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Based on an experiment and simulations, we report that an energy cascade in surface capillary
waves can be bi-directional, that is, can simultaneously flow towards large and small wavelength
scales from the pumping scales. The bi-directional energy cascade provides an effective global
coupling mechanism between the scales. We show that formation of the bi-directional cascade leads
to creation of large-scale, large-amplitude waves on the fluid surface.
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I. INTRODUCTION

Turbulence in a system of nonlinearly interacting
waves is referred to as wave turbulence [1, 2]. It is mani-
fested in various physical systems including atmospheric
waves [3], the earth’s magnetosphere and its coupling
with the solar wind [4], interstellar plasmas [5], and ocean
wind-driven waves [6]. Surface capillary waves are short
waves on a fluid surface, for which surface tension is the
primary restoring force. Turbulence of capillary waves is
important for the energy and momentum transfer on a
fluid surface [1], and for the transfer of gas into solution
through a gas-liquid interface [7].

It has been known since seminal work by Kolmogorov
[8], that turbulent dynamics is controlled by a directional
energy flux through the wavelength scales. Wave turbu-
lence theory [1, 2] based on a kinetic equation for a wave
ensemble,

∂N(k)

∂t
= St[N(k)], (1)

predicts a steady-state scale-invariant solution that de-
scribes a constant flux of energy towards smaller scales.
Here, N(k) is the ensemble-averaged pair correlation
function for the wave amplitudes in K-representation, k
is the wave vector, and St[N(k)] is the statistical “col-
lision” integral, which accounts for the nonlinear wave
interactions. The kinetic equation Eq. (1) for waves is
similar to the Boltzmann equation for a rarefied gas of
particles or quasiparticles [9].

The nonlinear wave system dynamics can be domi-
nated by local or nonlocal interactions between the waves
in the frequency scales [1, 2]. In the case of local interac-
tions, only waves with comparable wavelength scales in-
teract with each other, whereas for nonlocal interactions
the waves split to or confluence with other waves, which
wavelength can significantly differ from the initial one.
The locality of the nonlinear interactions is equivalent to
the convergence of the collision integral St[N(k)] in the
kinetic equation Eq. (1) [1, 2]. Internal gravity waves in
the ocean present an example of a system with nonlocal

wave interactions, for which the collision integral diverges
in the steady state [10]. For capillary waves, the collision
integral converges for a thermodynamic-equilibrium dis-
tribution as well as for a steady-state turbulent wave dis-
tribution that carries the energy flux through the scales
[11]. Thus, capillary wave turbulence is dominated by lo-
cal interactions and only waves with similar length scales
interact with each other. Therefore, the wave energy
transfers in a form of a cascade through the scales [11].
For the energy flux directed towards the high-frequency
spectral domain, this cascade is referred to as a direct
energy cascade. The respective wave spectrum can be
viewed as the wave analog of the Kolmogorov spectrum
of hydrodynamic turbulence [8, 12] and is referred to as
the Kolmogorov-Zakharov (KZ) spectrum of wave tur-
bulence [1]. Direct cascade of wave turbulence has been
extensively studied in experimental and theoretical works
[11, 13–19].

In this paper, based on the results of experimental
and numerical studies, we report that in sharp contrast
to existing theory and experiments, the energy flux of
nonlinear capillary waves can also propagate towards
the large-scale, low-frequency spectral region simultane-
ously with a conventional direct cascade. Formation of
this bi-directional turbulent cascade results in significant
changes in the energy budget of the system. Specifi-
cally, small-scale turbulent oscillations are suppressed,
whereas sustained high-amplitude large-scale oscillations
are formed. A bi-directional cascade of energy was re-
cently predicted for the two-component hydrodynamics
in the solar wind [20]. However, such a cascade has never
been observed or predicted for capillary waves. Moreover,
it has never been observed for systems in which resonant
three-wave interactions dominate and no additional inte-
grals of motion are present. We demonstrate that it is
the finite viscous damping in the low-frequency domain
that results in the bi-directional cascade formation.

Based on our experiment and simulations, the mech-
anism responsible for formation of the bi-directional en-
ergy cascade can be understood as follows. A system of
nonlinear waves with no damping at low frequencies es-
tablishes a thermodynamical equilibrium spectrum in the
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FIG. 1: (Color online) (a) Schematic of the experimental setup. An optical cryostat containing the cell is not shown. (b)
Snapshot of the turbulent surface of superfluid helium. The driving frequency is ωd/2π = 113 Hz. (c,d) Formation of large-
amplitude waves on the surface at ω < ωd by increasing the AC driving voltage from Ud = 4 V (c) to 14 V (d). The driving
frequency (arrow) is ωd/2π = 68 Hz. The wavelength at the driving frequency ωd is ' 780 µm. The conventional direct
Kolmogorov-Zakharov (KZ) spectrum of capillary turbulence I(ω) ∝ ω−3.5 between 2× 102 Hz < ω/2π < 2× 103 Hz is shown
by the dashed line. Formation of low-frequency harmonics at ω < ωd with amplitudes larger than those at the driving frequency
ωd is clearly visible for Ud = 14 V.

low-frequency domain, which carries no energy flux and
which temperature is proportional to the pumping rate
[21]. However, in experiments with fluids of final depth,
low-frequency wave damping occurs due to the viscous
drag at container’s walls [22]. The latter results in the
decrease of the low-frequency wave amplitudes. The sys-
tem tends to restore the thermodynamical equilibrium
spectrum and in effect, a steady energy flux towards the
low-frequency domain is formed.

We study capillary waves on the surface of superfluid
helium (He-II). He-II demonstrates many quantum fea-
tures, among which are the famous fountain effect in re-
sponse to heating, extremely high heat conductivity, and
quantization of vorticity in the fluid bulk [23]. Never-
theless, oscillations of a free He-II surface behave much
like surface oscillations of a classical fluid with very low
viscosity [17, 23, 24]. He-II provides an ideal testbed for
studying nonlinear wave dynamics due to the possibil-
ity of driving the weakly-charged He-II surface directly
by an oscillating electric field, virtually excluding the ex-
citation of bulk modes [25]. This method is similar to
the oceanographic case where waves are generated due to
wind drag applied directly to the fluid surface. Previous
experiments with waves on quantum fluids (liquid helium
and hydrogen) allowed detailed study of the direct cas-
cade of capillary turbulence [17], including modification
of the turbulent spectrum by applied low-frequency driv-

ing [26], and the turbulent bottleneck phenomena in the
high-frequency spectral domain [24] (see also a compre-
hensive review in Ref. [27]). In a fluid layer of final depth,
vortices can also contribute to the energy transfer to large
length scales [28]. In quantum fluids, quantized vortices
penetrate to the fluid bulk from the oscillating surface
if the amplitude of surface waves is large enough [29].
However, the latter process is only efficient for large di-
mensionless nonlinearities (i.e., the wave height-to-length
ratios) > 0.7 [29]. In our experiments with waves on the
surface of a quantum fluid, the dimensionless nonlinear-
ity is < 0.05 [25] and thus, in our analysis we disregard
the quantized vortex creation.

II. EXPERIMENTAL OBSERVATIONS

A. Steady-state turbulent spectrum

In our experiments helium was condensed into a cylin-
drical cup formed by a bottom capacitor plate and a
guard ring, and was positioned in a helium cryostat. The
cup has inner radius 30 mm and depth 4 mm. The ex-
periments were conducted at temperature T = 1.7 K
of the superfluid liquid. The capillary-to-gravity wave
transition on the surface of superfluid helium occurs at
a frequency of ' 25 Hz; the respective wavelength is
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λ = 2π(α/ρg)1/2 = 0.17 cm at T = 4.2 K and increases
to 0.3 cm for T = 1.7 K [27], where α is the surface ten-
sion, ρ is the fluid density and g is the acceleration due
to gravity. The finite depth of the waves only influences
the linear dispersion relation ω = ω(k) at frequencies
ω/2π < 10 Hz.

The free surface of the liquid was positively charged
as the result of β–particle emission from a radioactive
plate located in the bulk liquid. Oscillations of the liq-
uid surface were excited by application of an AC voltage
U(t) = Ud sin(ωdt) to the upper capacitor plate. Oscilla-
tions of the fluid surface elevation ζ(r, t) were detected
through variations of the power P (t) of a laser beam re-
flected from the surface (Fig. 1a). (Here, t is time and r
is the two-dimensional coordinate in the surface plane).
The capillary wave power spectrum ζ(ω) ∝ P (ω) was cal-
culated via the Fourier time transform of the signal P (t)
[25]. Fig. 1b shows a snapshot made through the cryo-
stat glass of turbulent waves on the helium surface. The
measurements of wave damping in the cell showed that
the quality factor at low frequencies ω < ωd is Q ∼ 103.

Figures 1c,d show the evolution of the ensemble-
averaged turbulent wave spectrum I(ω) = 〈|ξ(ω)|2〉 with
increasing driving amplitude Ud, when the driving fre-
quency is ωd/2π = 68 Hz. In Fig. 1c for a moderate
pumping Ud = 4 V, the direct Kolmogorov-Zakharov
cascade forms in the high-frequency domain 2 × 102

Hz < ω/2π < 2 × 103 Hz. At very high frequencies
ω/2π ∼ 2 × 103 Hz, the Kolmogorov-Zakharov cascade
is terminated by bulk viscous damping. Weak low fre-
quency oscillations at ω < ωd, with I(ω) ≤ 10−11 cm2s
in Fig. 1c, are caused by mechanical vibrations of the
experimental setup.

With an increased driving voltage of Ud = 14 V
in Fig. 1d, there are many low-frequency peaks in the
spectrum that have heights a few orders of magnitude
larger: I(ω) ≈ 10−7 − 10−6 cm2s. The spectra shown
on Fig. 1c,d have pronounced discrete spikes. The spikes
are the manifestation of capillary wave turbulence excited
by a narrow-band driving force, which spectral width is
smaller than the characteristic driving frequency, cf. ob-
servations for the direct cascade in Refs. [15, 30] and
simulations in Refs. [31, 32].

The total wave energy given by a sum of the energy due
to surface tension and the kinetic energy of fluid motion
is

E = α

∫
|∇ζ(r, t)|2dr. (2)

Calculations from the data in Fig. 1d shows that only
about 1% of the total wave energy is concentrated in
the high-frequency domain ω ≥ ωd, whereas 99% of the
energy is localized at frequencies ω < ωd.
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FIG. 2: Build-up of capillary turbulence on the surface of
superfluid helium. The spectra are calculated via short-time
Fourier transform (STFT) of the recorded signal. The mo-
ments, for which the spectra (a)-(c) are calculated, are la-
beled on the figure. The driving frequency is ωd/2π = 199 Hz
(arrowed) and the driving amplitude is Ud = 97 V. Formation
of the wave at a frequency equal half the driving frequency
is seen in figure (b), and formation of multiple low-frequency
harmonics is seen in (c).

B. Turbulence build-up

To better understand the turbulence dynamics, we also
studied the build-up process of capillary turbulence on
the surface of superfluid helium in the presence of low-
frequency harmonics. Formation of capillary turbulence
after step-like application of a periodic driving force at
the moment t = 0 is shown in Fig. 2. The surface is
driven at the frequency ωd/2π = 199 Hz, the driving
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amplitude is Ud = 97 V. It is seen in Fig. 2a that at t =
1.31 s after the driving force is turned on, the wave at the
driving frequency and its high-frequency harmonics with
ω/2π ≤ 103 Hz start forming on the noisy background.

At the moment t = 11.80 s (Fig. 2b) the direct cascade
is formed in the frequency range from the driving fre-
quency to the frequency ∼ 2×104 Hz, in agreement with
Fig. 1c,d and previous observations [15, 27]. However, it
is seen in Fig. 2b that the wave on the surface with the
frequency equal half the driving frequency is also formed
by that time. Generation of a wave with ω = ωd/2 can be
attributed to the modulation instability of the capillary
waves due to nonlinearity [33, 34].

At the moment t = 53.74 s multiple low-frequency har-
monics with the frequencies ω < ωd are formed on the
wave spectrum, in agreement with with our results for
the steady-state measurements (Fig. 1c,d). From com-
parison of the spectra in Figs. 2b and c it is evident that
the characteristic formation time for the low-frequency
harmonics is larger than that for the direct cascade. This
observation is in qualitative agreement with the observa-
tions made for acoustic turbulence of nonlinear second-
sound waves in bulk superfluid helium [35]. However, in
the case of second sound the wave dispersion relation is
close to linear, ω ∝ k [23], and therefore the mechanism
of acoustic turbulence is quite different from that for cap-
illary surface waves: formation of correlated shock sound
waves rather than strong phase fluctuations for dispersive
surface waves [1, 35–38].

III. NUMERICAL SIMULATIONS

A. Numerical model

To illustrate the formation of large-amplitude low-
frequency waves, we performed numerical modeling of the
wave dynamics in the cylindrical cell with external driv-
ing and viscous damping. In the simulations, we assume
angular symmetry of the surface. The deviation ζ(r, t)
of the surface from the equilibrium flat state is expressed
by time-dependent amplitudes an(t) of the normal modes
[13],

ζ(r, t) =
∑
n

√
kn

2ω(kn)ρAJ0(βn)2
[an(t) + a∗n(t)]J0(knr),

(3)
where r is the distance from the center of the cell, J0(x)
is the Bessel function of the zero order, A = πR2 is the
free-surface area, R is the cell radius, ω(k) =

√
αk3/ρ

is the linear dispersion relation, kn = βn/R is the radial
wave number, n > 0 labels the resonant radial modes,
and βn is the nth zero of the first-order Bessel function
J1(βn) = 0. Due to angular isotropy, we utilize the angle-
averaged dynamical equation for an(t),

dan(t)

dt
=−i

∑
n1,n2

!Vn,n1,n2 Dn,n1,n2 an1(t)an2(t)ei∆ωn,n1,n2
t

−2i
∑
n1,n2

V ∗n1,n,n2
Dn1,n,n2 an1(t)a∗n2

(t)e−i∆ωn1,n,n2
t

−γ(ω(kn))an(t). (4)

Eqs. (4) are canonical equations of motion for capillary
waves with quadratic nonlinearity and, with an assump-
tion of angular isotropy, are equivalent to the equations
of motion of the surface deviation ζ(r, t) [11].

The coupling coefficients Vn,n1,n2
characterize the in-

teraction strengths between waves with wave numbers
kn, kn1

, and kn2
; instead of taking the exact value for

capillary waves, we model it by

Vn,n1,n2
= ε
√
ω(kn)ω(kn1

)ω(kn2
). (5)

The coupling coefficients (5) in the model (4) have the
same scaling properties with respect to Zakharov’s con-
formal mapping in K-space as the respective exact co-
efficients found from the hydrodynamic equations with
the free surface [1]. Star in Eqs. (4) denotes complex
conjugate, i stands for the imaginary unit, Dn,n1,n2 =
1/2π∆(kn, kn1 , kn2), where ∆(kn, kn1 , kn2) is the area of
the triangle with sides kn, kn1 , and kn2 , and ∆ωn,n1,n2 =
ω(kn)−ω(kn1)−ω(kn2) is resonance detuning. In the sim-
ulations, ωc = (ρg3/α)1/4 and λc = (α/ρg)1/2 are used
as units of frequency and length, respectively. We con-
sider nmax = 100 radial modes. The dimensionless factor
ε� 1 is of the order of the maximum surface slope with
respect to the horizontal [13]. We set ε = 10−2 as a rep-
resentative value [25]. Driving was applied by fixing the
wave amplitude ad ≡ |and

(t)| at a given value.
To capture the physical effects that remove energy

from the system we add wave damping at both high and
low frequencies. Low-frequency damping is the result of
viscous drag at the cell bottom [22], and high-frequency
damping is caused by bulk viscosity in the fluid [12].
Specifically, we model the wave damping coefficient as

γ(ω) = γLF (ω) + γHF (ω), (6)

which is the sum of damping at low frequencies below
the nLF = 10 resonance in the cell, with γLF (ω) =
γLF gLF (ω), as well as damping at high frequencies above
the nHF = 80 resonance, with γHF (ω) = γHF gHF (ω).
The range of wave frequencies between the nLF and nHF
can be considered as a “numerical inertial interval” in
which damping is absent.

The damping factor at high frequencies was set as
γHF = 5 × 10−2ωc. Damping at high resonant numbers
n > nHF is modeled as gHF (n) = (n − nHF )2/(nmax −
nHF )2, and gHF (n) = 0 for n ≤ nHF . For a fluid layer of
finite depth, we model damping at low resonant numbers
n < nLF as gLF (n) = (nLF − n)/nLF , and gLF (n) = 0
for n ≥ nLF . The low-frequency damping coefficient γLF
is varied between 0 and 4γHF .

Under conditions considered in this paper, the three-
wave interactions taken into account in Eq. (4) domi-
nate and the four-wave interactions can be neglected, as
shown in Sec. III B. Additionally, the nonlinear frequency
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broadening of the resonances is much larger than spac-
ing between neighboring resonant frequencies, see Sec.
III B. Therefore, the system can be considered as a quasi-
continuous one and finite-size mesoscopic effects such as
frozen turbulence [11] and resonance clustering [39] do
not occur.

To calculate the dependence of an(t) on time t, we inte-
grated Eq. (4) until the system reached the steady state.
The wave spectrum is calculated as the time-averaged
quantity N(kn) = 〈|an(t)|2〉. For capillary waves, the
time-averaged correlation function is I(ω) = N(k(ω)),
where N(k) is expressed as a function of the wave fre-
quency ω via the relation k = k(ω) inverse to the linear
dispersion relation [25].

B. Quasi-continuous turbulent spectra in a
spatially-restricted nonlinear wave system

The dynamics of capillary turbulence in a restricted
geometry depends on the ratio of the nonlinear reso-

nance broadening and the distance in K-space between
neighboring resonance frequencies [11, 39]. In spatially-
extended systems where the resonance frequency spec-
trum is quasi-continuous, these are the three-wave inter-
actions that contribute to the nonlinear wave dynamics
of capillary waves [1, 2]. In the opposite case of small-
size systems where the distance between neighboring res-
onances is large, the three-wave interactions are out of
resonance and hence, account for the next-order, four-
wave interactions is of importance [11, 39–41]. We em-
phasize that in both cases, the consideration is limited
to weakly nonlinear waves, for which the expansion of
the full hydrodynamic equations over the wave ampli-
tude can be applied. In our case, this is guaranteed by
the smallness of the maximum surface slope ε.

To prove that under our experimental conditions the
three-wave interactions are only essential in the dynami-
cal equations (4) we compare the characteristic rates for
three-wave and four-wave interaction processes. The rate
of the three-wave interactions is [37, 42]

γ
(3)
k = 4

∑
k1,k2

|V (k, k1, k2)|2 (N(k1) +N(k2)) δk−k1−k2 L(3)(ω(k)− ω(k1)− ω(k2))

− 4
∑
k1,k2

|V (k1, k2, k)|2 (N(k2)−N(k1)) δk1−k2−k L(ω(k1)− ω(k2)− ω(k))

− 4
∑
k1,k2

|V (k2, k, k1)|2 (N(k1)−N(k2)) δk2−k−k1 L(3)(ω(k2)− ω(k)− ω(k1)), (7)

where N(kn) is the ensemble-averaged pair correlation
function for the wave amplitudes of the mode with the
resonance number n, the factor

L(3)(∆ω) =
Γk12

(∆ω)2 + Γ2
k12

(8)

accounts for nonlinear and viscous broadening of the res-
onances, and

Γk12 = γk + γk1 + γk2 (9)

is the total resonance width. The total resonance width
is estimated in Eq. (9) as a sum of individual broaden-

ings of the resonances [37, 42]. In Eq. (7), the coupling
coefficients for the three-wave interactions are expressed
as functions of the wave vectors thus, V (kn1

, kn2
, kn3

) ≡
Vn1,n2,n3

, where Vn1,n2,n3
were introduced in Sec. III A.

We consider an isotropic case where the correlation func-
tions nk do not depend on the direction of the wave vector
k. Isotropic turbulence is usually considered as a general
case in the wave turbulence theory in the absence of the
linear momentum flux along the surface [1]. Addition-
ally, the angular symmetry is dictated in our experiment
by the cylindrical geometry of the cell. For angular sym-
metry, Eq. (7) reads after averaging over the directions
of the wave vectors k, k1 and k2:

γ
(3)
k = 4

∑
k1,k2

k1k2|V (k, k1, k2)|2

2π∆(k, k1, k2)
(N(k1) +N(k2))L(3)(ω(k)− ω(k1)− ω(k2))

− 4
∑
k1,k2

k1k2|V (k1, k2, k)|2

2π∆(k, k1, k2)
(N(k2)−N(k1))L(3)(ω(k1)− ω(k2)− ω(k))
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− 4
∑
k1,k2

k1k2 |V (k2, k, k1)|2

2π∆(k, k1, k2)
(N(k1)−N(k2))L(3)(ω(k2)− ω(k)− ω(k1)), (10)

where summation in Eq. (10) is made over the absolute
values of the vectors. In Eq. (10) we use the following
identity for the angle-averaged Dirac delta [1]

1

(2π)3

∫ 2π

0

dθ1

∫ 2π

0

dθ2

∫ 2π

0

dθ3 δk1−k2−k3

=
1

2π∆(k1, k2, k3)
, (11)

where θ1, θ2 and θ3 are the directions of the vectors k1,
k2 and k3 respectively.

The rate of the four-wave interactions is

γ
(4)
k =

∑
k1,k2,k3

|T (k, k1, k2, k3)|2

×(N(k1)N(k3) +N(k1)N(k2)−N(k2)N(k3))

×δk+k1−k2−k3L(4)(ω(k) + ω(k1)− ω(k2)− ω(k3)),

(12)

where the coupling coefficients T (k, k1, k2, k3) character-
ize the four-wave interactions for waves with the wave
vectors k, k1, k2 and k3. Following the same approxi-
mation as in Sec. III A we model it as follows

T (k, k1, k2, k3) = ε2
√
ω(k)ω(k1)ω(k2)ω(k3). (13)

The model (13) has the same scaling properties as the
exact coupling coefficients [1]. After averaging over the
directions of the wave vectors k, k1, k2 and k3, one ob-
tains

γ
(4)
k =

∑
k1,k2,k3

k1k2k3|T (k, k1, k2, k3)|2

(N(k1)N(k3) +N(k1)N(k2)−N(k2)N(k3))

× 16π

kk1 + k2k3
F

(
2
√
kk1k2k3

kk1 + k2k3

)
×L(4)(ω(k) + ω(k1)− ω(k2)− ω(k3)).

(14)

Dirac delta in Eq. (14) is averaged as follows [43],

1

(2π)4

∫ 2π

0

dθ

∫ 2π

0

dθ1

∫ 2π

0

dθ2

∫ 2π

0

dθ3 δk+k1−k2−k3

=
16π

kk1 + k2k3
F

(
2
√
kk1k2k3

kk1 + k2k3

)
,(15)

where F (x) is a complete elliptic integral of the first kind.
We denote in Eq. (14)

L(4)(∆ω) =
Γk123

(∆ω)2 + Γ2
k123

(16)

FIG. 3: (Color online) Three- and four-wave interaction rates,

γ
(3)
k (solid curve) and γ

(4)
k (short-dashed curve) calculated

from Eqs. (10), (12) and (18) as functions of the resonance

number n. It is seen that one has γ
(3)
k � γ

(4)
k for all res-

onance numbers n thus, the three-wave processes dominate.
For comparison, the distance between two neighboring res-
onances ∆ωkn ≡ ω(kn+1) − ω(kn) is also shown by a long-
dashed curve. The discreteness of the resonance frequency

spectrum is inessential since γ
(3)
k > ∆ωkn .

and

Γk123 = γk + γk1 + γk2 + γk3 . (17)

We set in Eqs. (9) and (17) the total width of the reso-
nances as

γk = γ
(3)
k + γ

(4)
k + γ

(visc)
k . (18)

where γ
(visc)
k is linear viscous broadening of a resonance

with the wave number k. We model viscous broadening

as γ
(visc)
k = ω(k)/Q where Q is the quality Q-factor. We

set Q = 103 in agreement with our experimental parame-
ters. Estimation of the total resonance width in Eq. (18)
as a sum of broadenings arising from different incoherent
processes is a widely-used approximation [44].

To find the three- and four-wave interaction rates,

γ
(3)
k and γ

(4)
k , we solved Eqs. (10), (12) and (18) self-

consistently. For that purpose we used an iterative pro-
cedure. The initial width of the resonances for the itera-
tive procedure has been set equal to their viscous width

γ
(visc)
k . We found that the three- and four-wave inter-

action rates, to which the results of the iterative proce-
dure converge, only weakly depend on Q. It is because

in turbulence one has γk � γ
(visc)
k [1]. We focused on

the wave-turbulent regime and therefore, we set the oc-
cupation numbers in Eqs. (10) and (12) in the known
scale-invariant form [1]

N(k) = Ck−
17
4 . (19)
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FIG. 4: (Color online) (a) Numerical steady-state spectrum
I(ω) of sustained surface oscillations in the presence of low-
and high-frequency damping (peaks) and in the presence of
only high-frequency damping (open squares). The spectra
are shown in units of λ2

cω
−1
c . The spectra are averaged over

an interval of 106tc where tc = ω−1
c is a numerical unit of

time. The surface is driven at a frequency ωd of the 50th
resonance (arrowed). The power-law spectral behavior I(ω) ∝
ω−3.5 (KZ) and ω−1 (the thermal equilibrium) are shown by
dashed lines. The radius of the cylindrical cell is R = 15λc.
(b) Absolute value of the energy flux, |Π|, in units of αωc,
incoming to the spectral domain ω < ωd as a function of
the low-frequency damping coefficient γLF . The cell radii are
R = 15λc (circles) and 30λc (triangles). Vertical bars show
the fluctuations of the flux as a standard deviation about the
mean. The dashed lines are shown to guide the eye.

In our simulations, we set C = 1. We found that the
procedure converges with the relative accuracy ≤ 0.2%
after ten subsequent iterations.

The obtained dependences of γ
(3)
k and γ

(4)
k on the res-

onance number n are shown in Fig. 3. We remind that
n labels the wave number k of the radial resonant mode.
The calculations were done for the cell radius R = 30λc.
It is seen in Fig. 3 that the three-wave interaction rate

γ
(3)
k is about an order larger than the four-wave inter-

action rate γ
(4)
k for all wave vectors. In other words,

the characteristic time for the three-wave interaction pro-

cesses, τ
(3)
k = 1/γ

(3)
k is much shorter than that for four-

wave interaction processes τ
(4)
k = 1/γ

(4)
k in the whole

range of wave vectors. Therefore, the contribution of the
four-wave interactions to the capillary wave dynamics is

negligible under the conditions described in the paper. It
also follows from Fig. 3 that the three-wave interaction

rate γ
(3)
k is larger than the spacing between two neighbor-

ing resonances ∆ωk. Thus, the resonances overlap within
their nonlinear widths and in effect, the system can be
considered as a quasi-continuous one [11, 41].

C. Bi-directional energy cascade of capillary
turbulence

The results of our simulations are summarized in
Fig. 4. In Fig. 4a (pulses) the steady-state wave spec-
trum I(ω) is similar to that observed in the experiment
for high-amplitude driving Ud = 14 V (cf. Fig. 1d). In
the domain ω > ωd, the high-frequency Kolmogorov-
Zakharov spectrum forms in agreement with current and
previous observations. We emphasize that, in both the
experiment and simulations, the low-frequency waves
with ω < ωd retain finite values; moreover, the ampli-
tudes of some low-frequency waves exceeds those at the
driving frequency ωd. The fluctuations of the wave am-
plitudes in Fig. 4a (pulses) are probably caused by the
effect of the narrow-band pumping for the low-frequency
harmonics that is, by the same effect that results in the
high-frequency wave amplitude fluctuations in the direct
cascade, cf. Sec. II A above and Refs. [15, 30–32].

To explain the formation of the low-frequency waves,
we demonstrate that bi-directional energy flux is estab-
lished in the system in place of the traditional direct
energy cascade. In the simulations, we varied the low-
frequency damping and kept all other parameters fixed.
We analyze the energy balance in the system in the form
of the continuity equation for energy [1, 12],

dE(ω)

dt
+ Π = −Γ(ω) + S(ω), (20)

where E(ω) =
∫ ω

0
ε(ω′)dω′ is the total wave energy

in the spectral domain ω′ < ω, ε(ω) = 2παk(ω)
×(dk(ω)/dω)ωI(ω) is the spectral energy density, Π is
the total energy flux, Γ(ω) = 2

∫ ω
0
γ(ω′)ε(ω′)dω′ is the

energy loss due to viscous damping, and S(ω) is the
energy source from the driving. In the steady state
dE(ω)/dt = 0, the total energy balance in the low-
frequency spectral domain ω < ωd is

Π = −4πα

∫ ω

0

γ(ω′)k(ω′)

(
dk(ω′)

dω′

)
ω′I(ω′)dω′, (21)

because the source term is S(ω) is absent for low frequen-
cies. To investigate the dependence of the energy flux on
the system parameters, we calculated Π from Eq. (21) for
different low-frequency damping coefficients and two cell
radii (see Fig. 4b). In the absence of low-frequency damp-
ing, γLF = 0, the thermodynamic-equilibrium Rayleigh-
Jeans-like spectrum I(ω) ∝ ω−1 is formed at ω < ωd
(Fig. 4a, open squares) in agreement with Ref. [21]. This
spectrum produces no energy flux through the frequency
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FIG. 5: (Color online) Probability distribution functions of
Re(a) for the 20th resonant mode at frequency ω = 9.38ωc (a)
and for the 10th mode at frequency ω = 3.62ωc (b) in the ab-
sence of low-frequency damping, γLF = 0 (unfilled columns),
and at γLF = 0.25γHF (shaded columns). PDFs are calcu-
lated for the spectra shown in Fig. 4a. Dashed (green) lines
show the Gaussian fit to the PDFs. The line segments con-
necting the points are shown to guide the eye.

scales. The absolute value of the flux increases with
the rise of the low-frequency damping coefficient, as is
seen in Fig. 4b. The negative sign of Π for finite low-
frequency dampings in Eq. (21) corresponds to the flux
direction from the driving scales, ω ∼ ωd, towards the
low-frequency domain.

We emphasize that in both cases R = 15λc and 30λc,
the wave system is driven at the frequency of the 50th
resonance. Since the wave frequency at a given reso-
nance number decreases with the rise of the cell radius
(cf. Sec. III A), the driving frequency for R = 30λc (trian-
gles in Fig. 4b) is lower than that for R = 15λc (circles).
Therefore, from Fig. 4b it follows that the effect of the
bi-directional cascade is more pronounced in the case of
the high-frequency driving.

D. Probability distribution functions

Wave turbulence predicts that the probability distri-
bution function (PDF) for wave amplitudes with speci-
fied wave numbers is a Gaussian function. We verified
numerically that this is indeed the case for most modes.
Specifically, we calculated a real part of the complex wave

amplitude, Re(an), as shown in Fig. 5a. The real part
of the amplitudes corresponds to the normalized surface
elevation of the surface above a flat equilibrium state, as
follows from Eq. (3).

However, some modes showed significant deviations
from the predicted Gaussian form when low-frequency
damping is applied, as shown by the 10th mode in Fig. 5b.
The non-Gaussian tails in the PDF in the presence of the
bi-directional energy cascade correspond to an increased
probability of the resonant formation of large-amplitude
waves, which may be thought as a capillary-wave ana-
logue of “rogue” waves observed in the ocean [45]. Rogue
capillary waves on water surface were recently observed
under parametric excitation conditions in Ref. [18].

It is worth noting that for γLF = 0 (Fig. 4a, open
squares), the ratio of the spectral powers at ω = 3.62ωc
and 9.38ωc is ≈ 5. Since in this case PDF for the wave
amplitudes is close to Gaussian, it is natural to expect
that the ratio of PDF widths for the respective ampli-
tudes in Fig. 5 for the two frequencies is ∼

√
5 ≈ 2.2. It

is seen in Fig. 5 that this is indeed the case. However,
for γLF > 0, PDF for ω = 3.62ωc strongly deviates from
the Gaussian form (Fig. 5b, filled bars) and thus, such
simple estimate for the distribution widths is not valid.

IV. CONCLUSIONS

In conclusion, we demonstrated that energy flux from
the driving scale towards the damping region can be
formed for capillary waves even if the damping oc-
curs at frequencies lower that the driving frequency.
This bi-directional energy flux provides a continuous en-
ergy source for sustained low-frequency wave oscillations
in the presence of finite damping. Furthermore, bi-
directional energy flux provides an effective global cou-
pling mechanism between the scales. In our experiments,
we studied nonlinear capillary waves on the surface of
superfluid He-II. However, the concept of bi-directional
energy flux is relevant for a wider range of nonlinear sys-
tems, such as waves on classical fluids in wave tanks [46]
and in restricted geometries [47], vibrating elastic plates
[48], and in quantum fluids [35].
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