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The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used
to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic
(MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX),
drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device
(LAPD) and fully-developed turbulent magnetic fluctuations of the solar wind taken from the Wind

spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for
comparison among the different plasma environments and other fluctuation models. The solar wind
is found to have the highest permutation entropy and lowest statistical complexity of the three data
sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting
these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations
having slightly less complexity than the LAPD edge Isat. The CH plane coordinates are compared to
the shape and distribution of a spectral decomposition of the waveforms. These results suggest that
fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that
other plasma systems considered to be turbulent have less permutation entropy and more statistical
complexity. This paper presents the first use of this statistical analysis tool on solar wind plasma,
as well as on an MHD turbulent experimental plasma.

I. Introduction

Since Bandt and Pompe introduced their probability
distribution based on ordinal patterns in arbitrary time
series in 2002 [1], their methodology has found a wide
variety of applications, from tracking the effects of anes-
thetic drugs on the brain [2–4] to informing economic
policy [5–7] to various other areas [8–12]. In 2007, Rosso
et al used the ordinal pattern distribution of Bandt and
Pompe to construct the complexity-entropy plane, or
“CH plane” whose horizontal coordinates are the com-
puted values of the permutation entropy and whose verti-
cal coordinates are the statistical complexity. This plane
provides a graphical framework on which to compare time
series from periodic, chaotic, and stochastic systems [13].
The CH plane has been used to determine the statistical
character of fluctuations in several plasma systems, in-
cluding magnetic flux ropes [14] and electron heat trans-
port [15]. However this approach has yet to be extended
to the study of dynamical MHD turbulence, either in the
solar wind or in laboratory MHD plasma. The purpose
of this paper is to provide the CH plane coordinates for
these turbulent systems and compare to previous results,
as well as to further the interpretation of this analysis
tool for the study of turbulent plasma systems.

We compute the values of the permutation entropy
and Jenson-Shannon statistical complexity for time se-
ries from three different turbulent plasmas, each with po-
tentially different dominant physical mechanisms. First,
we examine magnetic fluctuations in a spheromak of hy-
drogen plasma in the wind-tunnel configuration of the
Swarthmore Spheromak Experiment (SSX). Then we an-
alyze the density fluctuations on the edge of a helium

plasma generated by a barium-oxide cathode source in
the Large Plasma Device (LAPD). Finally, we compare
both laboratory measurements to satellite measurements
of the fluctuating magnetic field in the solar wind. The
computed values of the permutation entropy and Jenson-
Shannon complexity are then used as horizontal and ver-
tical coordinates (respectively) on the CH plane, for com-
parison both across plasma systems and with well-known
chaotic and stochastic models. The magnetic fluctuations
in the solar wind are found to have the highest level of
permutation entropy and lowest complexity, occupying a
position on the lower right region of the CH plane nearest
that of a purely random signal, which has zero complex-
ity and maximal entropy. This result suggests that fully-
developed turbulence, as the solar wind is thought to
represent, can be identified by its proximity to maximal
stochasticity on the CH plane. The LAPD edge fluctu-
ations have the highest level of complexity of the three
measured data sets and occupies a middle region in terms
of the permutation entropy. Previous work has shown
that the LAPD drift-wave turbulence may be dominated
by non-linear interactions of relatively small numbers of
modes, and thus tend to exhibit more chaotic, complex
behavior [16]; thus, its coordinates occupy a position clos-
est to known chaotic maps. Finally, the SSX fluctuations
exhibit a level of complexity in between the other two
plasmas. This suggests that the SSX plasma has more
degrees of freedom in its fluctuations than the LAPD
drift-wave plasma, but does not exhibit fully-developed
turbulence, possibly because it is constrained by the lab-
oratory boundaries. The permutation entropy of the SSX
magnetic fluctuations is relatively high or low depending
on whether fluctuations in dB/dt (Ḃ(t)) or temporally
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integrated B-field fluctuations (B(t)) are analyzed. This
difference suggests that the level of entropy of a time se-
ries may be related to the rate of decrease in power as
frequency increases.

It should be emphasized that, at this stage, the goal
of this comparative study is to highlight the variations in
outcomes using this particular analysis tool rather than
attempting to unravel differences in the physical mech-
anisms underlying each dataset. In a sense, the work
presented here was designed to be as physics-blind as
possible. However, through study of how various mecha-
nisms manifest in the complexity-entropy plane, a com-
prehensive physical understanding of each system can be
pursued.

A description of how each dataset was generated is
provided. The MHD wind tunnel configuration of the
Swarthmore Spheromak Experiment (SSX) consists of
a plasma gun which injects a spheromak of magnetized
plasma into an ∼ 1 meter long cylindrical copper flux
conserver [17]. Probes embedded in the chamber collect

data on turbulent fluctuations in Ḃ as the plasma evolves
down the length of the tube, eventually relaxing into a
Taylor state [17–20]. After injection the plasma is com-
pletely dynamical, as there is no guide or vacuum field in
the body of the chamber. The Ḃ fluctuation signals for
SSX were recorded by a 16-channel, 3-direction, single-
loop pickup coil probe array embedded in the midplane
of the cylindrical wind tunnel, with a 65 MHz sampling
rate and 14 bit dynamic range. By varying the amount
of magnetic flux through the core of the gun, referred
to here as “stuffing flux”, the magnetic helicity of the
injected plasma can be finely controlled [19]. Magnetic
helicity corresponds to the degree of twistedness in the
magnetic field, so varying injected helicity affects the re-
sulting turbulent dynamics of the plasma as it evolves
towards a relaxed Taylor state.

While SSX primarily exhibits magnetic turbulence,
many other plasma laboratories exhibit turbulent fluc-
tuations of their density and temperature, typically gen-
erated by free energy in the gradients of these quantities.
This form of turbulence is often referred to as pressure-
gradient-driven, drift-wave or transport turbulence and
is an important topic in fusion confinement studies [21].
Drift-wave turbulence can be studied in detail on the
Large Plasma Device (LAPD) at UCLA [25]. LAPD gen-
erates a 17 m long, ∼60 cm diameter cylindrical plasma
with a barium-oxide coated nickel cathode. In the data
reported here, a plasma of density ∼2 × 1012 cm−3 and
peak temperature of 8 eV is produced in a uniform
solenoidal magnetic field of 1000 G. Measurements of ion
saturation current (Isat ∝ ne

√
Te) are taken with a 9-tip

Langmuir probe (flush-mount tantalum tips) inserted ra-
dially into the edge of the cylindrical plasma produced
by the source, a region where the turbulent fluctuations
tend to be strongest. Signals were sampled at 1.5 MHz
from a radial location of 26 cm [26]. The fluctuations in
the edge are shown to be dominated by drift-wave modes

due to the pressure gradient that develops between the
plasma core and the chamber wall [27]. Since there is a
strong background field in the LAPD, the magnetic fluc-
tuations are not significant; thus fluctuations in the ion
saturation current are used for this study.

Finally, we compare the laboratory plasma measure-
ments of magnetic and drift-wave turbulence to obser-
vations from the Wind spacecraft of the turbulent so-
lar wind. The Wind spacecraft provides high-cadence
magnetic field observations of the solar wind using the
MFI [22] from the L1 Lagrangian point between the
Earth and the Sun. Measurements are made 11 times
per second using a flux gate magnetometer and then av-
eraged to 3 s to remove the spacecraft spin signal from
the data. Flux gate measurements provide a DC mag-
netic field observation by measuring the bias required for
no current to flow in a coil of wire subject to a chang-
ing magnetic field. Thus the observations are equiva-
lent to B(t) observations made in SSX, rather than Ḃ.
The solar wind is highly variable but there are two broad
types: fast wind (V > 600 km/s) which is emitted from
open coronal field lines and is typically low density (< 5
protons/cm3), has few large scale structures and has high
amplitude but less developed turbulence, and slow wind,
(V < 500km/s) which is typically found in the ecliptic
plane and originates from more complex coronal mag-
netic topology and is denser and more structured than
the fast wind with more evolved but lower amplitude
turbulence [23, 24]. Here we use multi-day long inter-
vals of a fast wind stream (Jan 14 - Jan 21 2008) and a
slow wind stream (Jan 24 - Jan 29 2010) with large scale
magnetic fluctuations on the order of 10 nT.

II. Permutation Entropy and the CH Plane

Bandt-Pompe permutation entropy and Jensen-
Shannon statistical complexity are statistical metrics
which measure two distinct properties of a dataset. Per-
mutation entropy represents the randomness inherent in
a process as displayed by discrete measurements of a pa-
rameter of the system. The greater the tendency of the
system to repeat just a few fluctuation patterns in the
measured signal (i.e. the more predictable it is), the lower
its permutation entropy. Conversely, the more a system
tends to exhibit all possible fluctuation patterns in the
measurements (i.e. the more unpredictable it is), the
higher the permutation entropy. On the other hand, for
a given entropy, the Jensen-Shannon statistical complex-
ity measures the degree to which there exist privileged
fluctuations among those accessible to the system. By
calculating both quantities for a given time series, valu-
able information can be gained simultaneously about the
randomness of fluctuations in the system and the degree
of correlational structure in these fluctuations.

The permutation entropy of an arbitrary time series is
defined in terms of a window length called the embed-
ding dimension n. The embedding dimension determines
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the size of patterns investigated in calculating the en-
tropy and complexity of the series. The instances of each
ordinal patterns of that size are counted in order to asso-
ciate an ordinal pattern probability distribution with the
time series, from which the calculation of entropy and
complexity is straightforward.

For embedding dimension n, the probability distribu-
tion introduced by Bandt and Pompe consists of the
frequencies of occurrence of all possible length n ordi-
nal patterns in segments of n consecutive terms from
an arbitrary time series [1]. In their methodology, a
length n ordinal pattern is defined for a segment s =
(xt, xt+1, . . . , xt+(n−1)) of the time series as the permu-
tation π of the index set {0, 1, . . . , n − 1} correspond-
ing to the ranking of the xi in ascending order, namely
xπt

< xπt+1 < . . . < xπt+(n−1)
. In order to guarantee a

unique result, if xi = xj where i < j, then in the ranking
xi < xj . For example, if x0 = 5, x1 = −2, and x2 = 0.33
are three consecutive terms in the time series, then since
x1 < x2 < x0, the ordinal pattern for this segment is the
permutation π = (1, 2, 0). Given a time series of length
L, the corresponding ordinal pattern probability distri-
bution P = {p(π)} is defined in terms of all L − n + 1
length n segments s in the series and all n! permutations
π of order n by

p(π) =
|{s : s has ordinal pattern π}|

L− n+ 1
. (1)

where | . . . | denotes the size of the set. The permutation
entropy PE is defined as Shannon’s information entropy
for this ordinal pattern probability distribution, or

PE = −
n!
∑

p(π) log p(π) (2)

where the log is base two.

Instead of considering consecutive points in calculating
the ordinal pattern probability distribution for a time se-
ries, an embedding delay τ can be used to sample ordinal
patterns on a larger time scale, thereby placing a lower
limit on the temporal size of structures resolved, con-
sequently limiting the maximum associated frequency.
Embedding delays can be implemented as a simple sub-
sampling of data in which only L/τ values of the time
series are considered [14, 15] or all portions of the orig-
inal time series can be used [28], a method referred to
here as the length-preserving method. For example, for
an embedding delay τ = 10 using the former approach,
a new time series X ′ of length L′ = 1

10L is generated
by selecting every tenth value of the original series X
and the ordinal pattern probability distribution calcu-
lated for that series in the usual manner. In the length-
preserving method, segments (xt, xt+10, . . . , xt+10(n−1))
of X are used to calculate the ordinal pattern probability
distribution, where t runs from 1 to L−10(n−1), thereby
including the 9/10ths of the dataset thrown out in the
first method. Which method is used depends in part on
the length of the record in question. Unless L′ ≫ n!, the

first method may not yield reliable statistics [14], and the
length-preserving method thus appears preferable.

While the permutation entropy quantifies the random-
ness in an arbitrary time series, a measure of statisti-
cal complexity such as the Jensen-Shannon complexity
is required to quantify any additional physical structure
which might be reflected in the probability distribution
constructed from the signal. The Jensen-Shannon com-
plexity, or CJS , of the distribution P of N probabilities
associated with a time series is defined as the product

CJS [P ] = QJ [P, Pe]H [P ], (3)

Where H [P ] is the normalized Shannon entropy and the
quantity QJ [P, Pe] is a measure of disequilibrium, where
Pe = { 1

N
, ..., 1

N
} is the uniform distribution [29]. In

other words, QJ [P, Pe] quantifies how different P is from
an equiprobable distribution, characteristic of a system
such as an isolated ideal gas [30]. Therefore the quan-
tity CJS [P ] will be nonzero only if there exist privileged
states among those accessible to the system, and largest
for a given entropy the further the distribution of ac-
cessible states is from uniform. Formally, once the dis-
equilibrium is normalized such that 0 ≤ CJS ≤ 1, the
Jensen-Shannon complexity can be expressed

CJS [P ] = −2
S
[

P+Pe

2

]

− 1
2S[P ]− 1

2S[Pe]
N+1
N

log(N + 1)− 2 log(2N) + log(N)
H [P ],

(4)

Where S denotes the unnormalized Shannon entropy.
When using the Bandt-Pompe methodology, the distri-
bution P associated with the time series is the distri-
bution of length n ordinal patterns, so that N = n!,
S[P ] = PE, and H [P ] = PEnorm = PE/ logn!. CJS can
then be interpreted as a measure of the “non-triviality”
of the frequencies of occurrence of ordinal patterns in
the time series, reflecting underlying physical structures
which would be excluded if only a measure of entropy
were considered [29].

In order to develop some intuition about these met-
rics, it is often useful to consider simple examples. The
simplest would be a monotonic time series, say repre-
senting a line with positive slope. The only length n
ordinal pattern appearing in this time series is the per-
mutation (0,1,...,n), and thus the permutation entropy is
−1 log 1 = 0. The corresponding ordinal pattern proba-
bility distribution is far from a uniform distribution, with
only one bin filled, so the disequilibrium is large. Nev-
ertheless, CJS is zero since PE is zero. The fact that
a monotonic time series has zero complexity intuitively
matches the characterization of the Jensen-Shannon com-
plexity as a measure of structure, or non-triviality. At the
other extreme is a completely random time series, from a
maximally stochastic system where every possible ordinal
pattern occurs with equal frequency 1/n!. By construc-
tion, such a series maximizes the permutation entropy,
so that PE = log(n!). However, the disequilibrium is
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zero, so the CJS also vanishes. This again intuitively fits
with the identification of Jensen-Shannon complexity as
a measure of correlational structure.

In intermediate systems with entropies between these
extremes, there is a corresponding range of possible com-
plexities. As shown in [13], by mapping out the positions
of these systems on the CH plane PEnorm×CJS , differing
degrees of periodic, chaotic, and stochastic dynamics can
be identified. As a functional of the entropy, CJS is con-
strained between well-defined extremes for a given value
of H [30, 31]. These crescent-shaped maximum and min-
imum complexity curves are shown in Figure 1. Within
these bounds, regions of low entropy and low complex-
ity are associated with predictable, orderly but unstruc-
tured dynamics, such as those of periodic systems. A
time series generated from a sine function would occupy
this region of the plane. Since a sine function must be
discretized in order to generate a time series, ordinal pat-
terns other than the basic monotonically increasing and
decreasing patterns are introduced near the peaks and
troughs. Therefore the permutation entropy and Jensen-
Shannon complexity of a sine curve is nonzero, except in
the limit of infinitesimal sampling. The middle to upper
region of the plane, on the other hand is associated with
relatively unpredictable systems which nevertheless pos-
sess a large degree of structure, manifested in a distribu-
tion of ordinal patterns which is far from uniform. This
is the region of the CH plane occupied by deterministic
chaos [13]. Finally, the lower-right region of the plane
is associated with highly unpredictable systems which
lack structure, in the sense that all possible ordinal pat-
terns occur with more less the same frequency. Inherently
probabilistic, or stochastic, models generally occupy this
region of the plane. The less correlation between succes-
sive terms in a time series, the farther it tends towards
the PEnorm = 1, CJS = 0 corner of the plane [13].

The n = 5 CH plane in Figure 1 includes the positions
of several well-known models in order to illustrate each
of these regions and provide some point of reference for
subsequent comparisons of physical data. In particular,
the CH positions of time series generated by a simple sine
curve, chaotic Henon, skew tent, and logistic maps, and
stochastic fractional Brownian motion (fBm) are shown.
The three chaotic maps and fBm are described in Rosso
2007 [13]; the parameters used to generate time series in
that publication are repeated here and are shown to oc-
cupy the same positions on the CH plane. Note that the
dotted line corresponding to fBm was generated by vary-
ing the Hurst exponent, thereby scanning the degree of
correlation between increments in the model from strong
negative correlations to positive correlations.

III. CH comparison of SSX, Wind, and LAPD data

SSX magnetic fluctuations were analyzed over a 20 µs
window during the stationary period of the discharge,
corresponding to 1,300-sample records, and then aver-

aged over 40 shots. Actual magnetic field fluctuations,
B, are obtained by integrating the dB/dt signal over
time. The normalized permutation entropy and Jensen-
Shannon complexity were calculated for each series, using
n = 5 in order to satisfy the common condition L > 5n!,
as recommended in [32] and [33]. The length-preserving
embedding delay method was employed to preserve this
condition after sub-sampling. An embedding delay of
τ = 8 was used to filter frequencies above 9 MHz to
avoid contamination from a high frequency noise mode
inherent in the SSX plasma discharge, but small enough
compared to the record length to avoid artificial numer-
ical effects we found to be associated with small L/τ ra-
tios. The average CH plane coordinate is computed from
the individually computed coordinates of each orthogo-
nal direction of the four innermost coil locations on the
magnetic probe array. Two separate markers in Figure 1,
one open and one filled, are shown in blue designating two
different helicity settings. Error bars indicate standard
deviations from the ensemble average.

Figure 1 also shows the positions of both fast and slow
stream magnetic fluctuations in the solar wind. The
fast stream magnetic signal from Wind consisted of al-
most 230, 000 values, and the slow stream signal of over
170, 000. Since both signals were highly stationary, a
set of subseries could be treated as an ensemble. The
length of subseries Lwind was chosen in conjunction with
the embedding delay τwind so as to satisfy the condi-
tion Lwind/τwind = Lssx/τssx. Entropies and complexi-
ties were averaged over 20 subseries each 11, 375 values
in length for the fast stream signal and 15 subseries of
11, 375 values for the slow stream. Delays of τwind = 70
were used, which limits the upper frequency range of the
dynamics under investigation to well within the inertial
range. Error bars are within the range of the marker.

Previous work using frequency spectra has suggested
that the edge fluctuations of magnetized plasmas in the
LAPD and other devices are chaotic in nature [34]. The
CH coordinate of the LAPD edge plasma shown in Figure
1 in red was averaged over 25 shots and 5 sections of 1000
values for each shot with no embedding delay.

The relative coordinates of each measurement show
that the solar wind magnetic fluctuations at 1 AU are
the most stochastic-like of the three with permutation
entropy and complexity values of (H=0.964, C=0.057)
for fast and (H=0.956, C=0.069) for slow wind, both
close to that of pure white noise and more random than
even classical Brownian motion, or fBm with Hurst ex-
ponent of 1/2 (fBm models have also been explored as
a potential model for turbulent fluctuations in the so-
lar wind and the magnetosphere [35]). The fast stream
signal exhibits slightly more entropy and less complexity
than the slow stream signal; it is as yet unclear whether
this slight difference has a physical meaning, however.
One possible hypothesis is that the higher incidence of
uncorrelated Alfvenic fluctuations in the fast wind could
contribute to a greater degree of stochasticity [36]. Al-
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FIG. 1. (Color online) The n = 5 CH plane with SSX Ḃ and B (time-integrated from Ḃ) data for two injected helicities,
Wind fast and slow stream B data, LAPD edge plasma ion saturation current signals, and paradigmatic chaotic, periodic, and
stochastic systems for comparison. The purple star, cross, and X markers represent chaotic skew tent, Henon, and logistic
maps, respectively. The parameters used to generate time series for these chaotic maps are the same as in Rosso 2007 [13]. The
pentagon marks the position of the Sine function, and stochastic fBm signals are indicated by a dashed black line. Crescent
shaped curves show the maximum and minimum possible CJS for a given PEnorm. Error bars indicate standard deviation from
the ensemble average. Note that solar wind bars are smaller than the displayed size of the markers.

though it has been well documented that the solar wind
exhibits well-developed turbulence [24], this is the first
time that developed MHD turbulence in an astrophysi-
cal plasma has been identified based on the complexity-
entropy plane analysis or compared in this manner to
other plasma sources.

Conversely LAPD edge fluctuations are the most
chaotic-like with coordinates of (H=0.441, C=0.296),
closest of the three measurements to the chaotic models
at the top of the CH plane. Although the complexity val-
ues for the full LAPD edge are slightly less than that ob-
served in smaller drift-wave experimental setups [15], the
relatively high complexity compared to the other mea-
surements suggests a larger contribution from chaotic dy-
namics, likely associated with the non-linear interaction
of the drift-wave modes [34].

Finally, SSX magnetic fluctuations have en-
tropy/complexity values of (H=0.776, 0.786; C=0.24,

0.242 ) for Ḃ(t) data (0.0 and 1.0 mWb stuffing fluxes)
and (H=0.448, 0.392; C=0.305, 0.272) for B(t) (same

stuffing fluxes). The complexity values are in between
that of LAPD and the solar wind, while the permutation
entropy values differ substantially whether dB/dt or
B is used. Naturally, this suggests that the magnetic
fluctuations have a slightly more stochastic character
than the density fluctuations of the LAPD edge, but
do not reach the level of stochasticity of solar wind
fluctuations. The large gap in entropy may be associated
with the nature of the power spectrum, as will be
discussed next.

The results of the CH plane analysis can be compared
to a typical power spectrum analysis. Figure 2 shows the
wavelet-generated power spectra [37] for the time series
under investigation. Each spectrum is normalized to its
minimum frequency in order for each curve to be placed
on the same axis. This allows for the overall shape of
the spectra to be directly compared. Furthermore, each
curve is placed arbitrarily on the y-axis. Each spectrum
is also cut-off at the frequency associated with the em-
bedding delay used in the CH plane analysis. The LAPD
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FIG. 2. (Color online) Spectra of LAPD edge Isat fluctu-
ations, SSX magnetic fluctuations and solar wind magnetic
fluctuations are shown in thick lines with symbols. Each spec-
trum is normalized to a different time scale: LAPD is normal-
ized to 500Hz; SSX is normalized to 12.8kHz; solar wind is
normalized to 165µHz. Analytic forms for an exponential, a
-11/3 power-law, and a -5/3 power-law (Kolmogorov) are in-
dicated by the thin dashed lines. The power scale is arbitrary
as the emphasis here is on the shape of the curves, not the
relative power content of the spectra. The three spectra indi-
cate a clear transition from exponential-like to power-law like
broadband spectra. As an intermediate case, the SSX data
exhibits both power-law behavior (steep and shallow) and ex-
ponential behavior (transition between steep and shallow).

spectrum shows the most exponential-like (∼ eτf) shape
while the solar wind spectrum is the most power-law like
(∼ f−α). SSX Ḃ and B spectra are in between and would
appear to have both power-law and exponential behavior.
Previous work on SSX [20] has shown that the spectra
has two power-law regimes, a steep and a shallow regime.
The transition region, on the other hand, appears to have
a somewhat exponential character to it. Since exponen-
tial spectra are typically identified with low-dimensional
chaotic behavior [34], the range in spectra mirror the
results of the complexity analysis. The most exponen-
tial spectrum (LAPD) has the highest level of complex-
ity while the most power-law like (solar wind) has the
least complexity and the SSX data, having potentially
both power-law and exponential aspects, has complexi-
ties somewhere in between.

The spectra also shed light on interpretation of the per-
mutation entropy. The steepest spectra in Fig 2 is the
SSX B spectrum; the corresponding time series have the

lowest entropies. The LAPD data, if it were compared to
a power-law slope, would have the second steepest spec-
trum while the SSX Ḃ spectrum is third, and finally the
solar wind is the shallowest. This ordering is consistent
with the relative magnitudes of permutation entropy for
each dataset. These results suggest that the permuta-
tion entropy is associated with the overall distribution of
frequency power content of the time series, while the ex-
ponential versus power-law shape is associated with the
level of complexity. It is clear that though each of these
spectra is considered broadband and would perhaps be
described as turbulent, the CH plane analysis reflects the
different physical mechanisms which produce the fluctu-
ations.

Next, the meaning of turbulence can be explored in the
context of the CH positions of these fluctuations. The co-
ordinates of solar wind magnetic fluctuations on the CH
plane suggest that fully developed turbulence should oc-
cupy a region close to the stochastic limit. Meanwhile,
while often referred to as turbulent, fluctuations in a lab-
oratory setting (drift-wave turbulence for LAPD, MHD
turbulence for SSX) may not be truly turbulent, or con-
sidered only weakly turbulent. Instead there appears to
be a limit on how turbulent these fluctuations can be
whether it is due to a limit on the number of modes
associated with the fluctuations (as is thought to be the
case in the LAPD [15]) or whether there is a limit on how
much power can be distributed to higher frequencies (or
smaller scales). In SSX, this latter issue may arise due to
boundary or temporal development limits, both of which
are not encountered by solar wind plasma (but may be
relevant for the more bounded turbulent system of the
magnetosheath [38, 39], for example). The results of the
CH plane analysis highlight that more work is needed to
push laboratory plasma turbulence research into the fully
developed regime.

Finally, some discussion of how this analysis may be
related to the typical measure of degrees of freedom
in a turbulent plasma—Reynolds number—is warranted.
Reynolds number, whether in reference to flow or mag-
netic turbulence (i.e. Re or Rm), can be defined as the
ratio of energy injection scale to energy dissipation scale
in a turbulent cascade, and as such, can be interpreted
as the number of degrees of freedom available to the sys-
tem (or in other words, how many different scales energy
can occupy between input and dissipation). The mag-
netic Reynolds number for the solar wind is typically on
the order of 1× 107 while SSX magnetic Reynolds num-
bers have been calculated (based on typical length scales
and assuming Spizter resistivity as the dissipative mech-
anism) to be on the order of 1 × 102. Thus, Reynolds
number shows a separation between solar wind data and
SSX data though only in one dimension and qualitatively
matches the difference in degrees of freedom suggested by
the CH analysis. A complication arises when the LAPD
data is introduced for comparison. Reynolds numbers are
predicated on the separation of energy injection and dis-
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sipation scales. However, drift-wave turbulence may not
have a clear separation of scales as energy can potentially
be injected or dissipated at different scales [40], and thus
a Reynolds number may have less meaning in this case.
The complexity-entropy analysis performed here, on the
other hand, does not rely on any specific physical model
and thus can be used to compare disparate systems.

IV. Conclusion

In this paper, spectrally-broadband magnetic fluctua-
tions in laboratory and astrophysical plasmas have been
compared using the ordinal pattern-based CH plane in-
troduced by Rosso et al for the first time. Comparing
the relative coordinates of drift-wave, MHD wind tunnel,
and solar wind plasmas, it was found that the three sys-
tems occupy different regions of the CH plane, suggest-
ing that despite the broad-band spectra exhibited by all
these systems, the CH analysis is capable of highlight-
ing differences in the underlying nature of the fluctua-
tions, particularly among drift-wave, partially developed,
and fully developed turbulence. Drift-wave turbulence is
thought to be a result of the nonlinear interactions of rel-
atively few modes while fully developed turbulence con-
tains too many modes to distinguish; it appears that the
entropy-complexity analysis of these magnetized plasmas
effectively highlights the number of degrees of freedom of
the system in question. In particular, the smaller num-
ber of modes generating drift-wave turbulence in LAPD

edge plasmas are revealed by the low-middle entropy and
middle-range complexity of that system, while the high
entropy and low complexity of magnetic fluctuations in
the solar wind may reflect the multitude of degrees of
freedom active in that system. The analysis also showed
that variations in permutation entropy may be related
to power-law scaling of the spectra; in other words, per-
mutation entropy may be proportional to the eveness of
energy distribution among spectral frequencies. Based on
the relative CH positions of SSX MHD wind tunnel and
Wind data, although SSX is on its way towards the highly
stochastic turbulence in the solar wind, this analysis in-
dicates that further steps are needed for SSX to more
accurately model solar wind turbulence. The confined
nature of the experiment and short lifetimes involved are
both potential contributors to the discrepancy in CH po-
sitions. Other than the boundary conditions imposed by
astrophysical bodies, the solar wind is an unconfined and
extremely long lived plasma. Whether one or both of
these parameters could be varied to reduce the complex-
ity and increase the entropy of SSX to that of the solar
wind is an open question. In any case, the CH methodol-
ogy has provided us with another avenue for comparing
and understanding turbulence in plasmas.
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