IEE 95, 363 (1948) part III.
[19] R. Palmer, SLAC-PUB-4320 (1987).
[20] R.H. Pantell and M.A. Piestrup, Appl. Phys. Lett. 32, 781

(1978).
[21] T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears,

J. E. Spencer and R. H. Siemann, Phys. Rev. Lett. 95, 134801
(2005).

[22] V. Dinu, T. Heinzl and A. Ilderton, Phys. Rev. D 86 (2012)
085037.

[23] H.A. Lorentz, The Theory of Electrons, B.G. Teubner, Leipzig,
1906; reprinted by Dover Publications, New York, 1952 and
Cosimo, New York, 2007.

[24] M. Abraham, Theorie der Elektrizität, Teubner, Leipzig, 1905.
[25] P.A.M. Dirac, Proc. Roy. Soc. A 167, 148-169 (1938).
[26] K.T. McDonald, arXiv:physics/0003062v1 [physics.class-ph].
[27] J. Koga, T. Esirkepov and S.V. Bulanov, Phys. Plasma 12,

093106 (2005).
[28] S. V. Bulanov et al., Nuclear Instruments and Methods in

Physics Research A 660 31 (2011).
[29] S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. K. Koga, and S.

S. Bulanov, Phys. Rev. E 84, 056605 (2011).
[30] A. Ilderton and G. Torgrimsson, Phys. Rev. D 88 (2013) 025021

[arXiv:1304.6842 [hep-th]].
[31] Y. Kravets, A. Noble and D. Jaroszynski, Phys. Rev. E 88,

011201(R) (2013).
[32] A. Di Piazza, Lett. Math. Phys. 83, 305 (2008).



10

[33] G. Lehmann, and K. H. Spatschek, Phys. Rev. E 84 (2011)
046409.

[34] A. Di Piazza, K. Z. Hatsagortsyan and C. H. Keitel, Phys. Rev.
Lett. 102, 254802 (2009).

[35] One could also utilise large initial gamma factors, γi � 1, but
this would take us out of the classical regime. This is not the
scenario we are pursuing, so we do not discuss this case further.

[36] J. N. Bardsley, B. M. Penetrante and M. H. Mittleman, Phys.
Rev. A 40, 3823 (1989).

[37] F. Mackenroth, A. Di Piazza and C. H. Keitel, Phys. Rev. Lett.
105 (2010) 063903.

[38] N. Neitz, A. Di Piazza, Phys. Rev. Lett. 111, 054802 (2013).
[39] T. W. B. Kibble, Phys. Rev. 138, B740 (1965).
[40] V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quan-

tum Electrodynamics (Course of Theoretical Physics, Vol. 4),

Pergamon Press, Oxford, 1982.
[41] N. B. Narozhny, and M. S. Fofanov, JETP 90, 753 (2000).
[42] S. S. Bulanov, N. B. Narozhny, V. D. Mur and V. S. Popov,

Phys. Lett. A 330 (2004) 1.
[43] I. Gonoskov, A. Aiello, S. Heugel, and G. Leuchs, Phys. Rev. A

86, 053836 (2012).
[44] E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys.

81, 1229 (2009).
[45] A. N. Pfeiffer, C. Cirelli, M. Smolarski and U. Keller,

Chem. Phys. 414 (2013) 84.
[46] PATRA code: contact S. Rykovanov, Helmholtz Institute Jena,

S.Rykovanov@gsi.de.

mailto:S.Rykovanov@gsi.de

	Detecting radiation reaction at moderate laser intensities
	Abstract
	Introduction
	Review
	Radiation Reaction
	Examples
	Pulses with compact support
	Pulses with exponential envelope

	Discussion
	Conclusions
	Acknowledgments
	References


